共查询到20条相似文献,搜索用时 0 毫秒
1.
Chilling injury in cotton (Gossypium hirsutum L.) : Effects of antimicrotubular drugs 总被引:2,自引:0,他引:2
When exposed to 4°C for more than three days, intact cotton(Gossypium hirsutum L.) seedlings and isolated cotyledonarydiscs suffered chilling injury as shown by the leakage of electrolytesfrom the tissue and the development of necrotic areas. Applicationof antimicrotubular drugs such as colchicine, demecolcine orpodophyllotoxin during chilling significantly accelerated andenhanced tissue damage. Lumicolchicine, the stereoisomer ofcolchicine, was ineffective. Non-chilled tissues showed hardlyany damage when treated with the same levels of antimicrotubulardrugs. Prior treatment with 105 M abscisic acid (ABA)prevented the appearance of symptoms of damage caused by chillingand the antimicrotubular drugs during the first 2 to 3 daysand greatly reduced it at later stages. Our present resultssuggest that chilling damage may be due at least in part, tothe cold-induced disassembly of microtubules. Furthermore, themode of action of ABA might be related to factors which influencethe physiological stability of the microtubule network.
1Preliminary report of this work was presented at the 10th InternationalConference on Plant Growth Substances, Madison, Wisconsin, 1979.
3Incumbent of the Seagram Chair in Plant Sciences. (Received April 15, 1980; ) 相似文献
2.
Far red light given before darkness highly increased droughtresistance of cotton plants. There was higher stomatal resistancein leaves resulting in a lower transpiration rate. The aim ofthis work was to examine the effect of far red light on rootgrowth and its effect on water transfer measured by analysisof xylem sap obtained after cutting the hypocotyl. Short-termand long-term treatments of far red light were used. In thepresence of far red light, the amount of xylem sap decreasedwhile root resistance increased. Qualitative analysis of thexylem sap indicated an increase of amino acid content and analteration of potassium flux. Calcium flux was not significantlymodified. The change in potassium content of xylem sap is discussedwith regard to turgor and drought resistance. (Received June 9, 1984; Accepted October 8, 1985) 相似文献
3.
Cotton (Gossypium hirsutum L.) intact seedlings and isolatedcotyledonary discs were exposed to chilling (4?C) under humidconditions which prevented dehydration. The damage resultingfrom chilling was estimated by means of electrolyte leakageand survival in whole seedlings and by the electrolyte leakageand necrotic areas in isolated cotyledonary discs. Also, theeffect of chilling on membrane phospholipids and cellular reducedglutathione was determined. Within the first two and three daysof chilling, there was a marked reduction in the reduced glutathioneand membrane phospholipid levels without electrolyte loss andnecrosis. This reduction was completely prevented by pretreatmentwith abscisic acid. Prolonging the chilling period resultedin decreased survival in whole seedlings and in progressiveincrease in electrolyte leakage and necrosis in isolated cotyledonarydiscs. Pretreatment with abscisic acid prior to chilling almostcompletely prevented this chilling injury when exposure to 4?Cwas less than 5 days. Even with longer chilling periods, theabscisic acid pretreatment greatly reduced the damage.
3Incumbent of the Seagram Chair in Plant Science. (Received July 21, 1979; ) 相似文献
4.
Kewei Zhang Juan Wang Lijun Lian Wenju Fan Ning Guo Sulian Lv 《Plant Molecular Biology Reporter》2012,30(5):1158-1171
A betA gene encoding choline dehydrogenase from Escherichia coli was transformed into cotton (Gossypium hirsutum L.) via Agrobacterium-mediated transformation. Transgenic cotton plants exhibited improved tolerance to chilling due to accumulation of glycinebetaine (GB). The results of our experiment showed that GB contents of leaves of transgenic lines 1, 3, 4, and 5, both before and after chilling stress, were significantly higher than those of wild-type (WT) plants. At 15°C, transgenic lines 1, 3, 4, and 5 exhibited higher germination capacity as determined by the germination speed and final germination percentage and, displayed less inhibition in seedling shoot growth rate than WT plants. Under chilling stress, transgenic lines 4 and 5 maintained higher relative water content, upper carbon dioxide (CO2) fixation capacity and PSII electron transfer rate, better osmotic adjustment (OA), a lower percentage of ion leakage, and less lipid membrane peroxidation when compared with WT plants. Chilling resistance of the transgenic lines was demonstrated to be positively correlated with GB content under chilling stress. The high levels of GB in transgenic cotton plants might not only protect the integrity of cell membrane from chilling damage, but also be involved in OA which alleviated chilling induced water stress. Moreover, under chilling-stressed conditions, transgenic cotton plants enhanced stomatal conductance, PSII electron transport rate, and further leaf photosynthesis through accumulating high levels of GB. 相似文献
5.
Zhang J Cai L Cheng J Mao H Fan X Meng Z Chan KM Zhang H Qi J Ji L Hong Y 《Transgenic research》2008,17(2):293-306
While genetically modified upland cotton (Gossypium hirsutum L.) varieties are ranked among the most successful genetically modified organisms (GMO), there is little knowledge on transgene
integration in the cotton genome, partly because of the difficulty in obtaining large numbers of transgenic plants. In this
study, we analyzed 139 independently derived T0 transgenic cotton plants transformed by Agrobacterium tumefaciens strain AGL1 carrying a binary plasmid pPZP-GFP. It was found by PCR that as many as 31% of the plants had integration of
vector backbone sequences. Of the 110 plants with good genomic Southern blot results, 37% had integration of a single T-DNA,
24% had two T-DNA copies and 39% had three or more copies. Multiple copies of the T-DNA existed either as repeats in complex
loci or unlinked loci. Our further analysis of two T1 populations showed that segregants with a single T-DNA and no vector
sequence could be obtained from T0 plants having multiple T-DNA copies and vector sequence. Out of the 57 T-DNA/T-DNA junctions
cloned from complex loci, 27 had canonical T-DNA tandem repeats, the rest (30) had deletions to T-DNAs or had inclusion of
vector sequences. Overlapping micro-homology was present for most of the T-DNA/T-DNA junctions (38/57). Right border (RB)
ends of the T-DNA were precise while most left border (LB) ends (64%) had truncations to internal border sequences. Sequencing
of collinear vector integration outside LB in 33 plants gave evidence that collinear vector sequence was determined in agrobacterium
culture. Among the 130 plants with characterized flanking sequences, 12% had the transgene integrated into coding sequences,
12% into repetitive sequences, 7% into rDNAs. Interestingly, 7% had the transgene integrated into chloroplast derived sequences.
Nucleotide sequence comparison of target sites in cotton genome before and after T-DNA integration revealed overlapping microhomology
between target sites and the T-DNA (8/8), deletions to cotton genome in most cases studied (7/8) and some also had filler
sequences (3/8). This information on T-DNA integration in cotton will facilitate functional genomic studies and further crop
improvement. 相似文献
6.
Partitioning of Carbohydrates in Annual and Perennial Cotton (Gossypium hirsutum L.) 总被引:1,自引:0,他引:1
An analysis of the partitioning of carbohydrates in annual andperennial cotton was made to ascertain the distribution of assimilatesand constitution of reserves. Root/shoot dry matter ratio ishigh in perennial cotton and this plant shows a preferentialaccumulation of dry matter in roots corresponding to its adaptationto drought. Starch content is also higher in perennial cottonroots than in annual. It can be said that the earlier maturingthe cultivar, the lower the root/shoot ratio and the lower thestarch content. Nevertheless, at the whole plant level in annualcotton the starch content is highest in leaves where it is accumulatedbefore migration, and stem wood, and lowest in root and bark.While starch content in roots of annuals declines after 3 months,it is still increasing in perennials. Accumulation of carbohydratesas reserve material can be modified by selection and such selectionis accompanied by an increase in the activities of ß-amylasein exporting organs: leaves, woody tissue of the stem, and barkbut not in roots. Invertase activities were highest in leavesbut did not respond to selection. Non-irrigated cotton had ahigher activity of ß-amylase in leaves and stem woodcorresponding to the mobilization of reserve assimilates. Smallerincreases were observed in the activity of invertase. High yieldingannual cottons show a higher activity of ß-amylaseand invertase in leaves corresponding to a higher capacity ofassimilate transfer. Also a comparison was made from emergenceto 4 months of the partitioning of carbohydrates between leaf,stem and roots in annual and perennial cotton. In conclusionperennial cotton apparently owes its drought resistance to apartitioning of assimilates that favours the growth of the rootsystem and the accumulation of starch reserves in roots. Key words: Gossypium hirsutum L, carbohydrates, partitioning 相似文献
7.
8.
U. K. Nadjimov I. M. Scott G. N. Fatkhullaeva M. S. Mirakhmedov B. U. Nasirullaev D. A. Musaev 《Journal of Plant Growth Regulation》1999,18(1):45-48
The round-leafed mutant cotton line L-501 developed fasciation of the upper stem when field grown in Central Asia. Fasciation
co-segregated with the mutant gene for round leaves In.
l Fasciation developed at the flowering stage, but removal of floral buds did not prevent fasciation. Fasciation in L-501 could
be inhibited by the gibberellin (GA) biosynthesis inhibitor chlorocholine chloride or by fusicoccin. GA3 application in the field induced fasciation in the mutant's parental line L-463, which has five-lobed leaves and does not
normally develop fasciation. Fasciation did not develop in either line, even after GA3 treatment, in UK glasshouse conditions.
Received June 17, 1998; accepted January 25, 1999 相似文献
9.
Redroot pigweed is one of the injurious agricultural weeds on a worldwide basis. Understanding of its interference impact in crop field will provide useful information for weed control programs. The effects of redroot pigweed on cotton at densities of 0, 0.125, 0.25, 0.5, 1, 2, 4, and 8 plants m-1 of row were evaluated in field experiments conducted in 2013 and 2014 at Institute of Cotton Research, CAAS in China. Redroot pigweed remained taller and thicker than cotton and heavily shaded cotton throughout the growing season. Both cotton height and stem diameter reduced with increasing redroot pigweed density. Moreover, the interference of redroot pigweed resulted in a delay in cotton maturity especially at the densities of 1 to 8 weed plants m-1 of row, and cotton boll weight and seed numbers per boll were reduced. The relationship between redroot pigweed density and seed cotton yield was described by the hyperbolic decay regression model, which estimated that a density of 0.20–0.33 weed plant m-1 of row would result in a 50% seed cotton yield loss from the maximum yield. Redroot pigweed seed production per plant or per square meter was indicated by logarithmic response. At a density of 1 plant m-1 of cotton row, redroot pigweed produced about 626,000 seeds m-2. Intraspecific competition resulted in density-dependent effects on weed biomass per plant, a range of 430–2,250 g dry weight by harvest. Redroot pigweed biomass ha-1 tended to increase with increasing weed density as indicated by a logarithmic response. Fiber quality was not significantly influenced by weed density when analyzed over two years; however, the fiber length uniformity and micronaire were adversely affected at density of 1 weed plant m-1 of row in 2014. The adverse impact of redroot pigweed on cotton growth and development identified in this study has indicated the need of effective redroot pigweed management. 相似文献
10.
The nucleolar size in cotton fibres has been examined at earlystages of growth by light microscopy. The volumes of the nucleoliwere computed from the perimeters measured by means of a projectionmicroscope. The frequency distributions were normal at eachstage. The mean nucleolar volume increased rapidly, reacheda maximum around 10 d after anthesis and declined to a constantvalue around 20 d after anthesis. The nucleolar growth patternsof some prediction models have been compared with the in situobservations. This comparison suggests a simultaneous increasein nucleolar size in all fibres within a population. Therefore,the hypothesis that the size of the fibres is correlated withthe size of resident nucleoli, is favoured. Gossypium hirsutum, cotton fibre, nucleolus, cell differentiation 相似文献
11.
Salinization usually plays a primary role in soil degradation, which consequently reduces agricultural productivity. In this study, the effects of salinity on growth parameters, ion, chlorophyll, and proline content, photosynthesis, antioxidant enzyme activities, and lipid peroxidation of two cotton cultivars, [CCRI-79 (salt tolerant) and Simian 3 (salt sensitive)], were evaluated. Salinity was investigated at 0 mM, 80 mM, 160 mM, and 240 mM NaCl for 7 days. Salinity induced morphological and physiological changes, including a reduction in the dry weight of leaves and roots, root length, root volume, average root diameter, chlorophyll and proline contents, net photosynthesis and stomatal conductance. In addition, salinity caused ion imbalance in plants as shown by higher Na+ and Cl− contents and lower K+, Ca2+, and Mg2+ concentrations. Ion imbalance was more pronounced in CCRI-79 than in Simian3. In the leaves and roots of the salt-tolerant cultivar CCRI-79, increasing levels of salinity increased the activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), and glutathione reductase (GR), but reduced catalase (CAT) activity. The activities of SOD, CAT, APX, and GR in the leaves and roots of CCRI-79 were higher than those in Simian 3. CAT and APX showed the greatest H2O2 scavenging activity in both leaves and roots. Moreover, CAT and APX activities in conjunction with SOD seem to play an essential protective role in the scavenging process. These results indicate that CCRI-79 has a more effective protection mechanism and mitigated oxidative stress and lipid peroxidation by maintaining higher antioxidant activities than those in Simian 3. Overall, the chlorophyll a, chlorophyll b, and Chl (a+b) contents, net photosynthetic rate and stomatal conductance, SOD, CAT, APX, and GR activities showed the most significant variation between the two cotton cultivars. 相似文献
12.
Quantitation of Chill-Induced Release of a Tubulin-Like Factor and Its Prevention by Abscisic Acid in Gossypium hirsutum L 总被引:4,自引:2,他引:2 下载免费PDF全文
The degree of tubulin polymerization in cotton (Gossypium hirsutum L. cv Acala) cotyledonary tissue was estimated by radioimmunoassay which measured the amount of a tubulin-like factor. It was assumed that the release of this tubulin-like factor indicated depolymerization of microtubules. Exposure to chilling resulted in complete release of the tubulin-like factor. Pretreatment with abscisic acid in the light almost completely prevented the chill-induced release of the tubulin-like factor. Addition of colchicine during the chilling period accelerated the release of the tubulin-like factor. Pretreatment with abscisic acid greatly reduced this effect of colchicine. It is concluded that the destruction of the microtubular network is involved in the development of chilling injury in cotton. Abscisic acid apparently decreased chilling injury by stabilization of the microtubular network. 相似文献
13.
Ahmed H. A. A. Barpete S. Uranbey S. Akdoğan G. Köm D. Özcan S. 《Russian Journal of Plant Physiology》2020,67(3):581-587
Russian Journal of Plant Physiology - Agrobacterium-mediated genetic transformation approach allows for introducing novel genes in cotton (Gossypium hirsutum L.). Development of efficient... 相似文献
14.
棉花高频体细胞胚胎发生及再生体系建立 总被引:2,自引:0,他引:2
棉花的体细胞胚胎发生率低,限制了转基因棉花的发展。为了扩大可再生棉花的基因型,发展新疆优质棉花的特点,以新疆的主要栽培品种新陆早33为材料,以下胚轴为外植体,使用葡萄糖,麦芽糖作为主要碳源,用Phytagel固化,对不同激素的浓度组合和培养条件进行探索,对棉花胚性愈伤的诱导到体细胞胚胎的发生阶段进行优化,体细胞胚胎成熟以后进行萌发培养可以获得正常的植株。通过试验证明,有利于棉花的愈伤组织生长的激素浓度为KT 0.1 mg/L,2,4-D 0.1 mg/L,下胚轴的中部诱导愈伤形态最好。体细胞胚胎发生阶段以KT,IBA组合,以低盐培养基进行子叶胚的成苗,建立了再生体系。 相似文献
15.
陆地棉优质纤维渐渗系中外源遗传组分的鉴定与分析 总被引:2,自引:0,他引:2
鲁原343是一个渐渗了海岛棉优质纤维基因的陆地棉种质,对其渐渗的优质纤维片段进行鉴定,对利用优质纤维渐渗系改良陆地棉品种的纤维品质具有重要意义。本研究以综合性状优良的转基因抗虫棉鲁棉研22号与鲁原343杂交构建作图群体,利用317对SSR引物对鲁原343和鲁棉研22号进行多态性分析,有24对引物表现多态。利用这些引物进一步和TM-1、优质纤维渐渗片段的供体Ash imoun i作比较,初步鉴定出10个SSR位点与海岛棉渐渗有关。利用这些标记分析(鲁棉研22×鲁原343)F2群体的标记基因型和纤维品质性状的关系,6个标记与纤维品质显著相关,涉及到4条染色体。其中与伸长率相关的标记BNL2986(R2=5.87%)和与长度、细度相关的标记NAU751(R2=6.62%,6.01%)同位于16号染色体的连锁群LG1上,标记间距离为17.7 cM;与纤维成熟度相关的标记BNL3590(R2=8.62%)和与成熟度、伸长率相关的标记BNL3971(R2=15.0%,9.79%)位于2号染色体的连锁群LG3上,标记间距离为4.5 cM;与纤维强度相关的标记BNL3279(R2=8.12%)和与细度相关的标记BNL827(R2=13.94%)分别位于LGD02和25号染色体上。 相似文献
16.
棉花体细胞增殖和胚胎发生中的细胞程序性死亡 总被引:13,自引:1,他引:13
棉花组织培养中愈伤组织褐化可能与细胞程序性死亡(PCD)有关.对棉花组培中不同时期的愈伤组织DNA进行琼脂糖电泳,观察到:仅在第一次愈伤组织继代后10 d左右和愈伤组织第一次继代到分化培养基中培养10 d左右,愈伤组织的DNA产生了180 bp左右的片断或其整数倍片断大小的DNA带,呈DNA梯(DNA ladder)状电泳,说明在这两个时期PCD达到了高峰.在这两次PCD高峰后1周均出现愈伤组织大规模的褐化死亡.显微镜观察到第一次PCD发生高峰的愈伤组织存在许多管状、内含物少的细胞,这些细胞分布在愈伤组织的边缘和内部;第二次PCD发生高峰观察到体细胞胚胎分化、PCD细胞的木栓化和水渍化.对体细胞胚胎分化时期的原生质体进行荧光染色(DAPI),荧光显微镜下观察到发生细胞程序性死亡的细胞核浓缩、染色质凝聚、结块、边缘化和形成PCD小体. 相似文献
17.
两个棉花Rac蛋白基因的克隆与表达分析 总被引:6,自引:0,他引:6
为研究棉花纤维起始和伸长的分子机理,在棉花纤维EST序列分析的基础上,从棉花纤维中扩增并克隆了2个棉花Rac蛋白的cDNA基因,分别命名为GhRacA和GhRacB。GhRacA cDNA长959bp,推测的编码蛋白包含211个氨基酸。GhRacB cDNA长920bp,编码195个氨基酸的蛋白。GhRacA和GhRacB蛋白均含有GTP/GDP结合和激活区域、Effector区和碱性氨基酸区。GhRacB的C末端有保守的异戊烯基化位点CSIL,而GhRacA没有明显的异戊烯基化位点。序列比较分析表明,GhRacA和GhRacB是2个新的棉花Rac蛋白。RT-PCR分析表明,GhRacA和GhRacB在根、下胚轴、茎、叶和纤维中都有表达,但均在棉花纤维起始和伸长时期有优势表达,推测2个基因在棉花纤维的早期发育中可能有重要的功能。 相似文献
18.
低温、干旱和高盐是影响棉花生长发育和产量的重要限制因素。b ZIP转录因子在植物非生物胁迫反应中起重要作用。本研究利用生物信息学的方法从陆地棉中鉴定了24个b ZIP转录因子基因,命名为Ghb ZIP1~Ghb ZIP24。系统进化树分析表明,这24个家族成员主要聚集在A、B、C、D、E、G、I、S这8类亚家族。通过RT-PCR的方法分析了棉花(Gossypium hirsutum L.)Ghb ZIPs基因在高盐(200 mmol/L Na Cl)、干旱、4℃低温等非生物胁迫处理下的表达模式。结果表明,19个基因响应高盐胁迫、11个基因对干旱胁迫有应答反应,15个基因有冷胁迫应答。此外,有4个基因(Ghb ZIP4、Ghb ZIP7、Ghb ZIP21和Ghb ZIP23)在3种处理下均有应答反应。以上研究结果表明,Ghb ZIPs在陆地棉的非生物胁迫适应过程中可能具有重要的作用。本研究为进一步探索棉花b ZIP转录因子在抗逆反应中的重要作用和利用基因操作手段提高棉花抗逆性提供了重要信息。 相似文献
19.
陆地棉主要产量相关性状的SSR标记关联分析 总被引:1,自引:0,他引:1
高产优质育种是我国棉花育种的主要目标。寻找与目标性状关联的分子标记,可克服常规育种的盲目性,提高分子标记辅助选择育种的准确性。本研究对118份陆地棉种质资源的衣分、单铃重、单株铃数及子指等4个产量相关性状进行2年2点的表型鉴定,并利用覆盖全基因组的、有多态性的214对SSR标记进行标记与性状的关联分析。结果表明:118份材料的4个产量相关性状表型变异丰富,平均变异系数的变幅在6.1%~19.1%之间,且在各环境中表现较为稳定;基因型分析表明,214对标记共检测到460个等位变异,基因多样性指数平均为0.5151,PIC值平均为0.4587,表明该批标记具有较多的等位变异数和较高的基因多样性;群体结构分析表明该批材料可分为4个亚群,且各类群中材料与地理来源无对应关系;关联分析结果显示,在显著条件下(-log10P1.3,P0.05),共有39个标记位点能够在2个及2个以上的环境中同时检测到,其中有4个标记位点同时与2个以上性状相关联,进一步比较发现,有7个位点与前人研究结果一致,其余32个位点为新发现的位点。研究结果可为陆地棉产量性状遗传改良的分子标记辅助选择提供理论依据。 相似文献
20.
Cotton leaves are more physiologically active than the bractand the capsule wall of the fruiting structures. To elucidatethe disparities in their physiological behaviour, epidermalcell density, stomatal index, stomatal size, trichome densityand type, and epicuticular wax ultrastructure of cotton leaf,bract and capsule wall were delineated using scanning electronmicroscopy (SEM). The epidermal cells of the outer periclinalwalls on both surfaces of the leaf and bract were raised andconvex. Conversely, the capsule wall epidermal cells were polygonalwith flat outer periclinal walls. The stomatal complex in theleaf and bract was paracytic, whereas in the capsule wall thestomatal complex was anomocytic. The adaxial and abaxial stomataof the leaf were coplanar to the epidermal surface, as opposedto the raised adaxial stomata on the bract. On the contrary,the stomata on the capsule wall surface appeared to be slightlysunken. Furthermore, the capsule wall stomata were larger thanthe stomata on either surface of both the leaf and the bract.The stomatal index was greater on the abaxial surfaces of theleaf and the bract (18.4 and 9.4, respectively) than their correspondingadaxial surfaces (14.4 and 4.7, respectively). Leaves had thehighest stomatal index followed by the bract and the capsulewall. The indumentum consisted of glandular and nonglandulartrichomes, the density of which was greater on the abaxial surfacesthan on the adaxial surfaces of the leaf and bract. The capsulewall indumentum lacked nonglandular trichomes. Epicuticularwax occurred in the form of striations. However, the striationpattern varied among the organs. This study clearly illustratesmorphological disparities in the epidermal features of leaf,bract and capsule wall, helping to explain their physiologicaldivergence. Copyright 2000 Annals of Botany Company Gossypium hirsutum, epicuticular wax, raised stomata, scanning electron microscopy, stomatal index, trichomes 相似文献