首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In general, the failing human heart is characterized by a selective reduction in beta(1)-adrenoceptors (beta(1)-ARs) without change in beta(2)-AR density. Medical imaging techniques, either single photon emission computed tomography (SPECT) or positron emission tomography (PET) with appropriate radioligands, offer the possibility of assessing beta-adrenoceptor density non-invasively in humans. To date, neither a SPECT nor a PET radioligand is available for the selective imaging of cardiac beta(1)-ARs. The aim of this study was to develop potential high affinity beta(1)-selective AR radioligands for the non-invasive in vivo imaging of the beta(1)-AR density in the human heart using SPECT or PET. A variety of racemic N-aryl-N'-[2-[3-aryloxy-2-hydroxy-propylamino]-ethyl]-urea derivatives and chain-elongated analogues, related to the established beta(1)-AR antagonist, ICI 89,406 8i, were synthesized. Competition studies using the non-selective AR ligand, [(125)I]iodocyanopindolol ([(125)I]ICYP), and ventricular membrane preparations of wild-type mice revealed nine ligands with higher beta(1)-AR affinities (up to 76-fold) and beta(1)-AR selectivities (up to 139-fold) than 8i. Mostly, these ligands possess a 2-substituted phenoxy group and a 4-substituted phenyl residue in contrast to the lead compound 8i. The non-radioactive counterparts of the desired SPECT- and PET-radiotracers were synthesized as reference compounds [e.g., 8f, 8g, 8h and 8l as the non-radioactive analogues of the radioiodinated SPECT radioligands, 8e and 8h as the non-radioactive compounds of C-11 labelled PET-tracers (C-11 in the methoxy group)]. The established library of high affinity beta(1)-selective AR antagonists was screened for chemical precursors for the radiosynthesis of the mentioned radioligands. Furthermore, the library consists of some comparison compounds that are unsubstituted, allyl- and alkyl-substituted or chain-elongated (e.g., 8a, 8j, 8o and 8r-t). Future steps will include radiolabelling and pharmacokinetic evaluation of the beta(1)-selective target compounds, which could be applied as sympathetic innervation agents for in vivo investigations and diagnostics in patients suffering from cardiac diseases like heart failure and ventricular arrhythmias.  相似文献   

2.
Yin F  Lu ZZ  Han QD  Zhang YY 《生理学报》2003,55(3):251-254
为了明确β-肾上腺素受体(AR)亚型在新生大鼠心肌成纤维细胞中的分布及其在成纤维细胞增殖反应中的作用,采用放射配体结合实验和[3H]-thymidine掺人法检测了新生大鼠心肌成纤维细胞的β-AR密度和DNA合成速率。结果显示,在培养心肌细胞和心肌成纤维细胞中β-AR密度(Bmtax)和解离常数(Kp)无显著性差异;竞争抑制曲线分析结果提示,心肌成纤维细胞对CGP 20712A和ICI ll8551单位点拟合均显著优于两位点拟合(P<0.01),表现为对选择性β1-AR拮抗剂CGP 20712A的低亲和性(IC50值:10.1μmol/L)和对选择性β2-AR拮抗剂ICI 118551的高亲和性(IC50值:0.147μmol/L)。异丙肾上腺素(ISO)促心肌成纤维细胞增殖作用可被ICI 118551和心得安(非选择性β-AR拮抗剂)完全抑制,而CGP20812A则无此作用。上述结果提示,在培养心肌成纤维细胞中β-AR亚型占绝对优势,并且ISO引起的心肌成纤维细胞增殖反应是由β2-AR介导的。  相似文献   

3.
Li YM  Zhang Y  Xiang B  Zhang YY  Wu LL  Yu GY 《Life sciences》2006,79(22):2091-2098
beta-Adrenoceptors (beta-ARs) mediate important physiological functions in salivary glands. Here we investigated the expression and function of beta-AR subtypes in rabbit submandibular gland (SMG). Both beta(1)- and beta(2)-ARs, but not beta(3)-AR, were strongly expressed in rabbit SMG. beta(1)-AR proteins were widely expressed in acinar and ductal cells whereas beta(2)-AR proteins were mainly detected in ductal cells. A [(3)H]-dihydroalprenolol binding assay revealed that beta-AR B(max) was 186+/-11.9 fmol/mg protein and K(d) was 2.71+/-0.23 nM. A competitive binding assay with CGP 20712A, a beta(1)-AR antagonist, indicated that the proportion of beta(1)-AR and beta(2)-AR was 71.9% and 28.1%, respectively. Gland perfusion with the beta-AR agonist isoproterenol induced a significant increase in saliva secretion which was abolished by pretreatment with the non-selective beta-AR antagonist propranolol. Pretreatment with beta(1)- or beta(2)-AR selective antagonists, CGP 20712A or ICI 118551, diminished isoproterenol-induced increase in saliva secretion by 71.2% and 28.8%, respectively. The expression of alpha-amylase mRNA was significantly stimulated by isoproterenol, which was eliminated by propranolol and CGP 20712A. Perfusion with isoproterenol decreased alpha-amylase protein storage in SMG and increased alpha-amylase activity in saliva. These alterations became less significant after pretreatment with propranolol and CGP 20712A. Our results suggest that both beta(1)- and beta(2)-ARs are expressed in rabbit SMG. beta(1)-AR is the predominant subtype and may play an important role in regulating saliva and alpha-amylase secretion.  相似文献   

4.
In atrial myocytes, an initial exposure to isoproterenol (ISO) acts via cAMP to mediate a subsequent acetylcholine (ACh)-induced activation of ATP-sensitive K(+) current (I(K,ATP)). In addition, beta-adrenergic receptor (beta-AR) stimulation activates nitric oxide (NO) release. The present study determined whether the conditioning effect of beta-AR stimulation acts via beta(1)- and/or beta(2)-ARs and whether it is mediated via NO signaling. 0.1 microM ISO plus ICI 118,551 (ISO-beta(1)-AR stimulation) or ISO plus atenolol (ISO-beta(2)-AR stimulation) both increased L-type Ca(2+) current (I(Ca,L)) markedly, but only ISO-beta(2)-AR stimulation mediated ACh-induced activation of I(K,ATP). 1 microM zinterol (beta(2)-AR agonist) also increased I(Ca,L) and mediated ACh-activated I(K,ATP). Inhibition of NO synthase (10 microM L-NIO), guanylate cyclase (10 microM ODQ), or cAMP-PKA (50 microM Rp-cAMPs) attenuated zinterol-induced stimulation of I(Ca,L) and abolished ACh-activated I(K,ATP). Spermine-NO (100 microM; an NO donor) mimicked beta(2)-AR stimulation, and its effects were abolished by Rp-cAMPs. Intracellular dialysis of 20 microM protein kinase inhibitory peptide (PKI) abolished zinterol-induced stimulation of I(Ca,L). Measurements of intracellular NO ([NO](i)) using the fluorescent indicator DAF-2 showed that ISO-beta(2)-AR stimulation or zinterol increased [NO](i). L-NIO (10 microM) blocked ISO- and zinterol-induced increases in [NO](i). ISO-beta(1)-AR stimulation failed to increase [NO](i). Inhibition of G(i)-protein by pertussis toxin significantly inhibited zinterol-mediated increases in [NO](i). Wortmannin (0.2 microM) or LY294002 (10 microM), inhibitors of phosphatidylinositol 3'-kinase (PI-3K), abolished the effects of zinterol to both mediate ACh-activated I(K,ATP) and stimulate [NO](i). We conclude that both beta(1)- and beta(2)-ARs stimulate cAMP. beta(2)-ARs act via two signaling pathways to stimulate cAMP, one of which is mediated via G(i)-protein and PI-3K coupled to NO-cGMP signaling. Only beta(2)-ARs acting exclusively via NO signaling mediate ACh-induced activation of I(K,ATP). NO signaling also contributes to beta(2)-AR stimulation of I(Ca,L). The differential effects of beta(1)- and beta(2)-ARs can be explained by the coupling of these two beta-ARs to different effector signaling pathways.  相似文献   

5.
The cardiac slow delayed rectifier potassium channel (IKs), comprised of (KCNQ1) and beta (KCNE1) subunits, is regulated by sympathetic nervous stimulation, with activation of beta-adrenergic receptors PKA phosphorylating IKs channels. We examined the effects of 2-adrenergic receptors (beta2-AR) on IKs in cardiac ventricular myocytes from transgenic mice expressing fusion proteins of IKs subunits and hbeta2-ARs. KCNQ1 and beta2-ARs were localized to the same subcellular regions, sharing intimate localization within nanometers of each other. In IKs/B2-AR myocytes, IKs density was increased, and activation shifted in the hyperpolarizing direction; IKs was not further modulated by exposure to isoproterenol, and KCNQ1 was found to be PKA-phosphorylated. Conversely, beta2-AR overexpression did not affect L-type calcium channel current (ICaL) under basal conditions with ICaL remaining responsive to cAMP. These data indicate intimate association of KCNQ1 and beta2-ARs and that beta2-AR signaling can modulate the function of IKs channels under conditions of increased beta2-AR expression, even in the absence of exogenous beta-AR agonist.  相似文献   

6.
The activation state of beta-adrenergic receptors (beta-ARs) in vivo is an important determinant of hemodynamic status, cardiac performance, and metabolic rate. In order to achieve homeostasis in vivo, the cellular signals generated by beta-AR activation are integrated with signals from a number of other distinct receptors and signaling pathways. We have utilized genetic knockout models to test directly the role of beta1- and/or beta2-AR expression on these homeostatic control mechanisms. Despite total absence of beta1- and beta2-ARs, the predominant cardiovascular beta-adrenergic subtypes, basal heart rate, blood pressure, and metabolic rate do not differ from wild type controls. However, stimulation of beta-AR function by beta-AR agonists or exercise reveals significant impairments in chronotropic range, vascular reactivity, and metabolic rate. Surprisingly, the blunted chronotropic and metabolic response to exercise seen in beta1/beta2-AR double knockouts fails to impact maximal exercise capacity. Integrating the results from single beta1- and beta2-AR knockouts as well as the beta1-/beta2-AR double knock-out suggest that in the mouse, beta-AR stimulation of cardiac inotropy and chronotropy is mediated almost exclusively by the beta1-AR, whereas vascular relaxation and metabolic rate are controlled by all three beta-ARs (beta1-, beta2-, and beta3-AR). Compensatory alterations in cardiac muscarinic receptor density and vascular beta3-AR responsiveness are also observed in beta1-/beta2-AR double knockouts. In addition to its ability to define beta-AR subtype-specific functions, this genetic approach is also useful in identifying adaptive alterations that serve to maintain critical physiological setpoints such as heart rate, blood pressure, and metabolic rate when cellular signaling mechanisms are perturbed.  相似文献   

7.
8.
Beta1- and beta2-adrenergic receptors (beta-ARs) co-exist in mammalian heart, and it is generally accepted that both activate adenylyl cyclase (AC), resulting in increased levels of cAMP and subsequent activation of L-type Ca2+ channels (CaCh). To investigate the contribution of each beta-AR subtype in AC and CaCh coupling, we stably expressed cardiac CaCh alpha1 and beta2 subunits along with either beta1-AR or beta2-AR in CHW fibroblasts. Co-expression of either beta-AR with CaCh subunits conferred responsiveness of AC and CaCh to isoproterenol (ISO), which was not observed in non-transfected cells. ISO-promoted cAMP formation occurred at a lower EC50 through the beta2-AR than through the beta1-AR (0.13 +/- 0.01 vs. 0.6 +/- 0.14 nM). In contrast, activation of CaCh was more efficacious via the beta1-AR than the beta2-AR (EC50 for CaCh activation = 238 +/- 33 vs. 1057 +/- 113 nM). Pre-treatment with pertussis toxin (PTX) had no effect upon the responsiveness of either cAMP formation or CaCh activation through either receptor. We conclude (1) that beta1-ARs exhibit preferential coupling to CaCh activation, versus that observed for the beta2-AR; (2) that this preferential coupling cannot be explained solely by cAMP-dependent processes; and (3) that the relative attenuation of beta2-AR-promoted CaCh activation is not due to receptor coupling to PTX-sensitive G proteins. Thus, it is likely that other subtype-specific, cAMP-independent coupling of the beta-AR to CaCh is present.  相似文献   

9.
The beta-adrenoceptor (beta-AR) mediated signal transduction pathway in cardiomyocytes is known to involve beta1- and beta2-ARs, stimulatory (Gs) and inhibitory (Gi) guanine nucleotide binding proteins, adenylyl cyclase (AC) and cAMP-dependent protein kinase (PKA). The activation of beta1- and beta2-ARs has been shown to increase heart function by increasing Ca2+ -movements across the sarcolemmal membrane and sarcoplasmic reticulum through the stimulation of Gs-proteins, activation of AC and PKA enzymes and phosphorylation of the target sites. The activation of PKA has also been reported to increase phosphorylation of some myofibrillar proteins (for promoting cardiac relaxation) and nuclear proteins (for cardiac hypertrophy). The activation of beta2-AR has also been shown to affect Gi-proteins, stimulate mitogen activated protein kinase and increase protein synthesis by enhancing gene expression. Beta1- and beta2-ARs as well as AC are considered to be regulated by PKA- and protein kinase C (PKC)-mediated phosphorylations directly; both PKA and PKC also regulate beta-AR indirectly through the involvement of beta-AR kinase (betaARK), beta-arrestins and Gbeta gamma-protein subunits. Genetic manipulation of different components and regulators of beta-AR signal transduction pathway by employing transgenic and knockout mouse models has provided insight into their functional and regulatory characteristics in cardiomyocytes. The genetic studies have also helped in understanding the pathophysiological role of PARK in heart dysfunction and therapeutic role of betaARK inhibitors in the treatment of heart failure. Varying degrees of defects in the beta-AR signal transduction system have been identified in different types of heart failure to explain the attenuated response of the failing heart to sympathetic stimulation or catecholamine infusion. A decrease in beta1-AR density, an increase in the level of G1-proteins and overexpression of betaARK are usually associated with heart failure; however, these attenuations have been shown to be dependent upon the type and stage of heart failure as well as region of the heart. Both local and circulating renin-angiotensin systems, sympathetic nervous system and endothelial cell function appears to regulate the status of beta-AR signal transduction pathway in the failing heart. Thus different components and regulators of the beta-AR signal transduction pathway appears to represent important targets for the development of therapeutic interventions for the treatment of heart failure.  相似文献   

10.
Using the sequence homology approach for cloning related genes within the G-protein-coupled receptor gene family, we have cloned the gene for the rat beta 1-adrenergic receptor (beta 1-AR). The rat beta 1-adrenergic receptor gene was isolated from a lambda EMBL3 rat genomic DNA library using the hamster beta 2-adrenergic receptor (beta 2-AR) coding sequence as a probe under low stringency hybridization conditions. The rat beta 1-AR gene encodes a protein of 466 amino acids that contains one consensus site for N-linked glycosylation (Asn-15) and three consensus sites for cAMP-dependent protein kinase phosphorylation (Ser-296, Ser-301, and Ser-401). The encoded rat beta 1-AR is 98 and 91% similar at the amino acid level with the human beta 1-AR in the transmembrane domains and in the overall sequence, respectively. Genomic Southern blot and gene dosage analyses indicate that the rat beta 1-AR gene is a single copy gene. The tissue distribution of the rat beta 1-AR mRNA was highest in the pineal gland with other brain regions and peripheral tissues, including the heart, expressing the mRNA at moderate levels. The bacteriophage clone containing the rat beta 1-AR gene with its natural promoter was co-transfected with the selectable marker (pRSVneo) conferring neomycin resistance into beta 1-AR-deficient mouse L cells. Analyses of the selected transfectant demonstrates efficient expression of the beta 1-AR gene and functional receptor. 125I-Labeled iodocyanopindolol bound transfectant membranes with an affinity of KD = 24 pm; the beta 1-AR-selective antagonist ICI 89,406 displaced iodocyanopindolol binding with a Ki approximately 140 times lower than that for the beta 2-AR-selective antagonist ICI 118,551. In addition, in the transfectant cell line, adenylylcyclase was stimulated by beta-adrenergic receptor agonists with the rank order of potency of isoproterenol greater than norepinephrine = epinephrine, consistent with properties expected of the beta 1-AR subtype.  相似文献   

11.
Catecholamines play an important role in controlling white adipose tissue function and development. beta- and alpha 2-adrenergic receptors (ARs) couple positively and negatively, respectively, to adenylyl cyclase and are co-expressed in human adipocytes. Previous studies have demonstrated increased adipocyte alpha 2/beta-AR balance in obesity, and it has been proposed that increased alpha 2-ARs in adipose tissue with or without decreased beta-ARs may contribute mechanistically to the development of increased fat mass. To critically test this hypothesis, adipocyte alpha 2/beta-AR balance was genetically manipulated in mice. Human alpha 2A-ARs were transgenically expressed in the adipose tissue of mice that were either homozygous (-/-) or heterozygous (+/-) for a disrupted beta 3-AR allele. Mice expressing alpha 2-ARs in fat, in the absence of beta 3-ARs (beta 3-AR -/- background), developed high fat diet-induced obesity. Strikingly, this effect was due entirely to adipocyte hyperplasia and required the presence of alpha2-ARs, the absence of beta 3-ARs, and a high fat diet. Of note, obese alpha 2-transgenic beta 3 -/- mice failed to develop insulin resistance, which may reflect the fact that expanded fat mass was due to adipocyte hyperplasia and not adipocyte hypertrophy. In summary, we have demonstrated that increased alpha 2/beta-AR balance in adipocytes promotes obesity by stimulating adipocyte hyperplasia. This study also demonstrates one way in which two genes (alpha 2 and beta 3-AR) and diet interact to influence fat mass.  相似文献   

12.
Expression of ligand binding properties for an atypical beta-adrenergic receptor (beta-AR) subtype was studied during the adipose differentiation of murine 3T3-F442A cells and compared with that of the human beta 3-AR expressed in Chinese hamster ovary cells stably transfected with the human beta 3-AR gene (CHO-beta 3 cells) Emorine, L. J., Marullo, S., Briend-Sutren, M. M., Patey, G., Tate, K., Delavier-Klutchko, C., and Strosberg, A. D. (1989) Science 245, 1118-1121). 3T3-F442A adipocytes exhibited high and low affinity binding sites for (-)-4-(3-t-butylamino-2-hydroxypropoxy) [5,7-3H]benzimidazole-2-one ((-)-[3H]CGP-12177) (KD = 1.2 and 38.3 nM) and (-)-[125I]iodocyanopindolol ([125I]CYP) (KD = 47 and 1,510 pM). The high affinity sites corresponded to the classical beta 1- and beta 2-AR subtypes whereas the KD values of the low affinity sites for the radioligands were similar to those measured in CHO-beta 3 cells (KD = 28 nM and 1,890 pM for (-)-[3H]CGP12177 and [125I]CYP, respectively). These low affinity sites were undetectable in preadipocytes but represented about 90% of total beta-ARs in adipocytes. The atypical beta-AR and the human beta 3-AR add similarly low affinities (Ki = 3-5 microM) for (+/-)-(2-(3-carbamoyl-4-hydroxyphenoxy)ethylamino-3)-(4-(1-methyl- 4- trifluormethyl-2-imidazolyl)-phenoxy)-2-propanol methane sulfonate (CGP20712A) or erythro-(+/-)-1-(7-methylindan-4-yloxy)-3-isopropylaminob utan-2-ol (ICI118551), highly selective beta 1- and beta 2-AR antagonists, respectively, in agreement with the poor inhibitory effect of the compounds on (-)-isoproterenol (IPR)-stimulated adenylate cyclase activity. Atypical beta-AR and beta 3-AR had an affinity about 10-50 times higher for sodium-4-(2-[2-hydroxy-2-(3-chlorophenyl)ethylamino]propyl)phenoxyace tate sesquihydrate (BRL37344) than the beta 1-AR subtype. This correlates with the potent lipolytic effect of BRL37344 in adipocytes. The rank order of potency of agonists in functional and binding studies was BRL37344 greater than IPR less than (-)-norepinephrine greater than (-)-epinephrine both in 3T3 adipocytes and CHO-beta 3 cells. As in CHO-beta 3 cells, the classical beta 1- and beta 2-antagonists CGP12177, oxprenolol, and pindolol were partial agonists in adipocytes. Although undetectable in preadipocytes, a major mRNA species of 2.3 kilobases (kb) and a minor one of 2.8 kb were observed in adipocytes by hybridization to a human beta 3-AR specific probe.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
Differential modes for beta(1)- and beta(2)-adrenergic receptor (AR) regulation of adenylyl cyclase in cardiomyocytes is most consistent with spatial regulation in microdomains of the plasma membrane. This study examines whether caveolae represent specialized subdomains that concentrate and organize these moieties in cardiomyocytes. Caveolae from quiescent rat ventricular cardiomyocytes are highly enriched in beta(2)-ARs, Galpha(i), protein kinase A RIIalpha subunits, caveolin-3, and flotillins (caveolin functional homologues); beta(1)-ARs, m(2)-muscarinic cholinergic receptors, Galpha(s), and cardiac types V/VI adenylyl cyclase distribute between caveolae and other cell fractions, whereas protein kinase A RIalpha subunits, G protein-coupled receptor kinase-2, and clathrin are largely excluded from caveolae. Cell surface beta(2)-ARs localize to caveolae in cardiomyocytes and cardiac fibroblasts (with markedly different beta(2)-AR expression levels), indicating that the fidelity of beta(2)-AR targeting to caveolae is maintained over a physiologic range of beta(2)-AR expression. In cardiomyocytes, agonist stimulation leads to a marked decline in the abundance of beta(2)-ARs (but not beta(1)-ARs) in caveolae. Other studies show co-immunoprecipitation of cardiomyocytes adenylyl cyclase V/VI and caveolin-3, suggesting their in vivo association. However, caveolin is not required for adenylyl cyclase targeting to low density membranes, since adenylyl cyclase targets to low buoyant density membrane fractions of HEK cells that lack prototypical caveolins. Nevertheless, cholesterol depletion with cyclodextrin augments agonist-stimulated cAMP accumulation, indicating that caveolae function as negative regulators of cAMP accumulation. The inhibitory interaction between caveolae and the cAMP signaling pathway as well as domain-specific differences in the stoichiometry of individual elements in the beta-AR signaling cascade represent important modifiers of cAMP-dependent signaling in the heart.  相似文献   

14.
Previous studies demonstrated an enhanced beta(2)-adrenoceptor (AR) responsiveness in animals susceptible to ventricular fibrillation (VF) that was eliminated by exercise training. The present study investigated the effects of endurance exercise training on beta(1)-AR and beta(2)-AR expression in dogs susceptible to VF. Myocardial ischemia was induced by a 2-min occlusion of the left circumflex artery during the last minute of exercise in dogs with healed infarctions: 20 had VF [susceptible (S)] and 13 did not [resistant (R)]. These dogs were randomly assigned to either 10-wk exercise training [treadmill running; n = 9 (S) or 8 (R)] or an equivalent sedentary period [n = 11 (S) or 5 (R)]. Left ventricular tissue beta-AR protein and mRNA were quantified by Western blot analysis and RT-PCR, respectively. Because beta(2)-ARs are located in caveolae, caveolin-3 was also quantified. beta(1)-AR gene expression decreased ( approximately 5-fold), beta(2)-AR gene expression was not changed, and the ratio of beta(2)-AR to beta(1)-AR gene expression was significantly increased in susceptible compared with resistant dogs. beta(1)-AR protein decreased ( approximately 50%) and beta(2)-AR protein increased (400%) in noncaveolar fractions of the cell membrane in susceptible dogs. Exercise training returned beta(1)-AR gene expression to levels seen in resistant animals but did not alter beta(2)-AR protein levels in susceptible dogs. These data suggest that beta(1)-AR gene expression was decreased in susceptible dogs compared with resistant dogs and, further, that exercise training improves beta(1)-AR gene expression, thereby restoring a more normal beta-AR balance.  相似文献   

15.
We have previously demonstrated that prolonged simulated microgravity (tail-suspension) leads to cardiac alterations with increased resting heart rate, myocardial degradation changes and attenuated myocardial contractility. The present study investigated the potential role of adrenoceptor mechanisms underlying them. Changes of myocardial alpha 1-adrenoceptor (alpha 1-AR) and beta 1-adrenoceptor (beta-AR) in 90-day tail-suspended rats was investigated by the method of radioligand binding assay and application of Scatchard's method. The results showed significantly decreased quantity of specific binding of 125I-BE[2-beta-(4-hydroxy-3-[125I]indophenyl)-ethylaminomethyltetralone] to alpha 1-AR present in membrane derived from ventricular myocardium of the suspended animals, despite the affinity of the alpha 1-AR to 125I-Be was unchanged. But neither the quantity nor the affinity of beta-AR binding to 125I-Pindolol was significantly altered. In addition, the spontaneously beating rate of isolated right atria from tail-suspended animals showed little change in sensitivity and reactivity to the stimulations of graded phenylephrine (alpha-agonist, measured in the presence of beta-antagonist propranolol) and isoproterenol (beta-agonist), compared with the control rats. There were also no obvious differences of the effects of the isoproterenol on the contractility of isolated left ventricular papillary muscles between the two groups. Since myocardial alpha 1-AR mediated-effects include production of cardiac hypertrophy and enhancement of myocardial glucose uptake and glycolysis, the down-regulation of the alpha 1-AR may be a contributor to the cardiac cellular accumulation and the myocardial degradation changes as found in our tail-suspended rats. The data from this study also suggest that the myocardial beta-adrenoceptors are not affected by the prolonged tail-suspension.  相似文献   

16.
Nagase I  Yoshida T  Saito M 《FEBS letters》2001,494(3):175-180
Catecholamine-induced and beta-adrenergic receptor (beta-AR)-mediated thermogenesis in skeletal muscle is a significant component of whole-body energy expenditure. Skeletal muscle expresses uncoupling protein (UCP) 2 and UCP3, which can dissipate the transmitochondrial electrochemical gradient and thereby may be involved in regulation of energy metabolism. We investigated the effects of beta-AR stimulation on UCP2 and UCP3 expression in L6 myotubes. Stimulation of the cells with epinephrine increased the UCP3 mRNA level transiently at 6 h, and also the UCP2 mRNA level at 6-24 h. The stimulatory effects of epinephrine were also observed in the presence of carbacyclin and 9-cis retinoic acid, and mimicked by isoproterenol and salbutamol (beta2-AR agonists), but abolished by propranolol and ICI-118,551 (beta2-AR antagonists). Pharmacological and mRNA analyses revealed the existence of beta2-AR, but not beta1- and beta3-ARs, in L6 myotubes. These results suggested that catecholamines up-regulate UCP2 and UCP3 expression through direct action on the beta2-AR in skeletal muscle.  相似文献   

17.
In the livers of humans and many other mammalian species, beta2-adrenergic receptors (beta2-ARs) play an important role in the modulation of glucose production by glycogenolysis and gluconeogenesis. In male mice and rats, however, the expression and physiological role of hepatic beta2-ARs are rapidly lost with development under normal physiological conditions. We previously described a line of transgenic mice, F28 (Andre C, Erraji L, Gaston J, Grimber G, Briand P, and Guillet JG. Eur J Biochem 241: 417-424, 1996), which carry the human beta2-AR gene under the control of its own promoter. In these mice, hepatic beta2-AR levels are shown to increase rapidly after birth and, as in humans, be maintained at an elevated level in adulthood. F28 mice display strongly enhanced adenylyl cyclase responses to beta-AR agonists in their livers and, compared with normal mice, have increased basal hepatic adenylyl cyclase activity. In this report we demonstrate that, under normal physiological conditions, this increased beta2-AR activity affects the expression of the gluconeogenic and glycolytic key enzymes phosphoenolpyruvate carboxykinase, glucose-6-phosphatase, and l-pyruvate kinase and considerably decreases hepatic glycogen levels. Furthermore, we show that the effects of beta-adrenergic ligands on liver glycogen observed in humans are reproduced in these mice: liver glycogen levels are strongly decreased by the beta2-AR agonist clenbuterol and increased by the beta-AR antagonist propranolol. These transgenic mice open new perspectives for studying in vivo the hepatic beta2-AR system physiopathology and for testing the effects of beta-AR ligands on liver metabolism.  相似文献   

18.
Cardiac-specific overexpression of the human beta(2)-adrenergic receptor (AR) in transgenic mice (TG4) enhances basal cardiac function due to ligand-independent spontaneous beta(2)-AR activation. However, agonist-mediated stimulation of either beta(1)-AR or beta(2)-AR fails to further enhance contractility in TG4 ventricular myocytes. Although the lack of beta(2)-AR response has been ascribed to an efficient coupling of the receptor to pertussis toxin-sensitive G(i) proteins in addition to G(s), the contractile response to beta(1)-AR stimulation by norepinephrine and an alpha(1)-adrenergic antagonist prazosin is not restored by pertussis toxin treatment despite a G(i) protein elevation of 1.7-fold in TG4 hearts. Since beta-adrenergic receptor kinase, betaARK1, activity remains unaltered, the unresponsiveness of beta(1)-AR is not caused by betaARK1-mediated receptor desensitization. In contrast, pre-incubation of cells with anti-adrenergic reagents such as muscarinic receptor agonist, carbachol (10(-5)m), or a beta(2)-AR inverse agonist, ICI 118,551 (5 x 10(-7)m), to abolish spontaneous beta(2)-AR signaling, both reduce the base-line cAMP and contractility and, surprisingly, restore the beta(1)-AR contractile response. The "rescued" contractile response is completely reversed by a beta(1)-AR antagonist, CGP 20712A. Furthermore, these results from the transgenic animals are corroborated by in vitro acute gene manipulation in cultured wild type adult mouse ventricular myocytes. Adenovirus-directed overexpression of the human beta(2)-AR results in elevated base-line cAMP and contraction associated with a marked attenuation of beta(1)-AR response; carbachol pretreatment fully revives the diminished beta(1)-AR contractile response. Thus, we conclude that constitutive beta(2)-AR activation induces a heterologous desensitization of beta(1)-ARs independent of betaARK1 and G(i) proteins; suppression of the constitutive beta(2)-AR signaling by either a beta(2)-AR inverse agonist or stimulation of the muscarinic receptor rescues the beta(1)-ARs from desensitization, permitting agonist-induced contractile response.  相似文献   

19.
The cardiac actions of catecholamines have long been attributed to the predominant beta(1)-AR subtype that couples to the classical Gs/AC/cAMP pathway. Recent research clearly indicates that cardiac beta(2)-ARs play a functional role in healthy heart and assume increasing importance in failing and aged heart. beta(2)-ARs are primarily coupled to an atypical compartmentalized cAMP pathway, regulated by phosphorylation and/or oligomerization of beta(2)-ARs, and under the control of additional beta(2)-AR/Gi-coupled lipidic pathways, the impact of which seems to vary depending on the animal species, the developmental and pathophysiological state. This review focuses, more especially, on one of the last identified beta(2)-AR/Gi pathway, namely the cPLA(2).  相似文献   

20.
It has been suggested that there is a preferential coupling in heart muscle between the inhibitory G protein (G(i)) and the beta(2)-subtype of the beta-adrenergic receptor (beta-AR), since pertussis toxin (which inactivates G(i)) reveals latent beta(2)-ARs in rat and mouse myocytes. We have previously shown that guinea pigs treated with norepinephrine (NE) for 7 days have myocytes that are desensitized to beta-AR-agonist stimulation, and that pertussis toxin restores these responses. The purpose of the present investigation was to determine whether pertussis toxin specifically upregulated beta(2)-ARs in myocytes from NE-treated guinea pigs. The sole beta-AR subtype in control guinea pig myocytes was confirmed as beta(1)-AR by radioligand binding, single-cell autoradiography, and concentration-response curves to isoproterenol in contracting myocytes. In contrast, a minor pool of beta(2)-ARs was observed in rat myocytes by use of the same methods. NE treatment decreased the maximum isoproterenol response (relative to high Ca(2+)) from 0.89 +/- 0.06 to 0.58 +/- 0.08 (n = 7, P < 0.01) and the pD(2) (-log EC(50)) from 8.8 +/- 0.2 to 7.5 +/- 0.2 (n = 7, P < 0.01). Pertussis toxin treatment increased the isoproterenol-to-Ca(2+) ratio to 0.88 +/- 0.04 (n = 6, P < 0.05) and the pD(2) to 8.6 +/- 0.3 (P < 0.01). This was not mediated by increases in either number or function of beta(2)-ARs. G(i) is therefore able to modulate beta(1)-AR responses in guinea pig myocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号