首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The region of the herpes simplex virus type 2 (HSV-2) genome which maps colinearly with the HSV-1 glycoprotein C (gC) gene has been cloned, and the DNA sequence of a 2.29-kilobase region has been determined. Contained within this sequence is a major open reading frame of 479 amino acids. The carboxyterminal three-fourths of the derived HSV-2 protein sequence showed a high degree of sequence homology to the HSV-1 gC amino acid sequence reported by Frink et al. (J. Virol. 45:634-647, 1983). The amino-terminal region of the HSV-2 sequence, however, showed very little sequence homology to HSV-1 gC. In addition, the HSV-1 gC sequence contained 27 amino acids in the amino-terminal region which were missing from the HSV-2 protein. Computer-assisted analysis of the hydrophilic and hydrophobic properties of the derived HSV-2 sequence demonstrated that the protein contained structures characteristic of membrane-bound glycoproteins, including an amino-terminal signal sequence and carboxy-terminal hydrophobic transmembrane domain and charged cytoplasmic anchor. The HSV-2 protein sequence also contained seven putative N-linked glycosylation sites. These data, in conjunction with mapping studies of Para et al. (J. Virol. 45:1223-1227, 1983) and Zezulak and Spear (J. Virol. 49:741-747, 1984), suggest that the protein sequence derived from the HSV-2 genome corresponds to gF, the HSV-2 homolog of HSV-1 gC.  相似文献   

2.
Evidence is presented that the herpes simplex virus type 2 glycoprotein previously designated gF is antigenically related to herpes simplex virus type 1 gC (gC-1). An antiserum prepared against type 1 virion envelope proteins immunoprecipitated gF of type 2 (gF-2), and competition experiments revealed that the anti-gC-1 component of the antiserum was responsible for the anti-gF-2 cross-reactivity. An antiserum prepared against fully denatured purified gF-2, however, and three anti-gF-2 monoclonal antibodies failed to precipitate any type 1 antigen, indicating that the extent of cross-reactivity between gC-1 and gF-2 may be limited. Several aspects of gF-2 synthesis and processing were investigated. Use of the enzymes endo-beta-N-acetylglucosaminidase H and alpha-D-N-acetylgalactosaminyl oligosaccharidase revealed that the fully processed form of gF-2 (about 75,000 [75K] apparent molecular weight) had both complex-type N-linked and O-linked oligosaccharides, whereas newly synthesized forms (67K and 69K) had only high-mannose N-linked oligosaccharides. These last two forms were both reduced in size to 54K by treatment with endo-beta-N-acetylglucosaminidase H and therefore appear to differ only in the number of N-linked chains. Neutralization tests and radioiodination experiments revealed that gF-2 is exposed on the surfaces of virions and that the 75K form of gF-2 is exposed on cell surfaces. The similarities and differences of gF-2 and gC-1 are discussed in light of recent mapping results which suggest collinearity of their respective genes.  相似文献   

3.
4.
Entry of herpes simplex virus (HSV) into cells is believed to be mediated by specific binding of envelope proteins to a cellular receptor. Neomycin specifically blocks this initial step in infection by HSV-1 but not HSV-2. Resistance of HSV-2 to this compound maps to a region of the genome encoding glycoprotein C (gC-2). We have studied the function of gC-2 in the initial interaction of the virus with the host cell, using HSV-2 mutants deleted for gC-2 and gC-2-rescued recombinants. Resistance to neomycin was directly linked to the presence of gC-2 within the viral genome. In addition, deletion of the gC-2 gene caused a marked delay in adsorption to cells relative to the wild-type virus. HSV-1 recombinants containing chimeric gC genes composed of HSV-1 and HSV-2 sequences were used to localize neomycin resistance within the N-terminal 223 amino acids of gC-2. This region of the glycoprotein comprises an important domain responsible for binding of HSV-2 to cell receptors in the presence of neomycin. A gC-2-negative mutant is still infectious, indicating that HSV-2 also has an alternative pathway of adsorption.  相似文献   

5.
Glycoprotein C (gC) was purified by immunoabsorbent from herpes simplex virus type-1-infected BHK cells labeled with [14C]glucosamine for 11 h and chased for 3 h. Glycopeptides obtained by pronase digestion of gC were fractionated by Bio-Gel filtration and concanavalin A-Sepharose chromatography. Each glycopeptide fraction was analyzed for amino sugar composition by thin-layer chromatography. The majority of radioactivity was recovered as N-acetylglucosamine, but a significant amount of labeled N-acetylgalactosamine was detected and recovered preferentially in some glycopeptide species. Mild alkaline borohydride treatment of the glycopeptides resulted in the release of small degradation products which contained N-acetylgalactosaminitol as the major labeled component and a drastic reduction of N-acetylgalactosamine in the residual glycopeptides. These results demonstrated that gC carries O-glycosidically linked oligosaccharides in addition to the N-linked di- and triantennary glycans previously described (F. Serafini-Cessi, F. Dall'Olio, L. Pereira, and G. Campadelli-Fiume, J. Virol. 51:838-844, 1984). Chromatographic behavior on DEAE-Sephacel chromatography and neuraminidase digestion of O-linked oligosaccharides indicated the presence of two major sialylated species carrying one and two sialic acid residues, respectively. The characterization of a peculiar glycopeptide species supported the notion that some of the O-linked oligosaccharides are bound to a cluster of hydroxyamino acids located near an N-glycosylation site which carries one N-linked diantennary oligosaccharide.  相似文献   

6.
The DNA region encoding the complete herpes simplex virus type 1 (HSV-1) glycoprotein K (gK) was inserted into a baculovirus transfer vector, and recombinant viruses expressing gK were isolated. Four gK-related recombinant baculovirus-expressed peptides of 29, 35, 38, and 40 kDa were detected with polyclonal antibody to gK. The 35-, 38-, and 40-kDa species were susceptible to tunicamycin treatment, suggesting that they were glycosylated. The 38- and 40-kDa species corresponded to partially glycosylated precursor gK (pgK) and mature gK, respectively. The 29-kDa peptide probably represented a cleaved, unglycosylated peptide. The 35-kDa peptide probably represented a cleaved, glycosylated peptide that may be a precursor to pgK. Indirect immunofluorescence with polyclonal antibody to gK peptides indicated that the recombinant baculovirus-expressed gK was abundant on the surface of the insect cells in which it was expressed. Mice vaccinated with the baculovirus-expressed gK produced very low levels (< 1:10) of HSV-1 neutralizing antibody. Nonetheless, these mice were partially protected from lethal challenge with HSV-1 (75% survival). This protection was significant (P = 0.02). Despite some protection against death, gK-vaccinated mice showed no protection against the establishment of latency. Surprisingly, gK-vaccinated mice that were challenged ocularly with a stromal disease-producing strain of HSV-1 had significantly higher levels of ocular disease (herpes stromal keratitis) than did mock-vaccinated mice. In summary, this is the first report to show that vaccination with HSV-1 gK can provide protection against lethal HSV-1 challenge and that vaccination with an HSV-1 glycoprotein can significantly increase the severity of HSV-1-induced ocular disease.  相似文献   

7.
8.
We previously defined eight groups of monoclonal antibodies which react with distinct epitopes of herpes simplex virus glycoprotein D (gD). One of these, group VII antibody, was shown to react with a type-common continuous epitope within residues 11 to 19 of the mature glycoprotein (residues 36 to 44 of the predicted sequence of gD). In the current investigation, we have localized the sites of binding of two additional antibody groups which recognize continuous epitopes of gD. The use of truncated forms of gD as well as computer predictions of secondary structure and hydrophilicity were instrumental in locating these epitopes and choosing synthetic peptides to mimic their reactivity. Group II antibodies, which are type common, react with an epitope within residues 268 to 287 of the mature glycoprotein (residues 293 to 312 of the predicted sequence). Group V antibodies, which are gD-1 specific, react with an epitope within residues 340 to 356 of the mature protein (residues 365 to 381 of the predicted sequence). Four additional groups of monoclonal antibodies appear to react with discontinuous epitopes of gD-1, since the reactivity of these antibodies was lost when the glycoprotein was denatured by reduction and alkylation. Truncated forms of gD were used to localize these four epitopes to the first 260 amino acids of the mature protein. Competition experiments were used to assess the relative positions of binding of various pairs of monoclonal antibodies. In several cases, when one antibody was bound, there was no interference with the binding of an antibody from another group, indicating that the epitopes were distinct. However, in other cases, there was competition, indicating that these epitopes might share some common amino acids.  相似文献   

9.
Oligomer formation of the gB glycoprotein of herpes simplex virus type 1 was studied by sedimentation analysis of radioactively labeled infected cell and virion lysates. Fractions from sucrose gradients were precipitated with a pool of gB-specific monoclonal antibodies and analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Pulse-labeled gB from infected cell was synthesized as monomers and converted to oligomers posttranslationally. The oligomers from infected cells and from virions sedimented as dimers, and there was no evidence of higher-molecular-weight forms. To identify amino acid sequences of gB that contribute to oligomer formation, pairs of mutant plasmids were transfected into Vero cells and superinfected with a gB-null mutant virus to stimulate plasmid-specified gene expression. Radioactively labeled lysates were precipitated with antibodies and examined by SDS-PAGE. Polypeptides from cotransfections were precipitated with an antibody that recognized amino acid sequences present in only one of the two polypeptides. A coprecipitated polypeptide lacking the antibody target epitope was presumed to contain the sequences necessary for oligomer formation. Using this technique, two noncontiguous sites for oligomer formation were detected. An upstream site was localized between residues 93 and 282, and a downstream site was localized between residues 596 and 711. Oligomer formation resulted from molecular interactions between two upstream sites, between two downstream sites, and between an upstream and a downstream site. A schematic diagram of a gB oligomer is presented that is consistent with these data.  相似文献   

10.
Herpes simplex virus (HSV) has 10 glycoproteins in its envelope. Glycoprotein B (gB), gC, gD, gH, and gL have been implicated in virus entry. We previously used chemical cross-linking to show that these five glycoproteins were close enough to each other to be cross-linked into homodimeric and hetero-oligomeric forms; hetero-oligomers of gB-gC, gC-gD, gD-gB, gH-gL, gC-gL and gD-gL were found in purified virions. To better understand the roles of these glycoproteins in viral entry, we have modified a standard HSV penetration assay to include cross-linkers. This allowed us to examine changes in associations of viral glycoproteins during the entry process. HSV-1(KOS) was adsorbed at 4 degrees C to human neuroblastoma cells (SY5Y). The temperature was raised to 37 degrees C and cells were treated with cross-linker at various times after the temperature shift. Cytoplasmic extracts were examined by Western blotting (immunoblotting) for viral glycoproteins. We found that (i) as in virus alone, the length and concentration of the cross-linking agent affected the number of specific complexes isolated; (ii) the same glycoprotein patterns found in purified virions were also present after attachment of virions to cells; and (iii) the ability to cross-link HSV glycoproteins changed as virus penetration proceeded, e.g., gB and gD complexes which were present during attachment disappeared with increasing time, and their disappearance paralleled the kinetics of penetration. However, this phenomenon appeared to be selective since it was not observed with gC oligomers. In addition, we examined the cross-linking patterns of gB and gD in null viruses K082 and KOSgD beta. Neither of these mutants, which attach but cannot penetrate, showed changes in glycoprotein cross-linking over time. We speculate that these changes are due to conformational changes which preclude cross-linking or spatial alterations which dissociate the glycoprotein interactions during the penetration events.  相似文献   

11.
12.
Herpes simplex virus type 1 (HSV-1) is a widespread human pathogen infecting more than 80% of the population worldwide. Its replication involves an essential, poorly understood multistep process, referred to as uncoating. Uncoating steps are as follows: (1) The incoming capsid pinpoints the nuclear pore complex (NPC). (2) It opens up at the NPC and releases the highly pressurized viral genome. (3) The viral genome translocates through the NPC. In the present review, we highlight recent advances in this field and propose mechanisms underlying the individual steps of uncoating. We presume that the incoming HSV-1 capsid pinpoints the NPC by hydrophobic interactions and opens up upon binding to NPC proteins. Genome translocation is initially pressure-driven.  相似文献   

13.
Fusogenic domains in herpes simplex virus type 1 glycoprotein H   总被引:4,自引:0,他引:4  
Infection of eukaryotic cells by enveloped viruses requires fusion between the viral envelope and the cellular plasma or endosomal membrane. The actual merging of the two membranes is mediated by viral envelope glycoproteins, which generally contain a highly hydrophobic region termed the fusion peptide. The entry of herpesviruses is mediated by three conserved proteins: glycoproteins B, H (gH), and L. However, how fusion is executed remains unknown. Herpes simplex virus type 1 gH exhibits features typical of viral fusion glycoproteins, and its ectodomain seems to contain a putative internal fusion peptide. Here, we have identified additional internal segments able to interact with membranes and to induce membrane fusion of large unilamellar vesicles. We have applied the hydrophobicity-at-interface scale proposed by Wimley and White (Wimley, W. C., and White, S. H. (1996) Nat. Struct. Biol. 3, 842-848) to identify six hydrophobic stretches within gH with a tendency to partition into the membrane interface, and four of them were able to induce membrane fusion. Experiments in which equimolar mixtures of gH peptides were used indicated that different fusogenic regions may act in a synergistic way. The functional and structural characterization of these segments suggests that herpes simplex virus type 1 gH possesses several fusogenic internal peptides that could participate in the actual fusion event.  相似文献   

14.
Sequences representative of the whole genome of herpes simplex virus type 1 (HSV-1) strain KOS were cloned in the plasmid vector pBR325 in the form of EcoRI-generated DNA fragments. The cloned fragments were identified by digestion of the chimeric plasmid DNA with restriction enzymes EcoRI or EcoRI and BglII followed by comparison of their electrophoretic mobilities in agarose gels with that of similarly digested HSV-1 virion DNA. The cloned fragments showed the same migration patterns as the corresponding fragments from restricted virion DNA, indicating that no major insertions or deletions were present. The presence of HSV-1 sequences in the chimeric plasmids was confirmed by hybridization of plasmid DNA to HSV-1 virion DNA. Additionally, some of the cloned fragments were shown to be biologicaly active in that they efficiently rescued three HSV-1 temperature-sensitive mutants in cotransfection marker rescue experiments.  相似文献   

15.
Glycoprotein C from herpes simplex viruses types 1 and 2 (gC-1 and gC-2) acts as a receptor for the C3b fragment of the third component of complement. Our goal is to identify domains on gC involved in C3b receptor activity. Here, we used in-frame linker-insertion mutagenesis of the cloned gene for gC-2 to identify regions of the protein involved in C3b binding. We constructed 41 mutants of gC-2, each having a single, double, or triple insertion of four amino acids at sites spread across the protein. A transient transfection assay was used to characterize the expressed mutant proteins. All of the proteins were expressed on the transfected cell surface, exhibited processing of N-linked oligosaccharides, and bound one or more monoclonal antibodies recognizing distinct antigenic sites on native gC-2. This suggested that each of the mutant proteins was folded into a native structure and that a loss of C3b binding by any of the mutants could be attributed to the disruption of a specific functional domain. When the panel of insertion mutants was assayed for C3b receptor activity, we identified three distinct regions that are important for C3b binding, since an insertion within those regions abolished C3b receptor activity. Region I was located between amino acids 102 and 107, region II was located between residues 222 and 279, and region III was located between residues 307 and 379. In addition, region III has some structural features similar to a conserved motif found in complement receptor 1, the human C3b receptor. Finally, blocking experiments indicated that gC-1 and gC-2 bind to similar locations on the C3b molecule.  相似文献   

16.
We have analysed the mRNAs which map within the short unique (US) region of the herpes simplex virus type 1 (HSV-1) genome. US has a total length of 12979 base pairs (1) and is extensively transcribed with approximately 94% of the total sequence present in cytoplasmic mRNAs and 79% of the total sequence considered to be protein coding. There are several examples of overlapping functions and multiple use of DNA sequence within this region. US contains 12 genes (1) which are expressed as 13 mRNAs. Two of these mRNAs are thought to arise from the same gene since they differ only slightly in the positions of their 5' ends and probably specify the same polypeptide. 11 of the 13 mRNAs are arranged into four nested families with unique 5' ends and common 3' co-termini. The other two mRNAs have unique 5' and 3' ends.  相似文献   

17.
We have isolated as recombinant DNA clones, in the plasmid pBR322, regions of the herpesvirus type 1 genome spanning the region between 0.53 and 0.6 on the prototypical arrangement. This 11,000-base-pair region corresponds to 10% of the large unique region and encodes five major and several minor mRNA species abundant at different times after infection, which range in length from 7 to 1 kilobase. In this report, we have used RNA transfer blots and S1 nuclease digestion of hybrids between viral DNA and polyribosomal RNA to precisely localize (+/- 0.1 kilobase) these mRNA's. Comparison of neutral and alkaline gels of S1 nuclease-digested hybrids indicates no internal introns in the coding sequences of these mRNA's, although noncontiguous leader sequences near (ca. 0.1 kilobase) the 5' ends of any or all mRNA's could not be excluded. The 5' ends of several late mRNA's that are encoded opposite DNA strands map very close to one another, and the 3' ends of a major late and a major early mRNA, which are partially colinear, terminate in the same region. In vitro translation of the viral mRNA's isolated by hybridization with DNA bound to cellulose and fractionation of mRNA species on denaturing agarose gels allowed us to assign specific polypeptide products to each of the mRNA's characterized. Among other results, it was demonstrated unequivocally that two major late mRNA's, which partially overlap, encode the same polypeptide.  相似文献   

18.
19.
Herpes simplex virus type 1 (HSV-1) glycoprotein C (gC-1) elicits a largely serotype-specific immune response directed against previously described determinants designated antigenic sites I and II. To more precisely define these two immunodominant antigenic regions of gC-1 and to determine whether the homologous HSV-2 glycoprotein (gC-2) has similarly situated antigenic determinants, viral recombinants containing gC chimeric genes which join site I and site II of the two serotypes were constructed. The antigenic structure of the hybrid proteins encoded by these chimeric genes was studied by using gC-1- and gC-2-specific monoclonal antibodies (MAbs) in radioimmunoprecipitation, neutralization, and flow cytometry assays. The results of these analyses showed that the reactivity patterns of the MAbs were consistent among the three assays, and on this basis, they could be categorized as recognizing type-specific epitopes within the C-terminal or N-terminal half of gC-1 or gC-2. All MAbs were able to bind to only one or the other of the two hybrid proteins, demonstrating that gC-2, like gC-1, contains at least two antigenic sites located in the two halves of the molecule and that the structures of the antigenic sites in both molecules are independent and rely on limited type-specific regions of the molecule to maintain epitope structure. To fine map amino acid residues which are recognized by site I type-specific MAbs, point mutations were introduced into site I of the gC-1 or gC-2 gene, which resulted in recombinant mutant glycoproteins containing one or several residues from the heterotypic serotype in an otherwise homotypic site I background. The recognition patterns of the MAbs for these mutant molecules demonstrated that (i) single amino acids are responsible for the type-specific nature of individual epitopes and (ii) epitopes are localized to regions of the molecule which contain both shared and unshared amino acids. Taken together, the data described herein established the existence of at least two distinct and structurally independent antigenic sites in gC-1 and gC-2 and identified subtle amino acid sequence differences which contribute to type specificity in antigenic site I of gC.  相似文献   

20.
Herpes simplex virus 1 (HSV‐1) envelope glycoprotein H (gH) is important for viral entry into cells and nuclear egress of nucleocapsids. To clarify additional novel roles of gH during HSV‐1 replication, host cell proteins that interact with gH were screened for by tandem affinity purification coupled with mass spectrometry‐based proteomics in 293T cells transiently expressing gH. This screen identified 123 host cell proteins as potential gH interactors. Of these proteins, general control nonderepressive‐1 (GCN1), a trans‐acting positive effector of GCN2 kinase that regulates phosphorylation of the α subunit of translation initiation factor 2 (eIF2α), was subsequently confirmed to interact with gH in HSV‐1‐infected cells. eIF2α phosphorylation is known to downregulate protein synthesis, and various viruses have evolved mechanisms to prevent the accumulation of phosphorylated eIF2α in infected cells. Here, it was shown that GCN1 knockdown reduces phosphorylation of eIF2α in HSV‐1‐infected cells and that the gH‐null mutation increases eIF2α in HSV‐1‐infected cells, whereas gH overexpression in the absence of other HSV‐1 proteins reduces eIF2α phosphorylation. These findings suggest that GCN1 can regulate eIF2α phosphorylation in HSV‐1‐infected cells and that the GCN1‐binding viral partner gH is necessary and sufficient to prevent the accumulation of phosphorylated eIF2α. Our database of 123 host cell proteins potentially interacting with gH will be useful for future studies aimed at unveiling further novel functions of gH and the roles of cellular proteins in HSV‐1‐infected cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号