首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The ability of phenobarbital to induce the expression and activity of microsomal drug monooxygenases in the liver presents one of the most important issues in the field of chemical interactions and in the toxicity of xenobiotics. The model of rat liver injury induced by a single dose of thioacetamide (500 mg/kg intraperitoneally) was used to study the effect of phenobarbital (80 mg/kg/day intraperitoneally) for 5 days prior to thioacetamide. Serum parameters of liver injury such as aspartate aminotransferase activity, gamma-glutamyl transferase activity and the total bilirubin levels, as well as the activities of hepatic FAD and cytochrome P450 microsomal monooxygenases, were assayed in 2- and 12-month-old rats. Samples of blood and liver were obtained from controls (injected at 0 h with 0.5 ml of 0.9% NaCl) and at 12, 24, 48, 72 and 96 h of thioacetamide intoxication either to non-treated or phenobarbital pretreated rats. Potentiation of thioacetamide hepatotoxicity by phenobarbital pretreatment was demonstrated at morphological level, and by significant increases in the activities of serum aspartate aminotransferase and gamma-glutamyl transferase, and in the levels of total bilirubin. The extent of potentiation of thioacetamide-induced liver injury by phenobarbital pretreatment was similar in both age groups. Microsomal FAD monooxygenase activity, the enzyme responsible for thioacetamide biotransformation, was significantly enhanced (twofold) by phenobarbital pretreatment, and also underwent a further increase following thioacetamide, preceding the peak of necrosis. Cytochrome P450 monooxygenases were induced by phenobarbital pretreatment more than sixfold, and sharply decreased when phenobarbital was withdrawn and thioacetamide administered, showing at 48 h intoxication values close to basal. Phenobarbital pretreatment potentiated thioacetamide necrogenicity, and this potentiation was parallel to the induction of the microsomal FAD monooxygenase system, both by phenobarbital and by thioacetamide itself. The extent of thioacetamide-induced liver injury was significantly higher in 12-month-old rats, but the effect of phenobarbital pretreatment was similar in both age groups.  相似文献   

2.
The effects of hypophysectomy on hepatic and extrahepatic UDP-glucuronosyltransferase activities in adult male rats were observed. UDP-glucuronosyltransferase activities toward 1-naphthol decreased to 20-30% of control in the liver, kidney, lung, and testis. The mRNA of UGT1A6, which is an isoform contributing to the glucuronidation of various phenolic xenobiotics such as 1-naphthol, were decreased drastically in the liver, kidney, and testis by hypophysectomy. However, while bilirubin UDP-glucuronosyltransferase activity in the liver intensified, there was only a slight increase in the activity in the kidney and no alteration in the lung. The mRNA of UGT1A1, which is an isoform contributing to the glucuronidation of bilirubin, increased significantly in the liver and slightly in the kidney after hypophysectomy. These inductions and reductions in enzymatic activities and mRNA levels in each tissue were restored to control levels by intermittent injections of rat growth hormone. Interestingly, while hepatic UGT activity toward bisphenol A remained constant in hypophysectomized rats, the testicular UGT activity declined to 10-15% of control but returned to normal levels following growth hormone treatment, suggesting that an unknown UGT isoform (s) mediates bisphenol A glucuronidation in the testis. These results indicate that the expression of extrahepatic UGT is isoform-specific and regulated differentially in tissues by the pituitary gland.  相似文献   

3.
The present study was undertaken to evaluate the protective effect of pterostilbene against acetaminophen‐induced hepatotoxicity. Silymarin was used as a standard hepatoprotective agent. A single dose of acetaminophen (800 mg/kg i.p.), injected to male rats, caused significant increases in serum levels of alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, bilirubin, total cholesterol, triglycerides, tumor necrosis factor alpha, and hepatic contents of malondialdehyde, nitric oxide, caspase‐3, hydroxyproline, with significant decreases in serum HDL‐cholesterol, total proteins, albumin, and hepatic activities of reduced glutathione, superoxide dismutase and catalase as compared with the control group. On the other hand, administration of each of pterostilbene (50 mg/kg, p.o.) and silymarin (100 mg/kg, p.o.) for 15 days before acetaminophen ameliorated liver function and oxidative stress parameters. Histopathological evidence confirmed the protection offered by pterostilbene from the tissue damage caused by acetaminophen. In conclusion, pterostilbene possesses multimechanistic hepatoprotective activity that can be attributed to its antioxidant, anti‐inflammatory, and antiapoptotic actions.  相似文献   

4.
目的探讨胆红素对慢性阻塞性肺疾病(COPD)大鼠肺组织血小板源性生长因子(PDGF-B)和胰岛素样生长因子(IGF-I)表达的影响。方法30只健康清洁级雄性Wistar大鼠(200-250g),随机分为正常对照组、COPD模型组、胆红素干预组。观察肺组织病理形态,采用免疫组织化学染色检测肺组织中PDGF-B和IGF-I的表达。结果(1)肺病理组织学结果显示胆红素干预组肺病变局限且程度减轻;(2)COPD模型组PDGF-B(1.58±0.72)和IGF-I含量(2.23±0.63)与正常对照组(0.65±0.35,1.34±0.65)比较显著升高(均P〈0.05);(3)胆红素干预组PDGF-B(1.20±0.56)和IGF-I含量(1.64±0.56)比模型组明显减低(均P〈0.05),但与正常对照组比较仍较高(均P〈0.05)。结论PDGF-B和IGF-I在COPD显著增加,胆红素可以抑制PDGF-B和IGF-I的表达,可能是其对抗COPD的作用机制之一。  相似文献   

5.
目的:研究还原型谷胱甘肽治疗儿童葡萄糖-6-磷酸脱氢酶(G-6-P-D)缺乏症并发急性溶血的临床疗效,为临床治疗提供参考。方法:选取我院2015年6月-2017年6月因葡萄糖-6-磷酸脱氢酶(G-6-P-D)缺乏症并发急性溶血的患儿78例并将其随机分为两组,每组39例。对照组予以停用氧化类药物,卧床休息,水化、碱化尿液,贫血严重者输注去白红细胞治疗;观察组在对照组基础上加用还原型谷胱甘肽治疗。观察和比较两组患儿第1天、第2天、第3天小便恢复率以及平均恢复时间,血清总胆红素第3天、第5天恢复率、平均恢复时间及平均住院时间。结果:治疗后,观察组第1天、第2天、第3天小便恢复率分别为51.3%、92.3%、100%,对照组分别为25.6%、64.1%、89.7%,观察组第1天、第2天、第3天小便恢复率均显著高于对照组(P0.05);观察组及对照组小便恢复正常平均时间分别为1.8±0.7天、2.6±0.9天,观察组明显短于对照组(P0.05);观察组第3天、第5天血清总胆红素恢复率分别为71.8%、100%,对照组为46.2%、97.4%;观察组和对照组血清总胆红素恢复正常平均时间分别为3.6±0.9天、4.1±1.0天;平均住院时间分别为2.3±0.6天、2.8±0.6天;观察组小便及血清总胆红素平均恢复时间(P0.05)、平均住院时间均显著短于对照组(P0.05)。结论:在儿童葡萄糖-6-磷酸脱氢酶缺乏并发急性溶血中应用还原型谷胱甘肽可增强其治疗疗效,缩短治疗疗程。  相似文献   

6.
Malondialdehyde (MDA) excretion in urine as an index for toxicological effects of chloroform and hydroquinone was evaluated. In a first series of experiments three groups of rats were used: non-pretreated rats (group I), starved rats (group II) and starved plus phenobarbital pretreated rats (group III). Chloroform (0.15 or 0.30 ml/kg, p.o.) was given as a single dose. The MDA excretion was related to the pretreatment, and in group III to liver damage. In a second series of experiments control rats were administered hydroquinone (100 or 200 mg/kg, p.o.), which induced a dose-related MDA excretion. These data indicate that the MDA assay was a selective and accurate marker for toxicological effects induced by the tested compounds.  相似文献   

7.
Studies of the killing of cultured hepatocytes by acetaminophen indicate that the cells are injured by an oxidative stress that accompanies the metabolism of the toxin (J. L. Farber et al. (1988) Arch. Biochem. Biophys. 267, 640-650). The present report documents that the essential features of the killing of cultured hepatocytes by acetaminophen are reproduced in the intact animal. Male rats had no evidence of liver necrosis 24 h after administration of up to 1000 mg/kg of acetaminophen. Induction of mixed function oxidase activity by 3-methylcholanthrene increased the hepatotoxicity of acetaminophen. Inhibition of glutathione reductase by 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU) potentiated the hepatotoxicity of acetaminophen in male rats induced with 3-methylcholanthrene. Whereas the pretreatment with BCNU reduced the GSH content by 40%, a comparable depletion of GSH by diethylmaleate did not potentiate the toxicity of acetaminophen. The antioxidant diphenylphenylenediamine (25 mg/kg) and the ferric iron chelator deferoxamine (1000 mg/kg) prevented the liver necrosis produced by 500 mg/kg acetaminophen in rats pretreated with BCNU. Neither protective agent prevented the fall in GSH produced by acetaminophen. It is concluded the conditions of the irreversible injury of cultured hepatocytes by acetaminophen previously reported are not necessarily different from those that obtain in the intact rat with this toxin.  相似文献   

8.
The activity of bilirubin UDP-Glucuronyltransferase was determined in microsomes from normal and bile duct ligated rats. It was measured after 2 and 8 days following bile duct ligation and compared with normal rats. A decrease of 33% in the total enzyme activity was observed on day 2; a fall of 70% was founded on day 8. Bilirubin diglucuronide represented approximately 20% of total conjugates in both groups of cholestatic rats, as compared with 65% found in normals. It was concluded that bilirubin microsomal conjugating capacity is markedly altered during cholestasis. This can be attributed to microsomal membrane damage produced by stagnant bile.  相似文献   

9.
Estradiol-17beta-D-glucuronide (E2-17G) induces a marked but reversible inhibition of bile flow in the rat together with endocytic retrieval of multidrug resistance-associated protein 2 (Mrp2) from the canalicular membrane to intracellular structures. We analyzed the effect of pretreatment (100 min) with the microtubule inhibitor colchicine or lumicholchicine, its inactive isomer (1 micromol/kg iv), on changes in bile flow and localization and function of Mrp2 induced by E2-17G (15 micromol/kg iv). Bile flow and biliary excretion of bilirubin, an endogenous Mrp2 substrate, were measured throughout, whereas Mrp2 localization was examined at 20 and 120 min after E2-17G by confocal immunofluorescence microscopy and Western analysis. Colchicine pretreatment alone did not affect bile flow or Mrp2 localization and activity over the short time scale examined (3-4 h). Administration of E2-17G to colchicine-pretreated rats induced a marked decrease (85%) in bile flow and biliary excretion of bilirubin as well as internalization of Mrp2 at 20 min. These alterations were of a similar magnitude as in rats pretreated with lumicolchicine followed by E2-17G. Bile flow and Mrp2 localization and activity were restored to control levels within 120 min of E2-17G in animals pretreated with lumicolchicine. In contrast, in colchicine-pretreated rats followed by E2-17G, bile flow and Mrp2 activity remained significantly inhibited by 60%, and confocal and Western studies revealed sustained internalization of Mrp2 120 min after E2-17G. We conclude that recovery from E2-17G cholestasis, associated with exocytic insertion of Mrp2 in the canalicular membrane, but not its initial E2-17G-induced endocytosis, is a microtubule-dependent process.  相似文献   

10.
ABSTRACT

Exposure to high doses of acetaminophen is the most common cause of drug induced liver injury. We investigated the protective effects of Hedera helix extract against acetaminophen induced oxidative stress and hepatotoxicity using a mouse model. We used two control groups: group A was given 0.9% NaCl, group B was an acetaminophen control that was given a single injection of 600 mg/kg acetaminophen. T1?T4 groups were pretreated orally with different doses of H. helix extract. The mice were sacrificed and blood samples were collected to estimate the levels of glutathione peroxidase (GPx), malondialdehyde (MDA), superoxide dismutase (SOD) and total bilirubin. Liver samples also were used for histopathological studies. We found that acetaminophen significantly increased the levels of serum ALP, ALT, AST and MDA, and also significantly reduced the antioxidant factors, CAT, GPX and SOD. H. helix extract treatment produced a significant reduction in the levels of ALP, ALT, AST and MDA in serum and restored the levels of CAT, GPX and SOD to control levels. The histopathological findings were consistent with the biochemical findings. H. helix extract exhibited antioxidant and hepatoprotective effects against acetaminophen induced liver damage.  相似文献   

11.
The protective effect of propylthiouracil (PTU) pretreatment against acetaminophen-induced erythrocyte osmotic fragility was determined in the male Fisher rat. Hepatotoxicity was assessed for comparative purposes. PTU (0.15%) was fed in chow for a period of 12 days. Acetaminophen (1 g/kg body wt) was then administered orally by a stomach tube after an overnight fast. The rats were killed either 4 or 24 hr later. Erythrocyte osmotic fragility was determined by the extent of hemolysis in various concentrations of NaCl solutions. Hepatotoxicity was assessed by a rise in serum transaminases and by histological examination of hepatic tissue. PTU treatment when compared with control not only protected rats against acetaminophen-induced hepatotoxicity as reported before, but also protected against erythrocyte osmotic fragility. The time course of acetaminophen toxicity seems to be similar for liver and erythrocyte since both showed damage after 24 hr but not after 4 hr of acetaminophen administration. The data show that PTU pretreatment affords protection against acetaminophen-induced increased erythrocyte osmotic fragility even when their glutathione concentrations were not significantly different, suggesting that PTU per se has a protective effect.  相似文献   

12.
S-(2-Hydroxy-2-carboxyethyl)homocysteine, S-(3-hydroxy-3-carboxy-n-propyl)-cysteine, N-acylated S-(beta-carboxyethyl)cysteine, and N-acylated S-(3-hydroxy-3-carboxy-n-propyl) cysteine were excreted in the urine after DL-propargylglycine treatment. Cystathionine was also accumulated in several tissues of DL-propargylglycine-treated rats. N-Monoacetylcystathione was found in the liver of rats and was also detected in the kidney and serum. Cystathionine gamma-lyase activity in liver decreased to about 4% of that of control rats 24 h after the DL-propargylglycine injection, and alanine aminotransferase activity decreased to about 35% of that of control rats. On the other hand, aspartate aminotransferase and cystathionine beta-synthese activity did not show significant changes from those of control rats. The ability of normal tissues to synthesize cystathionine utilizing cystathionine beta-synthase was 1.98 +/- 0.40 mumol/min/g in liver, 0.61 +/- 0.13 in kidney, and 0.18 +/- 0.015 in brain. The maximal contents of cystathionine in rat tissues and the administered amounts of DL-propargylglycine agreed well with the ability to synthesize cystathionine in each tissue.  相似文献   

13.
2-Nitropropane (2-NP), a rat hepatocarcinogen, is denitrified to nitrite and acetone by rat liver microsomes; the denitrification rate is increased using microsomes from phenobarbital (PB)-pretreated rats. To obtain evidence that denitrification of 2-NP also occurs in vivo, we attempted to determine nitrite and nitrate levels in blood sera and urines of 2-NP-treated (1.5 mmol/kg, ip, once) rats with and without PB pretreatment (80 mg/kg, ip, once daily, 3 days), using enzymatic reduction followed by the standard Griess reaction. However, due to various interfering factors, including pigment from methemoglobinemia, we found the assay had to be modified as follows: (a) reduction of nitrate to nitrite was accomplished using NADPH and nitrate reductase, (b) excess NADPH, proteins, and interfering pigments were precipitated using zinc acetate and Na(2)CO(3), and (c) the Griess reagents were prepared in 3 N HCl rather than 5% H(3)PO(4). With these modifications it became possible to show that 2-NP is indeed metabolized to nitrite in vivo and that the metabolism is increased by PB pretreatment. Two hours after 2-NP administration, rat blood serum nitrate plus nitrite levels were approximately 1600 microM (PB-pretreated) and 940 microM (vehicle-pretreated controls). The PB-pretreated and control rats, respectively, excreted 250 and 120 micromol nitrate/nitrite in the 24-h urine post 2-NP treatment. The modifications described make the method more specific, reproducible, and more widely applicable.  相似文献   

14.
The biliary and renal excretion of acetaminophen and its metabolites over 8 hr was determined in rats exposed to diethyl ether by inhalation for 1 hr. Additional rats were anesthetized with urethane (1 g/kg ip) while control animals were conscious throughout the experiment (surgery was performed under hexobarbital narcosis: 150 mg/kg ip; 30-min duration). The concentration of UDP-glucuronic acid was decreased 80% in livers from ether-anesthetized rats but was not reduced in urethane-treated animals when compared to that in control rats. The concentration of reduced glutathione was not affected by either urethane or diethyl ether. Basal bile flow was not altered by the anesthetic agents. Bile flow rate after acetaminophen injection (100 mg/kg iv) was increased slightly over basal levels for 2 hr in hexobarbital-treated control rats, was unaltered in urethane-anesthetized animals, and was decreased throughout the 8-hr experiment in rats exposed to diethyl ether for 1 hr. In control and urethane-anesthetized animals, approximately 30-35% of the total acetaminophen dose (100 mg/kg iv) was excreted into bile in 8 hr, while only 16% was excreted in rats anesthetized with diethyl ether. Urinary elimination (60-70% of the dose) was not altered by exposure to ether. Separation of metabolites by reverse-phase high-pressure liquid chromatography showed that ether decreased the biliary elimination of unchanged acetaminophen and its glucuronide, sulfate, and glutathione conjugates by 47, 40, 49, and 73%, respectively, as compared to control rats. Excretion of unchanged acetaminophen and the glutathione conjugate into bile was depressed in urethane-anesthetized animals by 45 and 66%, respectively, whereas elimination of the glucuronide and sulfate conjugates was increased by 27 and 50%, respectively. These results indicate that biliary excretion is influenced by the anesthetic agent and that diethyl ether depresses conjugation with sulfate and glutathione as well as glucuronic acid.  相似文献   

15.
A dimethoxy derivative of leucocyandin 3-O-beta-D-galactosyl cellobioside isolated from the bark of F. bengalensis Linn demonstrated antidiabetic action. On oral administration, it decreased blood sugar very significantly both in normal and moderately diabetic rats and increased serum insulin significantly in the latter at a dosage of 250 mg/kg for a 2 hr period. During one month treatment of the diabetic rats orally with the active principle, at a dosage of 100 mg/kg, there was a significant decrease in blood and urine sugar, certain lipid components in serum and tissues and glucose-6-phosphatase activity in liver, but significant increase in body weight and the activities of hexokinase and HMGCOA reductase in tissues as compared to diabetic control. The mechanism of action of the principle may be related to its protective/inhibitory action against the insulin degradative processes.  相似文献   

16.
目的:探讨人参皂苷Rg3对糖尿病肾病大鼠生化指标及病理改变的影响。方法:30只SD雄性大鼠按随机数字表法分为正常对照组、模型对照组和人参皂甙Rg3组。采用链脲佐菌素建立糖尿病肾病大鼠模型。造模成功后,Rg3治疗组每天以Rg3(0.5mg/kg)灌胃,余予以等量蒸馏水灌胃。30天后分别测3组大鼠血糖、24小时尿蛋白、血肌酐,并予以HE染色行肾组织活检。结果:与正常组比较,模型对照组大鼠血糖、24小时尿蛋白、血肌酐明显升高,肾小球体积增大,基底膜增厚、细膜基质增多,肾小球内炎细胞浸润(P0.01)。与模型对照组比较,人参皂甙Rg3组血糖、24小时尿蛋白、血肌酐明显降低,肾小球基底膜增厚程度减轻,细胞外基质堆积减少,差异具有显著性(P0.05)。结论:人参皂甙Rg3能显著降低糖尿病大鼠血糖、血肌酐、24 h尿蛋白,能改善其肾脏的病理损害。  相似文献   

17.
Little is known about the contribution of different tissues to whole-body vitamin A (VA) kinetics in neonates. Here, we have used model-based compartmental analysis of tissue tracer kinetic data from unsupplemented (control) and VA-retinoic acid (VARA)-supplemented neonatal rats to determine VA kinetics in specific tissues under control and supplemented conditions. First, compartmental models for retinol kinetics were developed for individual tissues, and then an integrated compartmental model incorporating all tissues was developed for both groups. The models predicted that 52% of chylomicron (CM) retinyl ester was cleared by liver in control pups versus 22% in VARA-treated pups, whereas about 51% of VA was predicted to be extrahepatic in 4- to 6-day-old unsupplemented neonatal rats. VARA increased CM retinyl ester uptake by lung, carcass, and intestine; decreased the release into plasma of retinol that had been cleared by liver and lung as CM retinyl esters; stimulated the uptake of retinol from plasma holo-retinol binding protein into carcass; and decreased the retinol turnover out of the liver. Overall, neonatal VA trafficking differed from that previously described for adult animals, with a larger contribution of extrahepatic tissues to CM clearance, especially after VA supplementation, and a significant amount of VA distributed in extrahepatic tissues.  相似文献   

18.
为了探讨楮实子对对乙酰氨基酚(APAP)诱导的药物性肝损伤大鼠的保护作用以及对过氧化物酶体增殖物激活受体γ(PPAR-γ)、过氧化物酶体增殖物激活受体α(PPAR-α)、C-Ros癌基因1(ROS1)的调控作用。实验将50只SD大鼠随机分为正常组、模型组、水飞蓟宾组(44mg/kg)和楮实子高、低剂量组(4.2、1.05g生药/kg),每组10只。灌胃给予对乙酰氨基酚(1.2kg/kg)制备肝损伤模型,给药组造模的同时给予相应药物治疗,连续30天。实验结束,收集血清、肝组织标本进行指标检测。结果显示,楮实子各剂量均能降低药物性肝损伤大鼠血清中谷丙转氨酶(ALT)和谷草转氨酶(AST)活性,降低总胆红素(TBIL)和直接胆红素(TBIL)的含量,升高血清中谷胱甘肽(GSH)含量、超氧化物歧化酶(SOD)和谷胱甘肽过氧化物酶(GSH-Px)活性,降低丙二醛(MDA)含量以及ROS1的表达,上调PPAR-αmRNA的表达,下调PPAR-γmRNA的表达。以上研究结果表明,楮实子能防治对乙酰氨基酚所致肝损伤,其作用机制可能是通过降低ROS1的表达、调节转录因子PPAR-α和PPAR-γ的基因表达,从而缓解氧化应激损伤来实现的。  相似文献   

19.
Hepato-protective potential of carotenoid meso-zeaxanthin [(3R, 3'S)-beta, beta-carotene-3, 3'-diol] was studied using in vivo rat models. Paracetamol (3 g/kg body wt, orally), 20% ethanol (7.5 g/kg body wt, orally) and CCl4 (2.5 ml /kg, ip) were used as hepato toxins. Levels of marker enzymes of hepatic injury such as serum glutamate oxaloacetate transaminase, serum glutamate pyruvate transaminase and alkaline phosphatase, and serum bilirubin, which were drastically elevated by these hepato toxins were significantly decreased by meso-zeaxanthin pretreatment in a dose-dependent manner. Oxidative stress markers, tissue lipid peroxidation, conjugated dienes and tissue hydroperoxides, were high in the paracetamol treated control group animals, which were lowered by meso-zeaxanthin administration. Level of glutathione and antioxidant enzymes, superoxide dismutase, catalase and glutathione peroxidase, in liver tissue was increased by meso-zeaxanthin pretreatment compared to control group during alcohol and CCl4 induced hepatotoxicity. Hydroxyproline, an indicator of fibrosis in liver tissue, decreased remarkably by meso-zeaxanthin administration despite its notable elevation in ethanol treated rats. Histopathological analysis of liver tissue showed the hepatoprotective potential of meso-zeaxanthin.  相似文献   

20.
Recently, we reported that 3,3',5-triiodothyronine (T3) induces the expression of redox-sensitive genes as a nongenomic mechanism of T3 action. In this study, we show that T3 administration to rats (daily doses of 0.1 mg/kg ip for 3 consecutive days) induced a calorigenic response and liver glutathione depletion as an indication of oxidative stress, with higher levels of interleukin (IL)-6 in serum (ELISA) and hepatic STAT3 DNA binding (EMSA), which were maximal at 48-72 h after treatment. Under these conditions, the protein expression of the acute-phase proteins haptoglobin and beta-fibrinogen is significantly augmented, a change that is suppressed by pretreatment with alpha-tocopherol (100 mg/kg ip) or gadolinium chloride (10 mg/kg iv) before T3. It is concluded that T3 administration induces the acute-phase response in rat liver by a redox mechanism triggered at the Kupffer cell level, in association with IL-6 release and activation of the STAT3 cascade, a response that may contribute to reestablishing homeostasis in the liver and extrahepatic tissues exhibiting oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号