首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Glutamine synthetase (GS) is a central enzyme of nitrogen metabolism that allows assimilation of nitrogen and biosynthesis of glutamine. We isolated the cDNA encoding GS from two arbuscular mycorrhizal fungi, Glomus mosseae (GmGln1) and Glomus intraradices (GiGln1). The deduced protein orthologues have a high degree of similarity (92%) with each other as well as with GSs from other fungi. GmGln1 was constitutively expressed during all stages of the fungal life cycle, i.e., spore germination, intraradical and extraradical mycelium. Feeding experiments with different nitrogen sources did not induce any change in the mRNA level of both genes independent of the symbiotic status of the fungus. However, GS activity of extraradical hypahe in G. intraradices was considerably modulated in response to different nitrogen sources. Thus, in a N re-supplementation time-course experiment, GS activity responded quickly to addition of nitrate, ammonium or glutamine. Re-feeding with ammonium produced a general increase in GS activity when compared with hyphae grown in nitrate as a sole N source.  相似文献   

5.
6.
Two glutamine synthetase isogenes, GS1a and GS1b, isolated from pine have been functionally expressed in E. coli and the characteristics of individual gene products compared. When bacteria were grown at 37 degrees C most pine GS1 protein was found in the insoluble fraction but lowering of the expression temperature increased yield of both GS1 polypeptide and activity in the soluble fraction. High levels of functionally active GS1a (309 + or - 35 nkat mg(-1)) and GS1b (1,166 + or - 65 nkat mg(-1)) enzymes were obtained by decreasing the expression temperature to 10 degrees C. Purification and characterization of recombinant products showed that pine GS1 polypeptides are assembled in octameric GS holoenzymes showing structural and kinetic differences. The results are discussed with regard to the specific localization of GS1a and GS1b in different cell types of pine seedlings. The isoform GS1a may control the assimilation of the high levels of ammonium released in photosynthetic tissues, whereas GS1b enzyme could mitigate oscillations in glutamate availability providing a constant flux of glutamine for nitrogen transport in vascular cells.  相似文献   

7.
8.
9.
Over‐expression of glutamine synthetase (GS, EC 6.3.1.2), a key enzyme in nitrogen assimilation, may be a reasonable approach to enhance plant nitrogen use efficiency. In this work phenotypic and biochemical characterizations of young transgenic poplars showing ectopic expression of a pine cytosolic GS transgene in photosynthetic tissue (Gallardo et al., Planta 210, 19–26, 1999) are presented. Analysis of 22 independent transgenic lines in a 6 month greenhouse study indicated that expression of the pine GS transgene affects early vegetative growth and leaf morphology. In comparison with non‐transgenic controls, transgenic trees exhibited significantly greater numbers of nodes and leaves (12%), and higher average leaf length and width resulting in an increase in leaf area (25%). Leaf shape was not altered. Transgenic poplars also exhibited increased GS activity (66%), chlorophyll content (33%) and protein content (21%). Plant height was correlated with GS content in young leaves, suggesting that GS can be considered a marker for vegetative growth. Molecular and kinetic characterization of GS isoforms in leaves indicated that poplar GS isoforms are similar to their counterparts in herbaceous plants. A new GS isoenzyme that displayed molecular and kinetic characteristics corresponding to the octomeric pine cytosolic GS1 was identified in the photosynthetic tissues of transgenic poplar leaves. These results indicate that enhanced growth and alterations in biochemistry during early growth are the consequence of transgene expression and assembly of pine GS1 subunits into a new functional holoenzyme in the cytosol of photosynthetic cells.  相似文献   

10.
The major isoenzyme of glutamine synthetase found in leaves of angiosperms is the chloroplastic form. However, pine seedlings contain two cytosolic glutamine synthetases in green cotyledons: GS1a, the predominant isoform, and GS1b, a minor enzyme whose relative amount is increased following phosphinotricin treatment. We have cloned a GS1b cDNA, and comparison with the previously reported GS1a cDNA sequence indicated that they correspond to separate cytosolic GS genes encoding distinct protein products. Phylogenetic analysis showed that the newly reported sequence is closer to cytosolic angiosperm GS than to GS1a, suggesting therefore that GS1a could be a divergent gymnospermous GS1 gene. Gene mapping using a F2 family of maritime pine showed co-localization of both GS genes on group 2 of the genetic linkage map. This result supports the proposed origin of different members of the GS1 family by adjacent gene duplication. The implications for gymnosperm genome organization are discussed.  相似文献   

11.
A full-length cDNA clone (pGSP114) encoding glutamine synthetase was isolated from a gt11 library of the gymnosperm Pinus sylvestris. Nucleotide sequence analysis showed that pGSP114 contains an open reading frame encoding a protein of 357 amino acid residues with a calculated molecular mass of 39.5 kDa. The derived amino acid sequence was more homologous to cytosolic (GS1) (78–82%) than to chloroplastic (GS2) (71–75%) glutamine synthetase in angiosperms. The lack of N-terminal presequence and C-terminal extension which define the primary structure of GS2, also supports that the isolated cDNA encodes cytosolic GS. Southern blot analysis of genomic DNA from P. sylvestris and P. pinaster suggests that GS may be encoded by a small gene family in pine. GS mRNA was more abundant in cotyledons and stems than in roots of both Scots and maritime pines. Western blot analysis in P. sylvestris seedlings showed that only one GS polypeptide, similar in size to GS1 in P. pinaster, could be detected in several different tissues. Our results suggest that cytosolic GS is mainly responsible for glutamine biosynthesis in pine seedlings.This paper is dedicated to the memory of Dr. Jesús S. Olavarría.  相似文献   

12.
Light-independent chloroplast development and expression of genes encoding chloroplast proteins occur in many but not all species of gymnosperms. Early development in maritime pine (Pinus pinaster) seedlings was strongly light-independent, whereas Ginkgo biloba seedlings exhibited a typical angiosperm-like morphogenesis with differentiated patterns in light and dark. In pine, chloroplast polypeptides were undetectable in the seed embryo and accumulated in cotyledons of both light- and dark-grown plants in good correlation with light-independent chlorophyll synthesis. In contrast, chlorophyll and chloroplast proteins were only detected in light-grown ginkgo. Pine cytosolic glutamine synthetase (GS) and ferredoxin glutamate synthase (Fd-GOGAT) were present at low levels in the seeds and accumulated at comparable amounts in light- and dark-grown seedlings. Fd-GOGAT was also barely detectable in the seeds of ginkgo and only accumulated in green plants with mature chloroplasts. In G. biloba seeds and etiolated plants only cytosolic GS was identified, while in light-grown seedlings this molecular form was present at low abundance and choroplastic GS was the predominant isoenzyme. The above results have been confirmed by immunolocalization of GS protein in pine and ginkgo plantlets. In pine, GS was present in the peripheral cytoplasm of mesophyll cells and also in the phloem region of the vascular bundle. Immunocytochemical analysis showed that the labelling of mesophyll and phloem cells was only cytoplasmic. In developing ginkgo, GS antigens were present in the chloroplasts of mesophyll parenchyma cells of leaflets and green cotyledons. In contrast, a weak labelling of GS was observed in the parenchyma and phloem cells of non-green cotyledons enclosed in the seed coat. Taking all this into account, our data indicate the existence of two different modes of GS and GOGAT regulation in gymnosperms in close correlation with the differential response of plants to light. Furthermore, the results suggest that glutamine and glutamate biosynthesis is confined to the chloroplast of mesophyll cells in species with light-dependent chloroplast, development whereas compartmentation would be required in species with light-independent plastid development.  相似文献   

13.
The occurrence of GS isoenzymes has been investigated in Scots pine (Pinus sylvestris) seedlings. A transient increase of glutamine synthetase (GS, EC 6.3.1.2) activity was observed in the cotyledon whorl of plants treated with the herbicide phosphinotricin (PPT). The increase in GS activity was accompanied by a parallel accumulation of GS1 protein, which remained at high levels throughout the PPT treatment. Two-dimensional SDS-PAGE western analysis showed that pine extracts contained two GS1 polypeptides which differ in their corresponding isoelectric points. Analysis of crude extracts by ion-exchange chromatography led to the separation of two GS isoforms. The first peak (GS1-a) eluted from the columns at a low ionic strength (0.15-0.18 M KCl), whereas the second one (GS1-b) was detected at 0.5 M KCl. A detailed molecular study of both GS holoenzymes confirmed that their subunits were similar in size (about 41 kDa) but different in charge. All these data clearly demonstrate the presence of two GS1 forms in Scots pine cotyledons. Moreover, a comparison of isolated GS isoproteins with the recombinantly expressed Scots pine cytosolic subunit suggests that GS1-a corresponds to the previously characterized cDNA (pGSP114) whereas GS1-b is a minor GS isoenzyme with increased relative abundance in phosphinotricin treated plants.  相似文献   

14.
15.
测定了水稻种子不同萌发时期胚乳、胚芽鞘和幼根的谷氨酰胺合成酶(GS)和依赖于NADH的谷氨酸合酶(NADH-GOGAT)活性变化。胚乳和胚芽鞘的GS活性在萌发过程中升高,幼根的GS活性则有所降低。NADH-GOGAT的活性变化趋势与GS相同。Native-PAGE活性染色表明,在萌发阶段的水稻种子胚乳和幼根里,始终只观察到一种GS活性带。但是,在水稻种子萌发3d后,在胚芽鞘中除继续检测到GS1的活性外,还可以观察到GS2的活性。蛋白质印迹显示,水稻种子胚乳中的GS(GSe)和GS1和GSra一样是一种胞质型GS。实验结果提示,这些不同组织中的GS与NADH-GOGAT构成的循环途径也许是水稻种子萌发时氨同化的主要途径。  相似文献   

16.
Two distinct forms of glutamine synthetase (GS) have been identified in the spear tip tissues of harvested asparagus (Asparagus officinalis L. cv. Limbras 10). The GS activities were separated by anion exchange chromatography. They have distinct kinetic properties and contain polypeptides of different sizes, and the abundances of the GS isoforms change differently after harvest. Plastid GS has a 44 kD polypeptide, and during the post-harvest period the abundance of this polypeptide declined dramatically. After 5 d, the activity of plastid GS had declined to just 20% of that at harvest. Cytosolic GS has a 40 kD polypeptide and is the major constituent of the GS activity present at harvest (73% of total). After harvest, cytosolic GS activity declined by half and then, at 3 or 4 d after harvest, rose to 80% of the cytosolic GS activity present at harvest. The nitrogen metabolism of asparagus spears is significantly altered as the tissues deteriorate rapidly after harvest. We demonstrate that cytosolic GS activity increases during the post-harvest period and is likely to be a critical feature of the physiology of the tip of a harvested asparagus spear.  相似文献   

17.
Glutamine synthetase (GS; EC.6.3.1.2.) occurs as cytosolic (GS1) and plastidic (GS2) polypeptides. This paper describes the expression of GS isoenzymes in coleoptile during the anaerobic germination of rice (Oryza sativa L.) and the influence of exogenous nitrate on this. By immunoprecipitation with anti-GS serum, two polypeptides of 41- and 44-kDa were detected of which the former was predominant. After fractionation by ion-exchange chromatography, the 41 and 44 kDa bands were identified as GS1 and GS2, respectively. Northern blot analysis with specific probes showed the presence of mRNA for cytosolic GS but not for the plastidic form. The presence of exogenous nitrate did not alter the activity and expression of GS in the coleoptile. The role of GS during the anaerobic germination of rice seems to induce the re-assimilation of ammonia rather than the assimilation of nitrate.Abbreviations GS glutamine synthetase - GS1 cytosolic glutamine synthetase - GS2 platidic glutamine synthetase We are grateful to Dr. Julie V. Cullimore for providing GS anti-serum and clones. The research was supported by the National Research Council of Italy, special project RAISA, sub-project N. 2 paper N. 1586.  相似文献   

18.
When rice seedling roots were fed 15N-ammonium for 1 hr, theamide nitrogen of glutamine showed the highest 15N abundance.Moreover, glutamine amino, glutamic acid, aspartic acid andalanine showed higher 15N abundance than ammonium did. In roots whose GS activity was inhibited with MS, both the amountof ammonium and its 15N abundance were increased. In contrast,both the amount of all examined amino acids containing glutamicacid and their 15N abundance decreased in roots whose GS activitywas inhibited. From these results, it could be concluded thatthe first step of ammonium assimilation in rice seedling rootswas mainly glutamine synthesis by GS and the second was glutamicacid formation by the GOGAT system. The results of an experiment using 15N glutamine also supportedthis conclusion. (Received February 23, 1977; )  相似文献   

19.
We have developed an approach combining physiology and quantitative genetics to enhance our understanding of nitrogen (N) metabolism during kernel germination. The physiological study highlighted the central role of glutamine (Gln) synthetase (GS) and Gln synthesis during this developmental process because a concomitant increase of both the enzyme activity and the amino acid content was observed. This result suggests that Gln is acting either as a sink for ammonium released during both storage protein degradation and amino acid deamination or as a source for amino acid de novo synthesis by transamination. In the two parental lines used for the quantitative genetics approach, we found that the increase in Gln occurred earlier in Io compared with F(2), a result consistent with its faster germinating capacity. The genetic study was carried out on 140 F6 recombinant inbred lines derived from the cross between F(2) and Io. Quantitative trait locus mapping identified three quantitative trait loci (QTLs) related to germination trait (T50, time at which 50% of the kernels germinated) that explain 18.2% of the phenotypic variance; three QTLs related to a trait linked to germination performance, kernel size/weight (thousand kernels weight), that explain 17% of the phenotypic variance; two QTLs related to GS activity at early stages of germination that explain 17.7% of the phenotypic variance; and one QTL related to GS activity at late stages of germination that explains 7.3% of the phenotypic variance. Coincidences of QTL for germination efficiency and its components with genes encoding cytosolic GS (GS1) and the corresponding enzyme activity were detected, confirming the important role of the enzyme during the germination process. A triple colocalization on chromosome 4 between gln3 (a structural gene encoding GS1) and a QTL for GS activity and T50 was found; whereas on chromosome 5, a QTL for GS activity and thousand kernels weight colocalized with gln4, another structural gene encoding GS1. This observation suggests that for each gene, the corresponding enzyme activity is of major importance for germination efficiency either through the size of the grain or through its faster germinating capacity. Consistent with the possible nonoverlapping function of the two GS1 genes, we found that in the parental line Io, the expression of Gln3 was transiently enhanced during the first hours of germination, whereas that of gln4 was constitutive.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号