首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A primary and critical step in platelet attachment to injured vascular endothelium is the formation of reversible tether bonds between the platelet glycoprotein receptor Ibalpha and the A1 domain of surface-bound von Willebrand factor (vWF). Due to the platelet's unique ellipsoidal shape, the force mechanics involved in its tether bond formation differs significantly from that of leukocytes and other spherical cells. We have investigated the mechanics of platelet tethering to surface-immobilized vWF-A1 under hydrodynamic shear flow. A computer algorithm was used to analyze digitized images recorded during flow-chamber experiments and track the microscale motions of platelets before, during, and after contact with the surface. An analytical two-dimensional model was developed to calculate the motion of a tethered platelet on a reactive surface in linear shear flow. Through comparison of the theoretical solution with experimental observations, we show that attachment of platelets occurs only in orientations that are predicted to result in compression along the length of the platelet and therefore on the bond being formed. These results suggest that hydrodynamic compressive forces may play an important role in initiating tether bond formation.  相似文献   

2.
Endothelial cells synthesize and secrete von Willebrand factor (VWF) multimers, including unusually large forms (ULVWF), which are usually cleaved into smaller multimers found in normal plasma (P-VWF). Thrombotic thrombocytopenic purpura (TTP) is a microangiopathic disorder characterized by systemic attachment of platelets to inadequately cleaved ULVWF multimers. We have compared ULVWF and P-VWF in their capacity to become immobilized onto surfaces in vitro and their ability to mediate platelet adhesion. We have also used functional assays to directly compare ULVWF forms with purified P-VWF in mediating platelet aggregation in solution. At comparable concentrations, ULVWF is more effectively adsorbed onto glass surfaces than P-VWF and supports increased platelet adhesion. ULVWF is also significantly more potent than P-VWF in mediating both shear-induced platelet aggregation and ristocetin-mediated platelet agglutination.  相似文献   

3.
Thrombus formation is initiated by platelets and leads to cardiovascular, cerebrovascular, and peripheral vascular disease, the leading causes of morbidity and mortality in the Western world. A number of antiplatelet drugs have improved clinical outcomes for thrombosis patients. However, their expanded use, especially in surgery, is limited by hemorrhage. Here, we describe an antiplatelet agent that can have its activity controlled by a matched antidote. We demonstrate that an RNA aptamer targeting von Willebrand factor (VWF) can potently inhibit VWF-mediated platelet adhesion and aggregation. By targeting this important adhesion step, we show that the aptamer molecule can inhibit platelet aggregation in PFA-100 and ristocetin-induced platelet aggregation assays. Furthermore, we show that a rationally designed antidote molecule can reverse the effects of the aptamer molecule, restoring platelet function quickly and effectively over a clinically relevant period. This aptamer-antidote pair represents a reversible antiplatelet agent inhibiting a platelet specific pathway. Furthermore, it is an important step towards creating safer drugs in clinics through the utilization of an antidote molecule.  相似文献   

4.
Although the role of collagen in thrombosis has been extensively investigated, the contribution of other extracellular matrices is still unclear. We have recently reported that laminin stimulates platelet spreading through integrin alpha(6)beta(1)-dependent activation of the collagen receptor glycoprotein (GP) VI under static condition. Under physiological high and low shear conditions, platelets adhered to laminin, and this was strongly inhibited by an antibody that blocks association between GPIb-IX-V and von Willebrand factor (VWF). Moreover, platelets of type III von Willebrand disease or Bernard-Soulier syndrome adhered to laminin at a low shear condition but not at a high shear condition. The specific binding of laminin to VWF was confirmed by surface plasmin resonance spectroscopy (BIAcore). These findings suggest that laminin supports platelet adhesion depending on the interaction of VWF and GPIb-IX-V under pathophysiological high shear flow. This mechanism is similar to that of collagen. We propose that integrins, GPVI, GPIb-IX-V, and VWF represent a general paradigm for the interaction between platelets and subendothelial matrices.  相似文献   

5.
Recently we have found that propolypeptide of von Willebrand factor (pp-vWF) obtained from platelets binds to type I collagen. It is known that pp-vWF is present in platelet alpha-granules and is secreted upon activation. In this paper, we demonstrate the two following evidences to show that it is also present on the surface of resting platelets. [1] The antibody against pp-vWF bound to the surface of platelets. [2] The antibody induced aggregation of platelets. The binding of the antibody and the antibody-induced aggregation of platelets were inhibited in a dose-dependent manner by Fab fragment of the antibody. Platelets from von Willebrand disease patients bound less of the antibody and responded weakly to the antibody.  相似文献   

6.
7.
8.
von Willebrand factor (VWF) is the largest multimeric adhesion ligand circulating in blood. Its adhesion activity is related to multimer size, with the ultra-large forms freshly released from the activated endothelial cells being most active, capable of spontaneously binding to platelets. In comparison, smaller plasma forms circulating in blood bind platelets only under high fluid shear stress or induced by modulators. The structure-function relationships that distinguish the two types of VWF multimers are not known. In this study, we demonstrate that some of the plasma VWF multimers contain surface-exposed free thiols. Physiological and pathological levels of shear stresses (50 and 100 dynes/cm(2)) promote the formation of disulfide bonds utilizing these free thiols. The shear-induced thiol-disulfide exchange increases VWF binding to platelets. The thiol-disulfide exchange involves some or all of nine cysteine residues (Cys(889), Cys(898), Cys(2448), Cys(2451), Cys(2490), Cys(2491), Cys(2453), Cys(2528), and Cys(2533)) in the D3 and C domains as determined by mass spectrometry of the tryptic VWF peptides. These results suggest that the thiol-disulfide state may serve as an important structural determinant of VWF adhesion activity and can be modified by fluid shear stress.  相似文献   

9.
A cDNA library, constructed from bovine heart endothelial cell poly(A)+ RNA, was screened using a BstXI fragment of human von Willebrand and factor (vWF) cDNA as a probe. This probe codes for the major adhesion domain of vWF that includes the GPIb, collagen and heparin binding domains. Of the ten positive clones obtained, a clone that spanned the region of interest was sequenced by the dideoxynucleotide method yielding a sequence of 1550 bp. This region of the bovine cDNA codes for amino acids corresponding to #262 to #777 in human vWF and encompasses the entire pro adhesion domain. Both the nucleotide sequence and the deduced amino acid sequence are 82% homologous to those of human vWF. Cysteine residues #471, 474, 509 and 695, which form intrachain bonds in human vWF, are also present in the bovine vWF sequence.  相似文献   

10.
Biomechanics and Modeling in Mechanobiology - Platelet adhesion and activation are essential initial processes of arterial and microvascular hemostasis, where high hydrodynamic forces from the...  相似文献   

11.
Glycoprotein (GP) Ib-IX-V binds von Willebrand factor (VWF), initiating thrombosis at high shear stress. The VWF-A1 domain binds the N-terminal domain of GPIbalpha (His1-Glu282); this region contains seven leucine-rich repeats (LRR) plus N- and C-terminal flanking sequences and an anionic sequence containing three sulfated tyrosines. Our previous analysis of canine/human and human/canine chimeras of GPIbalpha expressed on Chinese hamster ovary (CHO) cells demonstrated that LRR2-4 (Leu60-Glu128) were crucial for GPIbalpha-dependent adhesion to VWF. Paradoxically, co-crystal structures of the GPIbalpha N-terminal domain and GPIbalpha-binding VWF-A1 under static conditions revealed that the LRR2-4 sequence made minimal contact with VWF-A1. To resolve the specific functional role of LRR2-4, we compared wild-type human GPIbalpha with human GPIbalpha containing a homology domain swap of canine for human sequence within Leu60-Glu128 and a reverse swap (canine GPIbalpha with human Leu60-Glu128) for the ability to support adhesion to VWF under flow. Binding of conformation-specific anti-GPIbalpha antibodies and VWF binding in the presence of botrocetin (which does not discriminate between species) confirmed equivalent expression of wild-type and mutant receptors in a functional form competent to bind ligand. Compared with CHO cells expressing wild-type GPIbalpha, cells expressing GPIbalpha, where human Leu60-Glu128 sequence was replaced by canine sequence, supported adhesion to VWF at low shear rates but became increasingly ineffective as shear increased from 50 to 2000 s(-1). Together, these data demonstrate that LRR2-4, encompassing a pronounced negative charge patch on human GPIbalpha, is essential for GPIbalpha.VWF-dependent adhesion as hydrodynamic shear increases.  相似文献   

12.
von Willebrand factor.   总被引:6,自引:0,他引:6  
  相似文献   

13.
von Willebrand disease (vWD) is caused by quantitative and/or qualitative defects of the von Willebrand factor (vWF), a multimeric high molecular weight glycoprotein. Typically, it affects the primary hemostatic system, which results in a mucocutaneous bleeding tendency simulating a platelet function defect. The vWF promotes its function in two ways: (i) by initiating platelet adhesion to the injured vessel wall under conditions of high shear forces, and (ii) by its carrier function for factor VIII in plasma. Accumulating knowledge of the different clinical phenotypes and the pathophysiological basis of the disease translated into a classification that differentiated between quantitative and qualitative defects by means of quantitative and functional parameters, and by analyzing the electrophoretic pattern of vWF multimers. The advent of molecular techniques provided the opportunity for conducting genotype-phenotype studies which have recently helped, not only to elucidate or confirm important functions of vWF and its steps in post-translational processing, but also many disease causing defects. Acquired von Willebrand syndrome (avWS) has gained more attention during the recent years. An international registry was published and recommendation by the Scientific and Standardization Committee of the International Society on Thrombosis and Haemostasis in 2000. It concluded that avWS, although not a frequent disease, is nevertheless probably underdiagnosed. This should be addressed in future prospective studies. The aim of treatment is the correction of the impaired hemostatic system of the patient, ideally including the defects of both primary and secondary hemostasis. Desmopressin is the treatment of choice in about 70% of patients, mostly with type 1, while the others merit treatment with concentrates containing vWF.  相似文献   

14.
The biosynthesis of von Willebrand Factor (vWF) by vascular endothelial cells involves a complex series of processing steps that includes proteolytic cleavage of a 741-residue propeptide and the assembly of disulfide-linked multimers. Using a model system in which experimentally altered vWF cDNAs are expressed in COS-1 cells, we have shown that the vWF propeptide contains determinants that govern the assembly of vWF multimers. Furthermore, the role of the propeptide (in the assembly process) does not require it to be a contiguous part of the pro-vWF primary structure, since independently expressed propeptide was shown to promote the assembly of mature vWF subunits into multimers. Pulse-chase experiments indicated that the independently expressed propeptide formed a transient association with the mature vWF subunit inside the cell. Thus, it appears that the vWF propeptide segment can act in "trans" to direct the assembly of disulfide-linked vWF multimers.  相似文献   

15.
Porcine von Willebrand factor (vWF) directly aggregates human platelets in vitro indicating a conformational difference between the human and porcine molecules. We amplified and directly sequenced 1242 nucleotides of porcine vWF cDNA that encodes functional domains which mediate the binding of vWF to platelets and subendothelium. The deduced amino acid sequence corresponds to residues 473-891 of the human mature vWF subunit and is 79% homologous with the human protein. Significant differences are found in two discontinuous segments thought to be involved in the binding of vWF to platelet glycoprotein Ib. Porcine vWF lacks four contiguous residues in the first segment and has two positively charged arginine residues in the second. Three point mutations associated with human type IIB von Willebrand disease in the first segment of a botrocetin binding site are at the same position as mismatches between the pig and human. The second segment of the botrocetin site is highly conserved while the third segment shows only a 60% homology.  相似文献   

16.
We investigated the crucial hemostatic interaction between von Willebrand factor (VWF) and platelet glycoprotein (GP) Ibalpha. Recombinant VWF A1 domain (residues Glu(497)-Pro(705) of VWF) bound stoichiometrically to a GPIbalpha-calmodulin fusion protein (residues His(1)-Val(289) of GPIbalpha; GPIbalpha-CaM) immobilized on W-7-agarose with a K(d) of 3.3 microM. The variant VWF A1(R545A) bound to GPIbalpha-CaM 20-fold more tightly, mainly because the association rate constant k(on) increased from 1,100 to 8,800 M(-1) s(-1). The GPIbalpha mutations G233V and M239V cause platelet-type pseudo-von Willebrand disease, and VWF A1 bound to GPIbalpha(G233V)-CaM and GPIbalpha(M239V)-CaM with a K(d) of 1.0 and 0.63 microM, respectively. The increased affinity of VWF A1 for GPIbalpha(M239V)-CaM was explained by an increase in k(on) to 4,500 M(-1) s(-1). GPIbalpha-CaM bound with similar affinity to recombinant VWF A1, to multimeric plasma VWF, and to a fragment of dispase-digested plasma VWF (residues Leu(480)/Val(481)-Gly(718)). VWF A1 and A1(R545A) bound to platelets with affinities and rate constants similar to those for binding to GPIbalpha-CaM, and botrocetin had the expected positively cooperative effect on the binding of VWF A1 to GPIbalpha-CaM. Therefore, allosteric regulation by botrocetin of VWF A1 binding to GPIbalpha, and the increased binding affinity caused by mutations in VWF or GPIbalpha, are reproduced by isolated structural domains. The substantial increase in k(on) caused by mutations in either A1 or GPIbalpha suggests that productive interaction requires rate-limiting conformational changes in both binding sites. The exceptionally slow k(on) and k(off) provide important new constraints on models for rapid platelet tethering at high wall shear rates.  相似文献   

17.
《Biophysical journal》2022,121(21):4033-4047
Thrombosis under high-shear conditions is mediated by the mechanosensitive blood glycoprotein von Willebrand factor (vWF). vWF unfolds in response to strong flow gradients and facilitates rapid recruitment of platelets in flowing blood. While the thrombogenic effect of vWF is well recognized, its conformational response in complex flows has largely been omitted from numerical models of thrombosis. We recently presented a continuum model for the unfolding of vWF, where we represented vWF transport and its flow-induced conformational change using convection-diffusion-reaction equations. Here, we incorporate the vWF component into our multi-constituent model of thrombosis, where the local concentration of stretched vWF amplifies the deposition rate of free-flowing platelets and reduces the shear cleaning of deposited platelets. We validate the model using three benchmarks: in vitro model of atherothrombosis, a stagnation point flow, and the PFA-100, a clinical blood test commonly used for screening for von Willebrand disease (vWD). The simulations reproduced the key aspects of vWF-mediated thrombosis observed in these experiments, such as the thrombus location, thrombus growth dynamics, and the effect of blocking platelet-vWF interactions. The PFA-100 simulations closely matched the reported occlusion times for normal blood and several hemostatic deficiencies, namely, thrombocytopenia, vWD type 1, and vWD type 3. Overall, this multi-constituent model of thrombosis enables macro-scale 3D simulations of thrombus formation in complex geometries over a wide range of shear rates and accounts for qualitative and quantitative hemostatic deficiencies in patient blood.  相似文献   

18.
We have used proteolytic fragments and overlapping synthetic peptides to define the domain of von Willebrand factor (vWF) that forms a complex with botrocetin and modulates binding to platelet glycoprotein (GP) Ib. Both functions were inhibited by the dimeric 116-kDa tryptic fragment and by its constituent 52/48-kDa subunit, comprising residues 449-728 of mature vWF, but not by the dimeric fragment III-T2 which lacks amino acid residues 512-673. Three synthetic peptides, representing discrete discontinuous sequences within the region lacking in fragment III-T2, inhibited vWF-botrocetin complex formation; they corresponded to residues 539-553, 569-583, and 629-643. The 116-kDa domain, with intact disulfide bonds, exhibited greater affinity for botrocetin than did the reduced and alkylated 52/48-kDa molecule, and both fragments had significantly greater affinity than any of the inhibitory peptides. Thus, conformational attributes, though not strictly required for the interaction, contribute to the optimal functional assembly of the botrocetin-binding site. Accordingly, 125I-labeled botrocetin bound to vWF and to the 116-kDa fragment immobilized onto nitrocellulose but not to equivalent amounts of the reduced and alkylated 52/48-kDa fragment; it also bound to the peptide 539-553, but only when the peptide was immobilized onto nitrocellulose at a much greater concentration than vWF or the proteolytic fragments. These studies demonstrate that vWF interaction with GP Ib may be modulated by botrocetin binding to a discontinuous site located within residues 539-643. The finding that single point mutations in Type IIB von Willebrand disease are located in the same region of the molecule supports the concept that this domain may contain regulatory elements that modulate vWF affinity for platelets at sites of vascular injury.  相似文献   

19.
M C Berndt  X P Du  W J Booth 《Biochemistry》1988,27(2):633-640
Whether the human platelet membrane glycoprotein (GP) Ib-IX complex is the receptor for ristocetin-dependent binding of von Willebrand factor (vWF) has been examined by reconstitution with the purified components using a solid-phase bead assay. Purified GP Ib-IX complex was bound and orientated on the beads via a monoclonal antibody, FMC 25, directed against the membrane-associated region of the complex. Specific binding of 125I-labeled vWF to the GP Ib-IX complex coated beads was strictly ristocetin dependent with maximal binding occurring at ristocetin concentrations greater than or equal to 1 mg/mL. Ristocetin-dependent specific binding of 125I-labeled vWF was saturable. The observed binding was specific to the interaction between vWF and the GP Ib-IX complex since there was no ristocetin-dependent specific binding of vWF if the physicochemically related platelet membrane glycoprotein, GP IIb, was substituted for the GP Ib-IX complex in a corresponding bead assay. Further, neither bovine serum albumin nor other adhesive glycoproteins, such as fibrinogen or fibronectin, specifically bound to the GP Ib-IX complex in the presence of ristocetin. Ristocetin-dependent binding of vWF to platelets and to GP Ib-IX complex coated beads was inhibited by monoclonal antibodies against a 45,000 molecular weight N-terminal region of GP Ib but not by monoclonal antibodies directed against other regions of the GP Ib-IX complex. Similar correspondence between platelets and purified GP Ib-IX complex with respect to the ristocetin-dependent binding of vWF was obtained with anti-vWF monoclonal antibodies.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
GPIbalpha is an integral membrane protein of the GPIb-IX-V complex found on the platelet surface that interacts with the A1 domain of von Willebrand factor (vWF-A1). The interaction of GPIbalpha with vWF-A1 under conditions of high shear stress is the first step in platelet-driven thrombus formation. Phage display was used to identify peptide antagonists of the GPIbalpha-vWF-A1 interaction. Two nine amino acid cysteine-constrained phage display libraries were screened against GPIbalpha revealing peptides that formed a consensus sequence. A peptide with sequence most representative of the consensus, designated PS-4, was used as the basis for an optimized library. The optimized selection identified additional GPIbalpha binding peptides with sequences nearly identical to the parent peptide. Surface plasmon resonance of the PS-4 parent and two optimized synthetic peptides, OS-1 and OS-2, determined their equilibrium dissociation GPIbalpha binding constants ( K Ds) of 64, 0.74, and 31 nM, respectively. Isothermal calorimetry corroborated the K D of peptide PS-4 with a resulting affinity value of 68 nM. An ELISA demonstrated that peptides PS-4, OS-1, and OS-2 competitively inhibited the interaction between the vWF-A1 domain and GPIbalpha-Fc in a concentration-dependent manner. All three peptides inhibited GPIbalpha-vWF-mediated platelet aggregation induced under high shear conditions using the platelet function analyzer (PFA-100) with full blockade observed at 150 nM for OS-1. In addition, OS-1 blocked ristocetin-induced platelet agglutination of human platelets in plasma with no influence on platelet aggregation induced by several agonists of alternative platelet aggregation pathways, demonstrating that this peptide specifically disrupted the GPIbalpha-vWF-A1 interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号