首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
研究了日本落叶松母株年龄、插穗内源激素含量与生根之间的关系,以及外源IBA对插穗内源激素含量的影响及其对插穗生根的促进作用。结果表明:不同株龄插穗生根性状及插穗茎和叶中激素含量差异均达极显著水平,叶中激素含量对插穗生根力没有直接影响;插穗茎中生根抑制激素(ABA)含量随株龄增长而增加,生根促进激素与抑制激素的比值(IAA+GA+ZR)/ABA却随株龄的增长而递减,与生根力随株龄的变化趋势一致,且该比值与生根性状紧密相关,因此可作为评价母株(无性系)生根力的指标;插后13~32d是插穗愈伤组织形成和不定根诱导的关键期,此期生根促进激素消耗量大,茎中含量大幅度降低,进入根伸长生长阶段,含量上升;外源IBA促进插穗生根的机制在于通过外源激素的刺激,在不定根诱导期,插穗茎中ABA含量大幅度降低,从而有利于不定根的发生和发育。  相似文献   

3.
Legumes are recalcitrant to androgenesis and induction protocols were only recently developed for pea (Pisum sativum L.) and chickpea (Cicer arietinum L.), albeit with low regeneration frequencies. Androgenesis is thought to be mediated through abscisic acid (ABA) but other phytohormones, such as auxins, cytokinins, and gibberellins, have also been implicated. In view of improving induction protocols, the hormone content of pea, chickpea, and lentil anthers was measured after exposure to cold, centrifugation, electroporation, sonication, osmotic shock, or various combinations thereof using an analytical mass spectrometer. Indole-3-acetic acid (IAA) had a key function during the induction process. In pea, high concentrations of IAA-asparagine (IAA-Asp), a putative IAA metabolite, accumulated during the application of the different stresses. In chickpea, the IAA-Asp concentration increased 30-fold compared to pea but only during the osmotic shock treatment and likely as a result of the presence of exogenous IAA in the medium. In contrast, no treatment in lentil (Lens culinaris) invoked such an increase in IAA-Asp content. Of the various cytokinins monitored, only cis zeatin riboside increased after centrifugation and electroporation in pea and possibly chickpea. No bioactive gibberellins were detected in any species investigated, indicating that this hormone group is likely not linked to androgenesis in legumes. In contrast to the other stresses, osmotic shock treatment caused a reduction in the levels of all hormones analyzed, with the exception of IAA-Asp in chickpea. A short period of low hormone content might be a necessary transition phase for androgenesis induction of legumes. KEY MESSAGE: Five androgenesis-inducing stress treatments changed content of ABA, auxin and cytokinin in anthers of three legumes. Osmotic shock treatment differed because it reduced hormone content to very low levels.  相似文献   

4.
Endogenous levels of free and conjugated IAA, auxin protectors (Prs) and peroxidase (PER) activity and their relation to adventitious root initiation (ARI) were investigated at the potential sites of adventitious rooting in relation to exogenous application of 250 μM ABA during the first 120 h after treatment. Cuttings from 7-day-old mung bean [Vigna radiata (L.) Wilcz.] seedlings were treated with 125, 250, and 500 μM ABA for 24 h. ABA significantly stimulated ARI but extremely inhibited epicotyl growth as compared to control. Free and conjugated IAA were measured by reversed-phase high performance liquid chromatography while Prs and PER activities were measured spectrophotometrically. The present results also indicate that endogenous free IAA levels peaked later in ABA-treated cuttings than that in control, suggesting that ABA extended the length of the induction phase of rooting process in treated cuttings and that might explain the significant delay of the appearance of roots at the treated cuttings. Higher level of IAA conjugates was found in ABA-treated cuttings than that in untreated ones. Pr level also peaked later in ABA-treated cuttings than that in control, indicating that ABA extended the period of Pr activity. An initial temporary decrease of PER activity was found in associating with high levels of free IAA and Prs during most of the primary events, while the opposite occurred during the secondary events of adventitious rooting process in both treated and untreated cuttings. Thus, ABA may stimulate ARI in mung bean Vigna radiata cuttings by regulating the concentration and /or activities of endogenous IAA, Prs, and PER activity in favor of inducing a large number of adventitious roots at their potential sites of adventitious rooting.  相似文献   

5.
Abscisic acid (ABA), auxins, cytokinins, gibberellic acid, alone or in combination were tested for their effects on short-term sucrose uptake in sugar beet (Beta vulgaris cv USH-20) roots. The effect of ABA on active sucrose uptake varied from no effect to the more generally observed 1.4-to 3.0-fold stimulation. A racemic mixture of ABA and its trans isomer were more stimulatory than ABA alone. Pretreating and/or simultaneously treating the tissue with K+ or IAA prevented the ABA response while cytokinins and gibberellic acid did not. While the variable sensitivities of beet root to ABA may somehow be related to the auxin and alkali cation status of the tissue, tissue sensitivity to ABA was not correlated with ABA uptake, accumulation, or metabolic patterns. In contrast to ABA, indoleacetic acid (IAA) and other auxins strongly inhibited active sucrose uptake in beet roots. Cytokinins enhanced the auxin-induced inhibition of sucrose uptake but ABA and gibberellic acid did not modify or counteract the auxin effect. Trans-zeatin, benzyladenine, kinetin, and gibberellins had no effect on active sucrose uptake. None of the hormones or hormone mixtures tested had any significant effect on passive sucrose uptake. The effects of IAA and ABA on sucrose uptake were detectable within 1 h suggesting a rather close relationship between the physiological activities of IAA and ABA and the operation of the active transport system.  相似文献   

6.
Immature zygotic embryos of sunflower (Helianthus annuus L.) produce somatic embryos when cultured on medium supplemented with a cytokinin as the sole source of exogenous growth regulators. The timing of the induction phase and subsequent morphogenic events have been well characterized in previous work. We address here the question of the role of endogenous indole-3-acetic acid (IAA), since auxins are known to have a crucial role in the induction of somatic embryogenesis in many other culture and regeneration systems. The fact that in the sunflower system no exogenous auxin is required for the induction of somatic embryos makes this system very suitable for the study of the internal dynamics of IAA. We used an immuno-cytochemical approach to visualize IAA distribution within the explants before, during and after the induction phase. IAA accumulated transiently throughout cultured embryos during the induction phase. The detected signal was not uniform but certain tissues, such as the root cap and the root meristem, accumulated IAA in a more pronounced manner. IAA accumulation was not restricted to the reactive zone but the kinetics of endogenous variations strikingly mimic the pulse of IAA that is usually provoked by exogenous IAA application. The direct evidence presented here indicates that an endogenous auxin pulse is indeed among the first signals leading to the induction of somatic embryogenesis.  相似文献   

7.
ABSTRACT

Pinus massoniana is a recalcitrant tree species for rooting in vitro. We rejuvenated 26-year-old P. massoniana trees by successive grafting. Rooting rates of rejuvenated shoots were > 83.1% after rooting induction. We compared endogenous levels of indole-3-acetic acid (IAA), abscisic acid (ABA), gibberellins (GAs) and zeatin-riboside (ZR), and the rhizogenesis ability of axillary shoots of mature and rejuvenated materials in vitro, i.e., somaplants and grafts. Enhancement of the rooting ability of mature materials in vitro following somatic embryogenesis or repeated grafting onto juvenile rootstocks was accompanied by increased IAA and GAs levels, and by decreased ABA levels in scions used as starting material for micropropagation in vitro. Successive subcultures did not influence the rooting ability of shoots from untreated mature material. Rooting ability of shoots in vitro, however, gradually increased with subculture frequency during repeated subculturing in grafting materials. The IAA:ABA ratio in shoots in vitro after grafting five times, and consequently capable of root organogenesis, was higher than in shoots of untreated mature material incapable of root organogenesis in vitro. A high IAA:ABA ratio was detected in scions of somaplants that were capable of rooting in vitro despite subculture times. We found that the endogenous IAA:ABA ratio is a reliable marker for the recovery of root organogenesis in vitro after rejuvenating treatments for mature P. massoniana trees.  相似文献   

8.
Ethylene‐triggered abscisic acid: A principle in plant growth regulation?   总被引:9,自引:0,他引:9  
The application of auxins to sensitive plant species or their overproduction in transgenic plants stimulates ethylene biosynthesis via induction of 1-aminocyclopropane-1-carboxylic acid (ACC) synthase. Recent studies with auxin herbicides and indole-3-acetic acid (IAA) have revealed that auxin-stimulated ethylene triggers an increase in the biosynthesis of abscisic acid (ABA), which then functions as a second messenger, leading to growth inhibition and senescence. This raises the question of whether ethylene-triggered ABA is restricted to the action of auxin herbicides or whether it is a widespread phenomenon in the normal plant growth regulation. Our own results and a reappraisal of the literature indicate that ethylene-induced ABA may, indeed, play a role in natural physiological phenomena, such as root gravireaction and suppression of lateral bud growth in apical dominance. In addition, it would be worthwhile to investigate whether ethylene-triggered ABA is involved in other processes which coincide with a strong stimulation of ethylene biosynthesis, such as growth inhibition induced by cytokinins and senescence elicited under stress conditions.  相似文献   

9.
The regulation of cell-division activity in the vascular cambium and of secondary xylem and phloem development is reviewed for temperate-zone tree species in relation to auxins, gibberellins, abscisic acid, cytokinins, and ethylene. Representatives of the first four of these PGR classes (IAA, GA1, GA4, GA7, GA9, GA20, ABA, Z, ZR, DCA) have been identified conclusively by mass spectrometry in the cambial region in some Pinaceae, but not in any hardwood species. Endogenous ethylene has yet to be definitively characterized in this region in any species. Evidence concerning the source and metabolism of cambial PGRs is scanty and inconclusive for both conifers and hardwoods.Most cambial PGR research has focused on IAA. Much evidence indicates that this PGR is transported primarily in the cambial region at a rate of about 1 cm h–1, and that the transport is basipetally polar. GC-MS measurements have established that endogenous IAA levels in the cambial region of Pinaceae are highest during earlywood development, and that cambial IAA levels may be considerably lower in hardwoods than in conifers. IAA appears to be involved in the control of cambial growth in conifers and hardwoods in at least three specific ways, viz. maintenance of the elongated form of fusiform cambial cells, promotion of radial expansion in primary walls of cambial derivatives, and regulation of reaction wood formation. In addition, it is well established that exogenous IAA promotes vessel development in hardwoods. In both conifers and hardwoods, exogenous IAA stimulates cambial growth in 1-year-old shoots treated late in the dormant period or after the start of the cambial growing period. However, exogenous IAA has little effect on cambia that are older or are in what is hypothesized to be the resting stage of dormancy. Thus it is uncertain whether IAA is directly involved in the control of cambial growth, or acts indirectly through a process such as hormone-directed transport.It is not yet clear if gibberellins play a role in the control of cambial growth in conifers. However, in hardwoods, there is evidence that they inhibit vessel development and act synergistically with IAA in promoting cambial activity and fiber elongation. In both conifers and hardwoods, foliar sprays of gibberellins increase the accumulation of biomass above-ground, particularly in the main axis, while decreasing it in the roots.There are as yet no definite conclusions to be drawn concerning the involvement of ABA, cytokinins, and ethylene in the regulation of cambial growth in conifers or hardwoods. In conifers, ABA may antagonize the promotory effect of IAA on cambial cell division and tracheid radial expansion under conditions of water stress, but high endogenous ABA levels do not appear to be associated with the formation of latewood or the onset of cambial dormancy. Some evidence suggests that exogenous cytokinins enhance the promotory effect of IAA on cambial growth, particularly ray formation, in both hardwoods and conifers. However, exogenous cytokinins, by themselves, appear to be ineffective. In hardwoods, ethylene-generating compounds satisfy the chilling requirement of the dormant cambium and promote the formation of wood having an apparently greater content of lignin and extractives. Ethylene-generators also affect wood development in conifers and accelerate cambial growth at the application site in both hardwoods and conifers.  相似文献   

10.
Auxin controls numerous plant growth processes by directing cell division and expansion. Auxin-response mutants, including iba response5 (ibr5), exhibit a long root and decreased lateral root production in response to exogenous auxins. ibr5 also displays resistance to the phytohormone abscisic acid (ABA). We found that the sar3 suppressor of auxin resistant1 (axr1) mutant does not suppress ibr5 auxin-response defects, suggesting that screening for ibr5 suppressors might reveal new components important for phytohormone responsiveness. We identified two classes of Arabidopsis thaliana mutants that suppressed ibr5 resistance to indole-3-butyric acid (IBA): those with restored responses to both the auxin precursor IBA and the active auxin indole-3-acetic acid (IAA) and those with restored response to IBA but not IAA. Restored IAA sensitivity was accompanied by restored ABA responsiveness, whereas suppressors that remained IAA resistant also remained ABA resistant. Some suppressors restored sensitivity to both natural and synthetic auxins; others restored responsiveness only to auxin precursors. We used positional information to determine that one ibr5 suppressor carried a mutation in PLEIOTROPIC DRUG RESISTANCE9 (PDR9/ABCG37/At3g53480), which encodes an ATP-binding cassette transporter previously implicated in cellular efflux of the synthetic auxin 2,4-dichlorophenoxyacetic acid.  相似文献   

11.
We have previously shown that both endogenous auxin and ethylenepromote adventitious root formation in the hypocotyls of derootedsunflower (Helianthus annuus) seedlings. Experiments here showedthat promotive effects on rooting of the ethylene precursor,1-aminocyclopropane-l-carboxylic acid (ACC) and the ethylene-releasingcompound, ethephon (2-chloro-ethylphosphonic acid), dependedon the existence of cotyledons and apical bud (major sourcesof auxin) or the presence of exogenously applied indole-3-aceticacid (IAA). Ethephon, ACC, aminoethoxyvinylglycine (an inhibitorof ethylene biosynthesis), and silver thiosulphate (STS, aninhibitor of ethylene action), applied for a length of timethat significantly influenced adventitious rooting, showed noinhibitory effect on the basipetal transport of [3H]IAA. Theseregulators also had no effect on the metabolism of [3H]IAA andendogenous IAA levels measured by gas chromatography-mass spectrometry.ACC enhanced the rooting response of hypocotyls to exogenousIAA and decreased the inhibition of rooting by IAA transportinhibitor, N-1-naphthylphthalamic acid (NPA). STS reduced therooting response of hypocotyls to exogenous IAA and increasedthe inhibition of rooting by NPA. Exogenous auxins promotedethylene production in the rooting zone of the hypocotyls. Decapitationof the cuttings or application of NPA to the hypocotyl belowthe cotyledons did not alter ethylene production in the rootingzone, but greatly reduced the number of root primordia. We concludethat auxin is a primary controller of adventitious root formationin sunflower hypocotyls, while the effect of ethylene is mediatedby auxin. Key words: Auxin, ethylene, adventitious rooting, sunflower  相似文献   

12.
The induction of rooting in microshoots of Zingiber officinale cvs. Suprava, Turia local, Suruchi and V3S18 was achieved on half-strength basal Murashige and Skoog's medium supplemented with 0.5-1.0 mg/l either indole-3-acetic acid (IAA) or indole-3-butyric acid (IBA) and 2% (w/v) sucrose within 7-9 days of culture. Rooting was inhibited when the microshoots were cultured under higher concentration of auxins. The microshoots cultured on medium supplemented with NAA induced large number of thin root hairs with friable calluses within 6-7 days. Peroxidase activity was determined during root induction (0-day to the 10th day at every 2 day interval) from microshoots derived in vitro. The activity was minimum in the inductive phase (primary) and at the maximum level during the root initiative phase. These finding may be useful in monitoring the rooting behaviour in microshoots derived from different subculture and peroxidase activity as a marker for root initiation.  相似文献   

13.
The internal levels of indole-3-acetic acid (IAA) and polyamines (PAs) and the metabolism of indole-3-butyric acid (IBA) were studied in relation to the in vitro rooting process of two pear cultivars, the easy-to-root Conference and the difficult-to-root Doyenne d'Hiver. Doyenne d'Hiver required about a 10 times higher concentration of IBA to achieve a rooting percentage similar to that of Conference. One- or two-day exposures to IBA were sufficient to stimulate rooting but with different efficiency for each cultivar. Longer exposure to auxin strongly increased the root number in Conference, whereas root elongation was inhibited in both cultivars. The metabolism of IBA in both cultivars was not significantly different when IBA was used at a high concentration to stimulate maximal rooting in Doyenne d'Hiver. IBA was mainly conjugated into IBA glucose, which was accumulated, and a small amount was converted into free IAA in both cultivars. However, in Doyenne d'Hiver this metabolic pathway appears to be active only at a higher exogenous IBA concentration. At a high IBA concentration more callus was formed by Doyenne d'Hiver, indicating that the cells of Doyenne d'Hiver are not capable of responding to the hormone in the same manner as Conference cells. Anatomic observations indicated that the capacity to induce initial dividing cells was more efficient in Doyenne d'Hiver, but subsequently the number of root primordia formed and root development were much reduced relative to Conference. A possible correlation between these processes and an early increase followed by a decrease of free IAA was seen in Conference. By day 4, a significant increase in IAA conjugates and free putrescine was observed in Doyenne d'Hiver. This higher putrescine content may be related to the lower amount of root development. Together with previous studies these results indicate that differences in the uptake and metabolism of applied auxins may affect rooting ability and the subsequent development of adventitious roots in microcuttings of pear.Abbreviations IBA indole-3-butyric acid - IAA indole-3-acetic acid - PA(s) polyamine(s) - HPLC high pressure liquid chromatography - GC-MS gas chromatography-mass spectrometry - TCA trichloroacetic acid dansyl, 1-dimethylaminonaphthalene-5-sulfonyl - TLC thin layer chromatography - TBA terbutilic alcohol - IBAGluc IBA glucose - IAAGluc IAA glucose - IAAsp IAA aspartate  相似文献   

14.
Recent results showed that after 16 months in the field, micropropagated eucalyptus plants have an inferior root system to cuttings. Such differences may be due to the plant growth regulators supplied during the culture stages of standard protocols, which are targeted at optimising plantlet yields and not root quality. This study investigated such a proposal, focusing on auxins in an easy-to-root clone. Initial results showed that the auxin provided in the standard protocol (NAA for multiplication and IBA for elongation) enabled 100% rooting in auxin-free medium, where rooting was faster than on IBA-rooting media. When auxin supply was omitted from multiplication and restricted to NAA or IAA during elongation, rooting in an auxin-free medium was reduced to 68 and 31%, respectively, reflecting the stabilities of these auxins in plant tissues. Additionally, 15% of shoots from the NAA-medium and 65% from the IAA-medium produced roots with altered graviperception. GC–MS analysis of these shoots revealed a relationship between free IAA-availability and altered graviperception. This was further tested by adding the IAA-specific transport inhibitor 2,3,5-triiodobenzoic acid to rooting media with IBA, IAA or NAA, which resulted in 100, 70.9 and 20.6% rooting, respectively. At least 40% of the sampled root tips had atypical starch grain deposition and abnormal graviperception. It is proposed that, at least in this clone, while IBA and NAA can be used for in vitro root induction, IAA is necessary for development of graviresponse.  相似文献   

15.
Phytohormones such as auxins, cytokinins, gibberellins, andabscisic acid differentially affect gametangial induction inmale and female clones of Bryum argenteum. Both IAA and GA3increased the percentage of fertile gametophores in the maleclone, and inhibited the response in the female clone. GA3 wasmore effective than IAA in eliciting the response in the maleclone. Cytokinins, on the other hand, increased the productionof fertile gametophores in the female clone, and inhibited itslightly in the male clone. The two cytokinins tested (kinetinand DMAAP) were almost equally effective for the female clone. An Interaction of IAA and kinetin nullified their individualinhibitory effects on the female and male clones, respectively.Cyclic AMP prevented the inhibitory effect of kinetin in themale clone; whereas, in the female clone, it stimulated theresponse elicited by kinetin. Abscisic acid (ABA) acted as ageneral inhibitor of vegetative growth and gametangial inductionin this moss. However, the inhibition of gametangial inductionwas greater in the female clone which is also more sensitiveto ABA than the male clone.  相似文献   

16.
Stem slices (1-mm thick) cut from apple microshoots were cultured on a modified Murashige-Skoog medium with indole-3-acetic acid (IAA) or α-naphthaleneacetic acid (NAA), and increasing concentrations of various phenolic compounds. Both auxins were added at a concentration suboptimal for rooting. Indole-3-acetic acid is metabolized through oxidation and conjugation but NAA through conjugation only; which might have affected the results. With IAA, all tested orthodiphenols, paradiphenols and triphenols promoted adventitious root formation from the stem slices. Ferulic acid (FA, a methylated orthodiphenol) had the largest effect and increased the number of adventitious roots from 0.9 to 5.8. With NAA there was little or no promotion after addition of phenolics. Phloroglucinol (a triphenol) and FA were examined in detail. Their effects on the dose–response curve of IAA and the timing of their action indicated that both acted as antioxidants protecting IAA from decarboxylation and the tissue from oxidative stress. Experiments with carboxyl-labelled IAA showed that IAA was massively decarboxylated by the slices and that decarboxylation was strongly reduced by phenolics. Decarboxylation was to a great extent attributable to the wound response and did not occur to such an extent in non-wounded plant tissues. In shoots, FA promoted little rooting. Slices were cultured on top of the medium and shoots were stuck into the medium. Possibly, the anaerobic conditions in the medium near the basal part of the stem of shoots reduced the wound response and consequently decarboxylation of IAA. The monophenolic compound salicylic acid (SA) promoted IAA decarboxylation. Accordingly, SA reduced rooting when added during the initial days of the rooting process (the period during which auxin enhances rooting), and promoted outgrowth of root primordia later on (the period during which auxin inhibits rooting).  相似文献   

17.
An efficient root induction system has been established for in vitro-regenerated Jatropha curcas L. shoots. Callus formation on shoots transferred to auxin containing medium was found to be a prominent and recurrent problem for rooting of in vitro-cultivated J. curcas. In particular, the type of auxins and cytokinins applied in the culture media were shown to strongly influence the severity of callus formation. Shoots cultivated on meta-methoxytopolin riboside (MemTR) were free of callus and produced elongated stems and well-developed leaves in comparison to the cytokinins benzyl adenine, zeatin, and thidiazuron. Subsequent root induction experiments were performed with shoots precultured on MemTR-containing medium. Shoots were excised and transferred to Murashige and Skoog (MS) medium supplemented with different concentrations of indole-3-butyric acid (IBA), indole-3-acetic acid (IAA), and α-naphtaleneacetic acid (NAA). The induction of excessive callus formation was avoided only on IBA-containing medium. The optimum rooting medium with good root induction (35%) and 1.2 roots per shoot contained half-strength MS salts supplemented with 2.5 μM IBA. The same medium supplemented with 0.25% (w/v) activated charcoal produced 46% rooted shoots. Further improvement of rooting was obtained by transferring in vitro grown shoots to woody plant medium containing phloroglucinol (PG). In the presence of 2.5 μM IBA and 238 μM PG, 83% of the shoots rooted with on average 3.1 roots per shoot. We also analyzed the impact of light quality on the rooting capacity of Jatropha in vitro grown shoots. In general, light-emitting diodes (LEDs) light sources were less efficient for root induction. Red LED light provided the most favorable growth conditions, inducing a rooting response in 65% of the shoots, which produced on average 5.5 roots per shoot. These results indicate that adventitious rooting in J. curcas is under control of photoreceptors and that optimal rooting requires fine-tuning of the salt concentration, auxin, and cytokinin balance and application of synergistic compounds.  相似文献   

18.
Cell suspension cultures of Anchusa officinalis required exogenous phytohormones for their normal growth. Cell lysis was observed at the third passage in a hormone-free medium. Using hormone — depleted cells, the effects of auxins (2,4-D, NAA, IAA and CFP) and cytokinins (BA, kinetin, and zeatin) on cell growth and RA production were investigated. All auxins tested could maintain growth and integrity of the cells whereas cytokinins alone could not, suggesting that this culture is auxindependent. Among the auxins tested, NAA had a pronounced effect on RA production. The total RA content obtained at optimum NAA concentration (0.25 mg/l) reached 1.7 g/l (12% of dry weight). The kinetics of growth and RA production suggested that the increase in final RA content was due to both an increase in the rate of RA synthesis and initiation of the period of synthesis in the exponential rather than the linear growth phase.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - NAA 1-naphthaleneacetic acid - IAA indoleacetic acid - CFP 2-chloro-4-fluorophenoxyacetic acid - BA 6-benzyladenine - RA rosmarinic acid  相似文献   

19.
Two auxin-resistant mutants of Arabidopsis thaliana L. have been characterized physiologically: aux-2 is a recessive mutation and is unlinked to a dominant mutation, Dwf, which is apparently lethal when homozygous. The progeny of selfed Dwf plants segregate into Dwf (agravitropic) and dwf + (normal) phenotypes. aux-2 phenotype was indistinguishable from the wild-type on criteria other than resistance to exogenous auxins: 3-fold to 2,4-D and 2-fold to IAA. On the other hand, Dwf plants had a typical dwarf phenotype with single unbranched roots which lacked hairs. Compared to the wild-type, Dwf seedling roots were highly resistant to exogenous auxins: 2000-fold to 2,4-D and 360-fold to IAA. Both aux-2 and Dwf were normal in their response to exogenous ABA. The dwarf phenotype was insensitive to gibberellins but root hair formation was restored by application of auxins.The results indicate that altered auxin phsysiology can lead to agravitropism and dwarfism.Abbrevations ABA Abscisic acid - GA3 Gibberellic acid - IAA indole-3-acetic acid - 2,4-D 2,4-dichlorophenoxyacetic acid  相似文献   

20.
The data obtained characterize the changes in the contents of endogenous phytohormones (IAA, cytokinins, GA, and ABA) in germinating pollen grains and growing pollen tubes of a self-compatible clone of petunia (sPetunia hybrida L.) within an 8-h period under in vitro conditions. The hydration and initiation of germination of pollen grains brought the ABA content down to a zero level, while the levels of GA, IAA, and cytokinins increased 1.5–2-fold. Later, in the growing pollen tubes, the GA content increased twofold, while the levels of IAA and cytokinins decreased. The exogenous ABA and GA3 considerably promoted pollen germination and pollen tube growth; however, only the treatment with GA3 produced the maximum length of pollen tubes. The exogenous IAA promoted and the exogenous cytokinins hindered the growth of pollen tubes. The membrane potential, as assessed with a potential-sensitive dye diS-C3-(5), considerably increased in the pollen grains treated with ABA and benzyladenine, whereas IAA and GA3 did not practically affect it. The authors conclude that the mature pollen grains contain the complete set of hormones essential for pollen germination and pollen tube growth. ABA, GA, and IAA together with cytokinins control the processes of pollen grain hydration, germination, and pollen tube growth, respectively.__________Translated from Fiziologiya Rastenii, Vol. 52, No. 4, 2005, pp. 584–590.Original Russian Text Copyright © 2005 by Kovaleva, Zakharova, Minkina, Timofeeva, Andreev.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号