首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Discrete red patches of water were observed in South San FranciscoBay (USA) on 30 April 1993, and examination of live samplesshowed that this red tide was caused by surface accumulationsof the pigmented ciliate Mesodinium rubrum. Vertical profilesshowed strong salinity and temperature stratification in theupper 5 m, peak chlorophyll fluorescence in the upper meter,and differences in the small-scale density structure and fluorescencedistribution among red patches. Events preceding this Mesodiniumred tide included: (i) heavy precipitation and run-off, allowingfor strong salinity stratification; (ii) a spring diatom bloomwhere the chlorophyll a concentration reached 50 mg m–3;(ii) depletions of dissolved inorganic N and Si in the photiczone; and (iv) several days of rapid warming and stabilizationof the upper surface layer. These conditions may be generalprerequisites for M.rubrum blooms in temperate estuaries. 1Present address: Station Marine d'Endoume, Centre d'Oceanologiede Marseille, rue Batterie des Lions, 13007 Marseille, France  相似文献   

2.
The chlorophyll content of a water column (WCC), which is commonlyused as an index of the phytoplankton abundance, is affectedby the choice of the sampling depths and by the variations ofthe vertical structure of density. For instance, the thicknessof the water layer, between two sigma-t values, which containsthe deep chlorophyll maximum, can vary with internal waves.The resulting noise often dominates the mesoscale variationsof the observed water-column chlorophyll (OWCC). Sigma-t dependentstatistics (mean, standard deviation) of the chlorophyll concentrationare computed using the observations at 29 casts from a 22-day-longfixed station in an oligotrophic environment at 15•S, 173°E.For each cast, these statistics, the sampling depths, and thewater density at these sampling depths, allow the estimationof a station-dependent ‘expected water-column chlorophyll’(EWCC). The ratio of EWCC to the overall likelihood of WCC duringthe fixed station (i.e. the mean of all OWCC) is a measure ofthe effect of sampling and variable density structure at eachcast. When this effect is removed, the noise in WCC estimatesdecreases significantly. The time variations of WCC during thefixed station then show a trend with relatively high valuesduring the first days, followed by a 12-day-long period withlow values. A regular increase occurred from 1 October, whichwas accompanied by high carbon fixation rates and was mainlydue to an increase of the chlorophyll concentration betweenthe surface and the deep chlorophyll maximum. New productionduring this active phase was estimated to be 535 mgC m–2day–1, corresponding to 62% of the total production. Breakingof internal waves which were recorded at the beginning of thegrowth phase and vertical mixing of nutrients can explain theobservation.  相似文献   

3.
The diurnal vertical distribution of a large number of speciesof zooplankton, icbthyoplankton and micronekton were determinedin the top 150 m in three locations in the Shelf Water, on theNova Scotia Shelf, and Slope and on Georges Bank during springand fall periods. Species were categorized as to their trophiclevel and their type of diurnal migration behaviour. The influenceof temperature, salinity, and water density on the diurnal verticaldistribution of the species was examined. Temperature was foundto have the greatest influence on the distribution of the largestnumber of species. Diurnal migration behavior of the same speciesin Shelf and Slope water and at different times of the yearwas examined. Results showed that species changed their behaviorin the two water masses, while some species changed their migrationbehavior at different times of the year. During the night inApril the most abundant copepod species, Calanus finmarchicus,making up about 80% of the biomass, was found concentrated abovethe thermocline and the main chlorophyll layer. The majorityof the less abundant species of copepods were found below thethermocline and the chlorophyll layer. At night in August thetwo most abundant copepod species, Centropoger typicus and Paracalanusparvus, making up at least 80% of the zooplankton biomass, werealso concentrated above the thermocline and the main chlorophyllLayer. Three species of copepods were concentrated at the depthof the main chlorophyll layer and two species were concentratedbelow the chlorophyll layer and thermocline. The vertical distributionof other zooplankton and ichthyoplankton species was examinedin relation to the thermocline and chlorophyll layer. Relationshipsbetween concentrations of six species of fish larvae and allspecies of copepods in the same samples showed a general increasein the numbers of larvae m–3 as the numbers of copepodsm–3 increased in a range of 500–4000 m–3.However, the concentration of Merluccius bilinearis decreasedas the concentration of copepods exceeded 4000 m–3 suggestingthat high concentrations of copepods may not be a favourableenvironment for the larvae.  相似文献   

4.
Spatial patchiness and collapse of the cyanobacterium, Nodulariaspumigena, were evaluated in saline Pyramid Lake, Nevada, bytwo synoptic ground surveys and Landsat remote sensing. Horizontalvariation of surface water chlorophyll a during the first surveyranged from 3.6 to 9790 mg m–3 and Nodularia biovolumewas between 416?103 and 347?106 µm3 ml–1. Differencesin spatial and temporal resolution between synoptic ground surveys({small tilde}10m, hours) and Landsat imagery (80m, seconds)yielded a poor correlation when data were matched by commonground location. A regression model for estimating chlorophyllfrom Landsat radiance was developed by pairing equivalent frequenciesfrom cumulative relative frequency distributions of both variables.Wind driven advection precipitated bloom collapse shortly afterthe first synoptic sample and Nodularia mineralization producedhigh epilimnetic ammonium concentrations. Ammonium, silica fromfluvial sources, and density differences between river and lakewater masses stimulated succession to a Chaetoceros elmoreibloom within 8 days of the first synoptic survey. The 16 dayfly by interval of Landsat is too long to document such short-termbloom succession. Landsat imagery is most applicable for evaluatinginstantaneous, basin-scale horizontal patchiness and averagelakewide chlorophyll concentrations, while frequent synopticground surveys yield more accurate estimates of meso- and micro-scalephytoplankton patchiness and species succession.  相似文献   

5.
Relatively warm (12.50–12.75°C) and high-salinity[<35.640 practical salinity units (PSU)] water flowing eastwardwas detected at the shelf-break during a cruise carried Outin the southern Bay of Biscay in Spring 1987. The slope currentinduced the formation of a convergent front separating well-mixedoceanic waters from haline-stratified coastal waters. Very highconcentrations of dissolved oxygen (295 µmol kg–1)and chlorophyll a(>4.5 mg m–3) were found at the outeredge of the frontal boundary. Small autotrophic flagellatesdominated the phytoplankton community. Primary production peakedat the boundary region. Estimated phytoplankton growth ratesindicated that active growth was taking place, with lower turnovertimes integrated over the water column at the frontal station(2.5–5 days) than at coastal (1.5–2.8 days) or oceanic(1.5–3.5 days) stations. The lowest doubling times (1–2days) were calculated for surface frontal populations. Accumulationof zooplankton was also observed associated with the convergentphysical structure, although this relationship was less markedthan for phytoplankton. Copepods, mainly Paracalanus parvus,Acartia clausi and Oithona helgolandica, formed the bulk ofthe mesozooplankton biomass. Compatibility between the sizeof phytoplankton cells and copepod size spectra indicate highfood availability for these animals, particularly in the vicinityof the front. The distribution of fish eggs and fish larvaewas also coupled with the slope current-induced front. Sardinelarvae were more abundant at the coastal side of the front,whereas larval stages of blue whiting reached the highest densitiesat off-shelf stations. Larvae of lamellibranch molluscs andbryozoa were restricted to nearshore waters, as the frontalboundary prevented larval dispersion to the open ocean. Theresults presented in this paper suggest that the Iberian slopecurrent and its associated shelf-break frontal structure werecrucial in controlling phytoplankton primary production, activityof grazers, distribution of larvae of fishes and benthic invertebrates,and ultimately in determining the structure of the pelagic foodweb in the southern Bay of Biscay during the seasonal periodof vertical mixing.  相似文献   

6.
The effects of salinity on growth, water relations, glycinebetainecontent, and ion accumulation in the perennial halophyte Atriplexgriffithii var. stocksii were determined. The following questionswere addressed: (1) What effect does salinity have on growthresponses at different ages? (2) Is A. griffithii an ion accumulator?(3) Does A. griffithii accumulate glycinebetaine in responseto salinity? Atriplex griffithii plants were grown in pots at0, 90, 180 and 360  m M NaCl in sand culture in a plantgrowth chamber and plants were harvested after 30, 60 and 90d. Plant total dry weight was significantly inhibited at 360m M NaCl. Root growth showed a substantial promotion at 90 mM NaCl. The water potential and osmotic potential of shootsbecame more negative with increasing salinity and time of growth.The Na+and Cl-content in both shoots and roots increased withincreases in salinity. Increased treatment levels of NaCl induceddecreases in Ca+, K+and Mg2+in plants. Atriplex griffithii accumulateda large quantity of ions, with the ash content reaching 39%of the dry weight in leaves. Inorganic ion accumulation is significantin osmotic adjustment and facilitates water uptake along a soil-plantgradient. Glycinebetaine concentration was low in roots, andin stems it increased with increases in salinity. Total amountsof glycinebetaine in leaves increased with increases in salinity,and its concentration increased substantially at 360 m M NaCl.Copyright 2000 Annals of Botany Company Atriplex griffithii, glycinebetaine, growth, ions, water relations.  相似文献   

7.
In the eastern English Channel (a coastal and shallow system),photosynthetic parameters of the pbytoplankton population weremeasured during 36 h at four depths, in a neap tide period.The vertical distilbutions of chlorophyll a (chl a), nutrients,and hydrodynamic properties were monitored during the cruise.Despite vertical homogeneity in salinity, chlorophyll a andnutrient profiles,a vertical gradient in both photosyntheticparameters (  相似文献   

8.
Regulatory effects of light on senescence of rice leaves wereinvestigated by measuring degradation of chlorophyll and proteinsin leaf segments which had been kept in the dark or under illuminationwith light of different intensities and colors. When leaveshad been left in total darkness for three days at 30°C,there was an initial long lag that lasted for one whole dayand then chlorophyll was rapidly degraded in the second andthird days. Breakdown of chlorophyll was strongly retarded bycontinuous illumination with white light of intensity as lowas 0.5 µmol photons m–2 s–1 but the effectof light decreased at intensities above 10 µmol photonsm–2 s–2. The initial lag and subsequent degradationof chlorophyll in the dark were little affected by illuminationwith red or far red light at the beginning of dark treatment.However, a brief illumination with red light at the end of thefirst and/or second day significantly suppressed degradationof chlorophyll during subsequent dark periods and the effectof red light was nullified by a short irradiation with far redlight. Thus, degradation of chlorophyll is regulated by phytochrome.Thylakoid membrane proteins and soluble proteins were also largelydegraded during three days in the dark. Degradation of membraneproteins such as the apoproteins of light-harvesting chlorophylla/b proteins of photosystem II and chlorophyll a-binding proteinsof reaction center complexes showed a long lag and was stronglysuppressed by illumination with weak white light. Thus, theloss of chlorophyll can be correlated with degradation of chlorophyll-carryingmembrane proteins. By contrast, light had only a weak protectingeffect on soluble proteins and ribulose-1,5-bisphosphate carboxylase/oxygenaserapidly disappeared under illumination with weak white light.Thus, breakdown of thylakoid membrane and soluble proteins aredifferently regulated by light. Artifacts which would be introducedby detachment of leaves were also discussed. 1 Present address: Department of Applied Biology, Faculty ofScience and Technology, Science University of Tokyo, Yamazaki,Noda-shi, Chiba, 278 Japan. 2 Present address: Department of Life Science, Faculty of Science,Himeji Institute of Technology, Harima Science Park City, Hyogo,678-12 Japan.  相似文献   

9.
The effect of an increase in salinity on the physiology of thehalotolerant chlorophyte Scenedesmus protuberans was studiedin light-limited continuous cultures. It was observed that agradual, as well as a steep increase in salinity resulted inlower biomass. However, the mechanisms by which this was achievedwere different. In the culture that was exposed to a gradualsalinity increase, respiration and the cellular protein contentof the culture were initially unaffected. However, this culturewas not able to maintain its cellular chlorophyll content and,consequently, gross and net photosynthesis decreased. The culturethat was exposed to a steep salinity increase rapidly reactedby increasing its respiration and cellular protein content,which is ascribed to an induction of osmoregulation. This culturewas able to maintain its gross photosynthesis rate. It is speculatedthat, in this species, a steep salinity increase induces a nearlyimmediate osmoregulatory response, allowing growth to continue.If the cells are exposed to a gradual salinity increase, inductionof osmoregulation lags behind and, consequently, photosynthesisand growth rate will be* affected.  相似文献   

10.
Chickpea cultivar ILC 482 was inoculated with salt-tolerantRhizobium strain Ch191 in solution culture with different saltconcentrations added either immediately with inoculation or5 d later. The inhibitory effect of salinity on nodulation ofchickpea occurred at 40 dS m–1 (34.2 mol m–3 NaCl)and nodulation was completely inhibited at 7 dS m–1 (61.6mol m–3 NaCl); the plants died at 8 dS m–1 (71.8mol m–3 NaCl). Chickpea cultivar ILC 482 inoculated with Rhizobium strain Ch191spcstrwas grown in two pot experiments and irrigated with saline water.Salinity (NaCl equivalent to 1–4 dS m–1) significantlydecreased shoot and root dry weight, total nodule number perplant, nodule weight and average nodule weight. The resultsindicate that Rhizobium strain Ch191 forms an infective andeffective symbiosis with chickpea under saline and non-salineconditions; this legume was more salt-sensitive compared tothe rhizobia, the roots were more sensitive than the shoots,and N2 fixation was more sensitive to salinity than plant growth. Key words: Cicer arietinum, nodulation, N2 fixation, Rhizobium, salinity  相似文献   

11.
Effects of diffusion and upwelling on the formation of red tides   总被引:4,自引:0,他引:4  
In this paper, records on the timing and location of specificred tides monitored once or twice a week in Mikawa Bay, Japan,are related to horizontal and vertical mixing rates determinedfrom a numerical model. Horizontal (Kh) and vertical (Kz) diffusioncoefficients, and upwelling velocities, were estimated usinga box model analysis. In the wind-mixed period and in the upperlayer during the stratified period, Kh was estimated to be ofthe order of 102 m2 s–1. During the stratified period,Kz was estimated to be of the order of 10–5 m2 s–1.The upwelling velocity was calculated to be in the range 0.35–5.1m day–1 with an average of 1.5 m day–1. Comparisonbetween the literature values of the specific growth rate (µ)of the red tide-forming diatoms and calculated Kh values duringthe red tides show that diatoms which have a low µ cannotform red tides in a strongly diffusive environment, while specieshaving a high µ can form red tides even in a strong diffusiveenvironment. On the other hand, no clear relationship was foundbetween µ of the flagellate group and Kh, although theflagellate group formed red tides even in severe diffusive conditions.From the comparison between the literature values of sinkingrate and swimming speed and the physical parameters associatedwith vertical processes, it was concluded that flagellates willform red tides, even in severe diffusive conditions, by usingtheir swimming ability, while diatoms form red tides by theirhigh growth rates with the aid of vertical diffusion and theupwelling movement of water.  相似文献   

12.
A zooplankton community in the Polar Frontal Zone north of SouthGeorgia was sampled for 5 days in February 1994. Feeding ofvarious copepodite stages of six copepod species was assessedby a series of gut fluorescence/gut evacuation experiments.Feeding periodicity was compared to vertical distribution andmigration patterns, as revealed by Longhurst Hardy PlanktonRecorder (LHPR) and ring net catches. Despite chlorophyll alevels reaching only 0.8 mg m–3 and daily carbon rationsbased on phytoplankton intake being low, feeding of all thecopepods was restricted mainly to the 8 h night-time perid.During the daytime, the epipelagic community was verticallydispersed within the top 100 m. At night, upward migration bymost species led to a convergence of almost all zooplanktersin the upper half of the surface mixed layer. However, large-amplitudevertical migrations which crossed the thermocline were performedonly by Metridia lucens and Pleuromamma robusta. Although feedingby both migrants and non-migrants was mainly at night, therewas no diel signal in gut evacuation rate. The gut evacuationrates of the nine copepod species and stages differed significantly(5-fold) and were negatively related to the extent of theirdiel vertical migration. The long gut-passage times of the migratoryspecies, M.lucens and P.robusta, would have allowed them timeto defaecate some of the food eaten near the surface at depth,contributing to an active carbon transfer out of the mixed layer.However, their scarcity at this site meant that their grazingcomprised only -<1.4% of total copepod ingestion, so theircombined gut flux is likely to have been negligible (-0.4 mgcarbon day–1).  相似文献   

13.
Seasonal changes in the species composition of tintinnid ciliateswere examined based on time-series samples taken at 2 week intervalsover a 3 year period in Hiroshima Bay, the Seto Inland Sea ofJapan. The maximum abundance of total tintinnids over the entireperiod was 5.7 x 103 indi viduals l Among 32 speciesidentified, a consistent seasonal occurrence was recognizedin 22 species. The relationships between various environmentalfactors and the abundance of each species of tintinnids wereanalyzed using principal component analysis From this analysis,the abundance of many tintinnids was revealed to be associatedwith temperature, the <20 µm size fraction of chlorophylla and water column stability, but not with the <20 µmsize fraction of chlorophyll a, nor with salinity. From theseresults, tintinnid species were divided into five associationtypes: species whose abundance increased with increasing temperature,decreasing temperature, nanophytoplankton abundance, increasingwater column mixing, or increasing water stratification coupledwith low temperature.  相似文献   

14.
Chlorophyll distribution in Lake Kinneret was estimated in aperiod of low chlorophyll-a concentrations (3–7 mg m–3)using remotely sensed data. The data set included high-spectral-resolutionradiometric measurements in the range 400–750 nm, chlorophylland suspended matter concentrations, Secchi disk transparencyand vertical attenuation coefficients at 20 stations. The spectroradiometricdata were used to create the algorithms suitable for quantitativedetermination of chlorophyll content. The present paper presentsexperimental field evidence showing that fluorescence can besuccessfully used for remote monitoring of chlorophyll-a content(with an estimation error <0.5 mg m–3) in productiveinland waters with a background of variable and relatively highsuspended matter concentration.  相似文献   

15.
The data of chlorophyll amounts in diverse bio-communities arecompiled and discussed with reference to matter production. The chlorophyll amount in euphotic zone of lakes and oceanswas less than 1 g/m2, mostly less than 0.1 g/m2. In phytoplanktonblooms it was ca. 0.1–1 g/m2. Large values of 5–20g/m2 were obtained in the outdoor mass cultures of Chlorella,in which the high population density and chlorophyll contentof the alga were observed. In terrestrial higher plant communitiesthe chlorophyll amount (ca. 1–10 g/m2) was usually higherthan in aquatic phytoplankton communities. The largest (13.3g/m2) was obtained with an evergreen gallery forest in Thailand.The chlorophyll amount of desert bio-community could be expectedto be as high as that in water blooms. The maximum chlorophyll amount in bio-communities seems to attainup to 20 g/m2 when the conditions are favorable. 1 Dedicated to Prof. H. TAMIYA on the occasion of his 60th birthday. (Received December 25, 1962; )  相似文献   

16.
When young tomato plants grown in high light (400 µmolquanta m–2s–1 PAR) were transferred to low light(100 µmol quanta m–2s–1 PAR), non-cyclic electrontransport capacity was decreased and the rate of dark re-oxidationof Q, the first quinone electron acceptor of photosystemII, was decreased within 1–2 d. In contrast, the amountof coupling factor CF1, assayed by its ATPase activity, decreasedmore gradually over several days. The total chlorophyll contentper unit leaf area remained relatively constant, although thechlorophyll a/chlorophyll b ratio declined. When young tomato plants grown in low light were transferredto high light, the ATPase activity of isolated thylakoids increasedmarkedly within 1 d of transfer. This increase occurred morerapidly than changes in chlorophyll content per leaf area. Inaddition, in vivo chlorophyll fluorescence induction curvesindicate that forward electron transfer from Q occurredmore readily. The functional implications of these changes arediscussed. Key words: Tomato, leaves, light intensity, thylakoid membrane  相似文献   

17.
A chlorophyll-preserving substance was isolated from rhizomesof Atractylodes lancea DC. and identified as (—)-hinesolon the basis of spectroscopic data. Hinesol at more than 0.22DIH was effective for preserving chlorophyll of oat (Avena sativaL. cv Victory) leaves in the dark with 40 to 50% of the initialchlorophyll content being retained at 2.2 mM. However, hinesolstimulated chlorophyll loss with light exposure and at 4.5 mMcaused complete bleaching when measured 4 days after treatment. 1Dedicated to the memory of the late Professor Joji Ashida. (Received December 9, 1982; Accepted April 22, 1983)  相似文献   

18.
Quantitative study of the cytochrome c acting in the photosyntheticsystem of the blue-green alga Anabaena variabilis (M-2) wasdone with membrane fragments and intact cells. Membrane fragments highly active in the NADP+-Hill reaction(above 200 µmoles/mg chl.a;-hr) retained photoresponsivecytochrome c equal only one-tenth that of P700, while the plastocyanincontent was almost equal to that of P700. The cytochrome contentin intact cells was a little larger than that in membrane fragmentson the chlorophyll a basis. However, the values relative toP700 (1/9) and plastocyanin (1/10) were identical with thosein membrane fragments. The content was also far smaller thanthat of reaction center II's (1/6). If the cytochrome mediatesall electrons from reaction center II, the cytochrome oxidation-reductionshould have a rate constant of 2.4?102 sec–1 which isone order above of the rate constant of the cytochrome reduction(2.3 to 3.5?101sec–1). These quantitative relationshipsindicate that in Anabaena variabilis (M-2), c-type cytochrome,either cytochrome f or algal cytochrome c, cannot function inthe main electron flow between two reaction centers. (Received September 8, 1978; )  相似文献   

19.
The growth and osmoregulation of Chaetoceros muelleri Lemmermann(Bacillariophyceae) were investigated as a function of salinity.This centric diatom grew well over a wide range of salinityand required concentrations of NaCl above 10 mM for growth.Using gas chromatography- mass spectroscopy (GC-MS) analysisof cell extracts, we demonstrated that the alga contains anisomer of cyclohexanetetrol. The level of this isomer increasedwith increasing salinity. Levels of free amino acids also increasedwith increasing salinity, and quantitative determination withan amino acid analyzer revealed that the level of glutamic acidincreased the most with increases in salinity. Levels of intracellularK+ and Cl also increased significantly with increasesin salinity. Thus, in C. muelleri, not only organic solutessuch as the cyclohexanetetrol isomer and glutamic acid, butalso inorganic solutes such as K+ and Cl contribute toosmoregulation. (Received November 7, 1994; Accepted April 10, 1995)  相似文献   

20.
Osmotic adjustment in marine yeast   总被引:1,自引:0,他引:1  
The effect of environmental salinity on cell growth, and onthe composition and accumulation of compatible solutes, or osmotica,of five yeast strains (Aureobasidium pullulans, Candida sp.,Cryptococcus albidus var. albidus, Debaryomyces hansenii andRhodotorula rubra) was compared. All these yeast were isolatedfrom manne environments, but were able to grow in the absenceof salt and should therefore be considered as halotolerant strains.According to their specific cell growth rates at different saltconcentrations, these strains vary in their capacity to osmoticallyadjust to modifications in external salinity. Candida sp. appearsto be the most sensitive since the maximum salt concentrationat which it can grow is 1.54 mol 1-1 NaCl; however, it showedthe highest specific cell growth in the range of 0 to 1.54 mol1-1 NaCl. Aureobasidium pullulans, on the other hand, showedthe lowest specific growth rate, but the highest halotolerancerange from 0 to 5.13 mol 1-1 NaCl. Debaryomyces hansenii, incontrast, showed higher specific growth at this salinity rangeCryptococcus albidus var. albidus and Rhodotorula rubra showedsimilar specific cell growth rate values and halotolerance between0 and 2.45 mol 1-1 NaCl. The protein and carbohydrate contentof the biomass of the different yeast cells, as a result ofexternal salinity vanation, remained practically constant. Themost important effects of the increase in salt concentrationin the culture medium were the reduction of cell volume andthe accumulation of low-molecular-weight metabolites (LMWM).which appear to act as osmoregulators. Glycerol was found asthe major compatible solute in the different marine yeasts studiedherein with a total contribution of 64–96% of the internalcell osmolarity. Other LMWM, like carbohydrates and amino acids,contributed to a lesser extent to compensate for the rise inosmotic pressure promoted by the salinity of the external environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号