首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A purification procedure is described by which aspartate transcarbamylase was obtained from cultured cells of Drosophila melanogaster as part of a high-molecular-weight enzyme complex. The complex is shown to contain several polypeptides. An antiserum directed against the complex enzyme inhibited in vitro the activity of aspartate transcarbamylase, carbamylphosphate synthetase and dihydro-orotase which were shown to copurify on a sucrose gradient and by gel electrophoresis. A fast preparation procedure using this antiserum yielded a 220 000-molecular-weight protein in addition to the polypeptides present in the complex. A purification procedure is also described to obtain aspartate transcarbamylase from second instar larvae of Drosophila. At this stage, the enzyme is not complexed with carbamylphosphate synthetase and dihydro-orotase but exhibits the same molecular weight as the aspartate transcarbamylase moiety found in the high-molecular-weight complex of cultured cells.  相似文献   

2.
The multifunctional protein which catalyzes the first three steps of pyrimidine biosynthesis in hamster cells can be cleaved by trypsin into enzymatically active fragments. When the fragments are separated by nondenaturing polyacrylamide gel electrophoresis, three major polypeptide bands appear. Carbamyl phosphate synthetase (EC 2.7.2.9), aspartate transcarbamylase (EC 2.1.3.2), and dihydroorotase (EC 3.5.2.3) activities are associated with 129,000-, 660,000-, and 94,000-dalton bands, respectively. Further analysis of these fragments by denaturing polyacrylamide gel electrophoresis has shown that the aspartate transcarbamylase band seen on the nondenaturing gel is actually a large aggregate of 39,000-dalton fragments and the dihydroorotase band is a dimer of 44,000-dalton fragments. The data reported here indicate that (i) this multifunctional protein is composed of three enzymatically independent domains, (ii) the sum of the molecular weights of these three domains (129,000 + 39,000 + 44,000 = 212,000) is similar to that of the undigested monomer (220,000 daltons), and (iii) a site important to the formation of the native multimeric protein is probably near the aspartate transcarbamylase domain.  相似文献   

3.
The aspartate/glutamate carrier from beef heart mitochondria was solubilized by the detergent dodecyloctaoxyethylene ether (C12E8) in the presence of high concentrations of ammonium acetate. After separating the bulk amount of contaminating proteins by differential solubilization and by hydroxyapatite centrifugation chromatography, the aspartate/glutamate carrier was purified by high-performance liquid chromatography on hydroxyapatite. During the purification process, the aspartate/glutamate carrier as well as other transport proteins was identified by functional reconstitution. In sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis the purified aspartate/glutamate carrier protein appears as a protein band with an apparent molecular mass of 68 kDa. Small amounts of some contaminating proteins mainly at 31 kDa were also found. Since the ADP/ATP carrier has an apparent molecular mass of 31 kDa in SDS-gel electrophoresis, possible contamination by the nucleotide carrier was analyzed by immunological methods. The enrichment of the aspartate/glutamate carrier--based on functional reconstitution--was about 570-fold, the protein yield was 0.1%.  相似文献   

4.
The aspartate transcarbamylase of Bacillus subtilis is stable in exponentially growing cells, but undergoes rapid, energy-dependent inactivation when growth is inhibited by nutrient depletion or addition of antibiotics or other inhibitors of metabolism. This inactivation has been analyzed by a variety of immunochemical techniques, including direct and indirect immunoprecipitation of extracts of cells labeled with 3H-amino-acids, microcomplement fixation, and neutralization of enzymatic activity. The ability of the antibody preparation to react with various denatured, chemically modified, and proteolytically degraded forms of aspartate transcarbamylase was demonstrated. All of the techniques showed that cross-reactive protein disappeared from the cells at the same rate as enzymatic activity, and that little or no immunoprecipitable material of lower than native molecular weight was detectable during inactivation. The disappearance of material cross-reactive with aspartate transcarbamylase occurred prior to the increase in protein degradation that normally occurs in stationary B. subtilis cells and proceeded at a rate at least 20 times greater than general protein degradation. The rate of disappearance was unaffected in mutant strains deficient in intracellular protease activity or in cells treated with inhibitors of protein turnover. Aspartate transcarbamylase was shown to be stable in growing cells. We conclude that the inactivation of aspartate transcarbamylase in vivo involves, or is rapidly followed by, selective, energy-dependent degradation of the protein by a system that appears to involve a previously undescribed protease of B. subtilis.  相似文献   

5.
Aspartate transcarbamylase from Bacillus subtilis has been purified to apparent homogeneity. A subunit molecular weight of 33,500 +/- 1,000 was obtained from electrophoresis in polyarcylamide gels containing sodium dodecyl sulfate and from sedimentation equilibrium analysis of the protein dissolved in 6 M guanidine hydrochloride. The molecular weight of the native enzyme was determined to be 102,000 +/- 2,000 by sedimentation velocity and sedimentation equilibrium analysis. Aspartate transcarbamylase thus appears to be a trimeric protein; cross-linking with dimethyl suberimidate and electrophoretic analysis confirmed this structure. B. subtilis aspartate transcarbamylase has an amino acid composition quite similar to that of the catalytic subunit from Escherichia coli aspartate transcarbamylase; only the content of four amino acids is substantially different. The denaturated enzyme has one free sulfhydryl group. Aspartate transcarbamylase exhibited Michaelis-Menten kinetics and was neither inhibited nor activated by nucleotides. Several anions stimulated activity 2- to 5-fold. Immunochemical studies indicated very little similarity between B. subtilis and E. coli aspartate transcarbamylase or E. coli aspartate transcarbamylase catalytic subunit.  相似文献   

6.
It is known that the reaction-center binding protein D1 in photosystem (PS) II is degraded significantly during photoinhibition. The D1 protein also cross-links covalently or aggregates non-covalently with the nearby polypeptides in PS II complexes by illumination. In the present study, we detected the adducts between the D1 protein and the other reaction-center binding protein D2 (D1/D2), the alpha-subunit of cyt b(559) (D1/cyt b(559)), and the antenna chlorophyll-binding protein CP43 (D1/CP43) by SDS/urea-polyacrylamide gel electrophoresis and Western blotting with specific antibodies. The adducts were observed by weak and strong illumination (light intensity: 50-5000 microE m(-2) s(-1)) of PS II membranes, thylakoids and intact chloroplasts from spinach, under aerobic conditions. These results indicate that the cross-linking or aggregation of the D1 protein is a general phenomenon which occurs in vivo as well as in vitro with photodamaged D1 proteins. We found that the formation of the D1/D2, D1/cyt b(559) and D1/CP43 adducts is differently dependent on the light intensity; the D1/D2 heterodimers and D1/cyt b(559) were formed even by illumination with weak light, whereas generation of the D1/CP43 aggregates required strong illumination. We also detected that these D1 adducts were efficiently removed by the addition of stromal components, which may contain proteases, molecular chaperones and the associated proteins. By two-dimensional SDS/urea-polyacrylamide gel electrophoresis, we found that several stromal proteins, including a 15-kDa protein are effective in removing the D1/CP43 aggregates, and that their activity is resistant to SDS.  相似文献   

7.
The brief history of the discovery of radioracemization, the racemization of an optically active substance induced by ionizing radiation, is reviewed. Our early studies involving the radiolysis and radioracemization of D- and L-leucine using gamma radiation from a 111-TBq 60Co gamma-ray source are described briefly, as are later experiments involving other protein amino acids and their salts, as well as the nonprotein amino acid, isovaline. The implications of the results of such studies for the Vester-Ulbricht mechanism which proposes longitudinally polarized beta radiation as the origin of molecular chirality, for the cosmological question of the enantiomeric compositions of amino acids in the Murchison meteorite, and for the use of D/L ratios of amino acids for geochronological and geothermal estimates are reviewed briefly. These past radiolysis-radio- racemization studies have involved only monomeric amino acids. The present research, extending such investigations to two homochiral L-leucine polypeptides, (L-Leu)10 and (L-Leu)78, was undertaken to see if a polymer of an amino acid might be more stable to radiolysis and radioracemization than the corresponding monomer. It was found that these polypeptides were more stable to radiolysis than was the leucine monomer, but that the extents of radioracemization in all samples were comparable.  相似文献   

8.
The yeast URA2 locus encodes a multifunctional protein which possesses the carbamylphosphate synthetase and aspartate transcarbamylase activities and which catalyzes the first two reactions of the pyrimidine pathway. We report here the nucleotide sequence of the central and the 3' region of this locus. The latter encodes that part of the multifunctional protein which has the aspartate transcarbamylase activity. The deduced amino acid sequence shows a high degree of homology with the known aspartate transcarbamylases of various organisms from Escherichia coli to mammals. The amino acid residues that have been shown to be involved in the catalytic site of the E. coli enzyme are all conserved suggesting that, in the more complex structure of the yeast protein, the catalytic sites are also located at subunit interfaces. There is also an important conservation of the amino acid pairs that, in E. coli, are implicated in intra- and interchain interactions. As well as the oligomeric structure suggested by these two features, the three-dimensional structure of the yeast enzyme must also be organized to account for the channeling of carbamylphosphate, from the carbamylphosphate synthetase catalytic site to that of aspartate transcarbamylase, and for the concomitant feedback inhibition of the two activities by the end product UTP. The URA2 gene product was shown to be localized in the nucleus. With the aim of identifying the regions that may be involved in this transport, we have determined by electron microscopy the subcellular distribution of aspartate transcarbamylase in three strains expressing different fragments of the URA2 locus. In the first strain the protein lacks 190 residues at the N terminus, but accumulates normally in the nucleus. In the second strain the protein lacks 382 residues in the central part and seems impaired in the nuclear transport process. In the third strain the 476-residue protein encoded by the 3' region of URA2 locus and catalyzing the aspartate transcarbamylase reaction is able by itself to migrate to and accumulate in the nucleus. This suggests that two regions are involved in the nuclear accumulation. On the basis of their conservation in analogous proteins of other eukaryotes and their similarity to sequences already identified as nuclear location signals, a sequence in the central region of the protein and two short sequences in the C-terminal region are good candidates for the nuclear location signal involved in the targeting of the URA2 product.  相似文献   

9.
Reabsorption of bile acids occurs in the terminal ileum by a Na(+)-dependent transport system composed of several subunits of the ileal bile acid transporter (IBAT) and the ileal lipid-binding protein. To identify the bile acid-binding site of the transporter protein IBAT, ileal brush border membrane vesicles from rabbit ileum were photoaffinity labeled with a radioactive 7-azi-derivative of cholyltaurine followed by enrichment of IBAT protein by preparative SDS gel electrophoresis. Enzymatic fragmentation with chymotrypsin yielded IBAT peptide fragments in the molecular range of 20.4-4 kDa. With epitope-specific antibodies generated against the C terminus a peptide of molecular mass of 6.6-7 kDa was identified as the smallest peptide fragment carrying both the C terminus and the covalently attached radiolabeled bile acid derivative. This clearly indicates that the ileal Na(+)/bile acid cotransporting protein IBAT contains a bile acid-binding site within the C-terminal 56-67 amino acids. Based on the seven-transmembrane domain model for IBAT, the bile acid-binding site is localized to a region containing the seventh transmembrane domain and the cytoplasmic C terminus. Alternatively, assuming the nine-transmembrane domain model, this bile acid-binding site is localized to the ninth transmembrane domain and the C terminus.  相似文献   

10.
Trypanosoma cruzi, the causative agent of Chagas disease, is extremely resistant to ionizing radiation, enduring up to 1.5 kGy of gamma rays. Ionizing radiation can damage the DNA molecule both directly, resulting in double-strand breaks, and indirectly, as a consequence of reactive oxygen species production. After a dose of 500 Gy of gamma rays, the parasite genome is fragmented, but the chromosomal bands are restored within 48 hours. Under such conditions, cell growth arrests for up to 120 hours and the parasites resume normal growth after this period. To better understand the parasite response to ionizing radiation, we analyzed the proteome of irradiated (4, 24, and 96 hours after irradiation) and non-irradiated T. cruzi using two-dimensional differential gel electrophoresis followed by mass spectrometry for protein identification. A total of 543 spots were found to be differentially expressed, from which 215 were identified. These identified protein spots represent different isoforms of only 53 proteins. We observed a tendency for overexpression of proteins with molecular weights below predicted, indicating that these may be processed, yielding shorter polypeptides. The presence of shorter protein isoforms after irradiation suggests the occurrence of post-translational modifications and/or processing in response to gamma radiation stress. Our results also indicate that active translation is essential for the recovery of parasites from ionizing radiation damage. This study therefore reveals the peculiar response of T. cruzi to ionizing radiation, raising questions about how this organism can change its protein expression to survive such a harmful stress.  相似文献   

11.
Immunoblotting, after polyacrylamide gel electrophoresis with sodium dodecyl sulfate (SDS‐PAGE), is a technique commonly used to detect specific proteins. SDS‐PAGE often results in the visualization of protein band(s) in addition to the one expected based on the theoretical molecular mass (TMM) of the protein of interest. To determine the likelihood of additional band(s) being nonspecific, we used liquid chromatography – mass spectrometry to identify proteins that were extracted from bands with the apparent molecular mass (MM) of 40 and 26 kD, originating from protein extracts derived from non‐malignant HEK293 and cancerous MDA‐MB231 (MB231) cells separated using SDS‐PAGE. In total, approximately 57% and 21% of the MS/MS spectra were annotated as peptides in the two cell samples, respectively. Moreover, approximately 24% and 36.2% of the identified proteins from HEK293 and MB231 cells matched their TMMs. Of the identified proteins, 8% from HEK293 and 26% from MB231 had apparent MMs that were larger than predicted, and 67% from HEK293 and 37% from MB231 exhibited smaller MM values than predicted. These revelations suggest that interpretation of the positive bands of immunoblots should be conducted with caution. This study also shows that protein identification performed by mass spectrometry on bands excised from SDS‐PAGE gels could make valuable contributions to the identification of cancer biomarkers, and to cancer‐therapy studies.  相似文献   

12.
13.
The rate of degradation of aspartate transcarbamylase in exponentially growing Bacillus subtilis cells was determined by measurement of enzyme activity after the addition of uridine to repress further enzyme synthesis and by specific immunoprecipitation of the enzyme from cells grown in the presence of [3H]leucine. Aspartate transcarbamylase was degraded with a half-life of about 1.5 h in cells growing on a glucose-salts medium with NH4+ ions as the sole source of nitrogen. Replacement of NH4+ in this medium with a combination of the amino acids aspartate, glutamate, isoleucine, proline, and threonine reduced the degradation rate to an undetectable level. Various other amino acids and amino acid mixtures had smaller effects on the rate of degradation. The carbon source also influenced the degradation rate, but to a smaller extent than the nitrogen source. The effects of these nutritional variables on the rate of bulk protein turnover in growing cells were generally similar to their effects on degradation of aspartate transcarbamylase. Since the degradation of aspartate transcarbamylase has been shown to be 10 to 20 times faster than bulk protein turnover, the results suggest that a substantial portion of protein turnover in growing cells represents regulable, rapid degradation of a number of normal proteins, of which aspartate transcarbamylase is an example.  相似文献   

14.
Five SDS-proteins, ranging in molecular weight from 14 to 66 kDa, were detected without covalent fluorescent labeling by the automated gel electrophoresis apparatus with intermittent fluorescence scanning (HPGE apparatus, LabIntelligence) during electrophoresis in barbiturate buffer in the presence of Cascade Blue. The SDS-proteins were electroeluted from the gel into 220 microl of buffer by a modification of the procedure of Gombocz and Cortez. The electroeluate was freed of SDS, ultrafiltered and subjected to MALDI-TOF mass spectrometry. The masses of the five native proteins were found to be maintained after electrophoresis and electroelution in the presence of the potential contaminants SDS, barbituric acid and Cascade Blue. The procedure of protein transfer from SDS-PAGE into mass spectrometry, without excision of bands, gel maceration and protein recovery by diffusion, therefore is shown to be suitable for the identification by mass of intact proteins derived from gel electrophoretic bands.  相似文献   

15.
CAD, is a multidomain polypeptide, with a molecular weight of over 200,000, that has glutamine-dependent carbamyl-phosphate synthetase, aspartate transcarbamylase, and dihydroorotase activity as well as regulatory sites that bind UTP and 5-phosphoribosyl 1-pyrophosphate. The protein thus catalyzes the first three steps of de novo pyrimidine biosynthesis and controls the activity of the pathway in higher eukaryotes. Controlled proteolysis of CAD isolated from Syrian hamster cells, cleaves the molecule into seven major proteolytic fragments that contain one or more of the functional domains. The two smallest fragments, which had molecular weights of 44,000 and 40,000, corresponded to the fully active dihydroorotase (DHO) and aspartate transcarbamylase (ATC) domains, respectively, but the larger fragments have not been previously characterized. In this study, enzymatic assays of partially fractionated digests and immunoblotting with antibodies specifically directed against the purified ATC domain, the purified dihydroorotase domain and an 80-kDa fragment of the putative carbamyl-phosphate synthetase domain established the precursor-product relationships among all of the major proteolytic fragments of CAD. These results indicate that 1) only the intact molecule had all of the functional domains, 2) a species with a molecular weight of 200,000 was produced in the first step of proteolysis which had glutamine-dependent carbamyl-phosphate synthetase and dihydroorotase activity, but neither aspartate transcarbamylase activity nor the antigenic determinants present on the isolated ATC domain, and 3) cleavage of the 200-kDa species produced a species, with a molecular mass of 150,000 which lacked both aspartate transcarbamylase and dihydroorotase domains. This 150-kDa species, containing the postulated carbamyl-phosphate synthetase, glutamine, and regulatory (UTP, 5-phosphoribosyl 1-pyrophosphate) domains, had two elastase-sensitive sites that divided this region of the polypeptide chain into 10-, 65-, and 80-kDa segments. The location of the functional sites on these segments has not yet been established. The immunochemical analysis also revealed the existence of possible precursors of the stable aspartate transcarbamylase and dihydroorotase domains, suggesting that the chain segments connecting the functional domains of CAD are extensive and that the overall size of the intact polypeptide chain has been underestimated. On the basis of these studies we have proposed a model of the domain structure of CAD.  相似文献   

16.
The addition of urea to sodium dodecyl sulfate (SDS)-polyacrylamide gels has allowed the identification and characterization of the small nuclear ribonucleoprotein particle (snRNP) D' protein and has also improved resolution of the E, F, and G snRNP core proteins. In standard SDS-polyacrylamide gels, the D' and D snRNP core proteins comigrate at approximately 16 kilodaltons. The addition of urea to the separating gel caused the D' protein to shift to a slower electrophoretic mobility that is distinct from that of the D protein. The shift to a slower electrophoretic mobility in the presence of urea suggests that the D' protein has extensive secondary structure that is not totally disrupted by SDS alone. Both N-terminal sequencing and partial peptide maps indicate that the D and D' proteins are distinct gene products, and the sequence data have identified the faster moving of the two proteins as the previously cloned D protein (L. A. Rokeach, J. A. Haselby, and S. O. Hoch, Proc. Natl. Acad. Sci. USA 85:4832-4836, 1988). In the cytoplasm, the D protein is found primarily in the small-nuclear-RNA-free 6S protein complexes, while the D' protein is found primarily in the 20S protein complexes. Like the D protein, the D' protein is an autoantigen in patients with systemic lupus erythematosus and is recognized by some of the Sm class of autoimmune antisera.  相似文献   

17.
18.
Cytochrome c (cyt c) is an electron carrier involved in the mitochondrial respiratory chain and a critical protein in apoptosis. The oxidation of cytochrome c can therefore be relevant biologically. We studied whether cytochrome c underwent the attack of reactive oxygen species (ROS) during ionizing irradiation-induced oxidative stress. ROS were generated via water radiolysis under ionizing radiation (IR) in vitro. Characterization of oxidation was performed by mass spectrometry, after tryptic digestion, and UV-visible spectrophotometry. When both hydroxyl and superoxide free radicals were generated during water radiolysis, only five tryptic peptides of cyt c were reproducibly identified as oxidized according to a relation that was dependent of the dose of ionizing radiation. The same behavior was observed when hydroxyl free radicals were specifically generated (N(2)O-saturated solutions). Specific oxidation of cyt c by superoxide free radicals was performed and has shown that only one oxidized peptide (MIFAGIK+16), corresponding to the oxidation of Met80 into methionine sulfoxide, exhibited a radiation dose-dependent formation. In addition, the enzymatic site of cytochrome c was sensitive to the attack of both superoxide and hydroxyl radicals as observed through the reduction of Fe(3+), the degradation of the protoporphyrin IX and the oxidative disruption of the Met80-Fe(3+) bond. Noteworthy, the latter has been involved in the conversion of cyt c to a peroxidase. Finally, Met80 appears as the most sensitive residue towards hydroxyl but also superoxide free radicals mediated oxidation.  相似文献   

19.
Aspartate transcarbamylase is synthesized during exponential growth of Bacillus subtilis and is inactivated when the cells enter the stationary phase. This work is a study of the regulation of aspartate transcarbamylase synthesis during growth and the stationary phase. Using specific immunoprecipitation of aspartate transcarbamylase from extracts of cells pulse-labeled with tritiated leucine, we showed that the synthesis of the enzyme decreased very rapidly at the end of exponential growth and was barely detectable during inactivation of the enzyme. Synthesis of most cell proteins continued during this time. When the cells ceased growing because of pyrimidine starvation of a uracil auxotroph, however, synthesis and inactivation occurred simultaneously. Measurement of pools of pyrimidine nucleotides and guanosine tetra- and pentaphosphate demonstrated that failure to synthesize aspartate transcarbamylase in the stationary phase was not explained by simple repression by these compounds. The cessation of aspartate transcarbamylase synthesis may reflect the shutting off of a "vegetative gene" as part of the program of differential gene expression during sporulation. However, aspartate transcarbamylase synthesis decreased normally at the end of exponential growth at the nonpermissive temperature in a mutant strain that is temperature-sensitive in sporulation and RNA polymerase function. Cessation of aspartate transcarbamylase synthesis appeared to be normal in three other temperature-sensitive RNA polymerase mutants and in several classes of spo0 mutants.  相似文献   

20.
SDS-PAGE法测定His-tag融合蛋白分子量产生偏差的原因   总被引:10,自引:0,他引:10  
Histag/NiNTA系统是新发展起来的一个亲和纯化重组蛋白的有用工具,现常用于基因编码产物的特性研究中。SDSPAGE是实验室测定蛋白质分子量通常采用的方法,而许多实验室用此方法检测Histag融合蛋白时却常发现测得的分子量偏大,产生偏差的原因尚未阐明。为弄清这一问题,本实验室在研究一个Histag融合蛋白P73His时,首先用SDSPAGE法测得其分子量确实比理论计算值大,然后对其进行C末端氨基酸顺序测定、电喷雾质谱分析,结果证实其实际分子量与理论值一致。酶切去除包括Histag在内的部分肽段使SDSPAGE法测量蛋白分子量的偏差大大降低,证实Histag确实是造成偏差的原因之一。推测由于Histag中的碱性氨基酸的作用造成蛋白在SDSPAGE中迁移变慢,而导致偏差。这一现象值得引起有关研究者的注意。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号