首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A direct chiral chromatographic reversed phase method for the determination of the enantiomers of felodipine is described. The influence of charged and uncharged modifiers as well as the effect of the mobile phase pH on the enantiomeric resolution is discussed. A high mobile phase pH and the addition of 2-propanol as organic modifier gave the highest separation factor (α = 1.3). The high mobile phase pH (pH = 7.6) is outside the recommended pH limit of silica based columns but was necessary to achieve baseline resolution of (R)- and (S)-felodipine. Improvement of column efficiency by increasing column temperature was utilized for optimization of the enantiomeric resolution (Rs = 1.7). The enantiomers of felodipine and three related compounds were separated within 15 min. The enantiomeric purity of (R)- and (S)-felodipine in injections and (R)-felodipine in bulk substance was higher than 99.5% and no racemization was observed after storage at accelerated conditions. A poor Chiral-AGP® column used for a long period was restored using a simple wash step together with repacking the top of the chromatographic column. © 1995 Wiley-Liss, Inc.  相似文献   

2.
Lipid mediators, thromboxane A2 (TxA2) and platelet-activating factor (PAF), are potent vasoconstrictors, and have been implicated as mediators of liver diseases, such as ischemic-reperfusion injury. We determined the effects of a TxA2 analogue (U-46619) and PAF on the vascular resistance distribution and liver weight (wt) in isolated guinea pig livers perfused with blood via the portal vein. The sinusoidal pressure was measured by the double occlusion pressure (P(do)), and was used to determine the pre- (R(pre)) and post-sinusoidal (R(post)) resistances. U-46619 and PAF concentration-dependently increased the hepatic total vascular resistance (R(t)). The minimum concentration at which significant vasoconstriction occurs was 0.001 microM for PAF and 0.1 microM for U-46619. Moreover, the concentration of U-46619 required to increase R(t) to the same magnitude is 100 times higher than PAF. Thus, the responsiveness to PAF was greater than that to U-46619. Both agents increased predominantly R(pre) over R(post). U-46619 caused a sustained liver weight loss. In contrast, PAF also caused liver weight loss at lower concentrations, but it produced liver weight gain at higher concentrations (2.5 +/- 0.3 per 10g liver weight at 1 microM PAF), which was caused by substantial post-sinusoidal constriction and increased P(do). In conclusion, both TxA2 and PAF contract predominantly the pre-sinusoidal veins. TxA2 causes liver weight loss, while PAF at high concentrations increases liver weight due to substantial post-sinusoidal constriction in isolated guinea pig livers.  相似文献   

3.
The sarcoplasmic reticulum (S.R.) of rabbit skeletal muscle has been found to contain a single, high affinity binding site for the Ca antagonist drug [3H] -nitrendipine. Two subfractions of the reticulum were studied, the heavy (HSR) and light (LSR) preparations, which exhibited similar nitrendipine equilibrium dissociation constants (KD) of 1nM. Crude cardiac and brain membranes assayed under the same conditions exhibited KD values of 0.2–0.3nM. The concentration of binding sites per mg. protein (Bmax) in HSR was found to be very high, namely 6.7 picomoles/mg, some four times greater than that of LSR. [3H] -nitrendipine binding to HSR was reversible and inhibited by the Ca antagonists flunarizine and verapamil, and by the intracellular Ca release antagonist TMB-8 (8-diethylamino-octyl 3,4,5- trimethylbenzoate hydrochloride). However, unlabelled nitrendipine at 2 × 10?5M had no effect on contraction of isolated electrically stimulated rabbit lumbrical or rat diaphragm muscles, nor did it affect the neuromuscular junction as studied in rat phrenic nerve-diaphragm preparations. Also, little effect of 2 × 10?5M nitrendipine was seen on net 45Ca uptake by HSR. These results suggest that [3H] -nitrendipine binding to skeletal muscle S.R. resembles that of brain membranes, which also contain a high affinity binding site for [3H] -nitrendipine and which similarly are pharmacologically insensitive to this dihydropyridine type of Ca channel blocking agent. Since HSR is also enriched in calsequestrin and terminal cysternae from which Ca is released in vivo, it seems likely that the [3H]- nitrendipine binding sites in S.R. are associated with Ca channels in the S.R.  相似文献   

4.
The new enantiomerically pure 3-substituted-Delta(2)-isoxazolin-5-yl-ethanolamines (+)-6a/(-)-6b, (-)-6a/(+)-6b, and (+)-7a/(-)-7b, prepared via a 1,3-dipolar cycloaddition-based approach, were tested for their affinity at human beta(1)-, beta(2)-, and beta(3)-adrenergic receptor (beta-AR) subtypes stably expressed in CHO cells. The corresponding 3-isopropenyl derivatives (+)-5a/(-)-5b, (-)-5a/(+)-5b, and some isoxazole analogs were also tested. The binding affinities at the beta-ARs of the isoxazolinyl amino alcohols were significantly lower than those of the corresponding isoxazole derivatives. A stereochemical effect was observed, since the process of molecular recognition is predominantly controlled by the (S)-configuration of the stereogenic center located at the 5 position of the heterocycle rather than by that of the stereocenter carrying the secondary alcohol group. On the contrary, the stereochemical features marginally affected the efficacy response; as a matter of fact, functional tests carried out on Delta(2)-isoxazoline derivatives provided with a detectable binding affinity showed the overall profile of neutral antagonists at all three beta-AR subtypes.  相似文献   

5.
The position of mRNA on 40S ribosomal subunits in eukaryotic initiation complexes was determined by UV crosslinking using mRNAs containing uniquely positioned 4-thiouridines. Crosslinking of mRNA positions (+)11 to ribosomal protein (rp) rpS2(S5p) and rpS3(S3p), and (+)9-(+)11 and (+)8-(+)9 to h18 and h34 of 18S rRNA, respectively, indicated that mRNA enters the mRNA-binding channel through the same layers of rRNA and proteins as in prokaryotes. Upstream of the P-site, the proximity of positions (-)3/(-)4 to rpS5(S7p) and h23b, (-)6/(-)7 to rpS14(S11p), and (-)8-(-)11 to the 3'-terminus of 18S rRNA (mRNA/rRNA elements forming the bacterial Shine-Dalgarno duplex) also resembles elements of the bacterial mRNA path. In addition to these striking parallels, differences between mRNA paths included the proximity in eukaryotic initiation complexes of positions (+)7/(+)8 to the central region of h28, (+)4/(+)5 to rpS15(S19p), and (-)6 and (-)7/(-)10 to eukaryote-specific rpS26 and rpS28, respectively. Moreover, we previously determined that eukaryotic initiation factor2alpha (eIF2alpha) contacts position (-)3, and now report that eIF3 interacts with positions (-)8-(-)17, forming an extension of the mRNA-binding channel that likely contributes to unique aspects of eukaryotic initiation.  相似文献   

6.
We tested the hypothesis that tumor necrosis factor-alpha (TNF-alpha) increases pulmonary vasoconstriction by decreases in nitric oxide- (NO) dependent vasodilation. Lungs were isolated from guinea pigs 18 h after intraperitoneal injection of either TNF-alpha (1.60 x 10(5) U/kg) or control. U-46619 (365 mM/min) caused increases in pulmonary arterial and capillary pressures, pulmonary arterial and venous resistances, and lung weight. TNF-alpha augmented the U-46619-induced increases in pulmonary arterial and capillary pressures, pulmonary arterial and venous resistances, and lung weight. Methylene blue (1 microM), which inhibits the activation of soluble guanylate cyclase by NO, had an effect similar to TNF-alpha on the pulmonary response to U-46619 alone but was not additive to the effect of TNF-alpha. NG-monomethyl-L-arginine (270 microM), an inhibitor of NO generation, also enhanced the response to U-46619. Lung effluent levels of nitrite, the oxidation product of NO, were reduced after treatment with either TNF-alpha or NG-monomethyl-L-arginine compared with U-46619 alone. In addition, lungs isolated after TNF-alpha treatment showed decreased vasodilation in response to acetylcholine (10(-8)-10(-5) M) compared with control; however, vasodilation in response to L-arginine (10 mM) and nitroprusside (10(-6.3) and 10(-6) M), agents that promote NO release, was not decreased in TNF-alpha-treated lungs. The data indicate that TNF-alpha induces an increase in vascular constriction in response to U-46619 and a decrease in vasodilation in response to acetylcholine. The mechanism for the TNF-alpha-induced alteration in pulmonary vascular reactivity may be decreased generation of NO.  相似文献   

7.
We hypothesized that progesterone regulates thromboxane A(2) receptor (TxA(2)R) density in primate vascular muscle and that TxA(2)R density correlates with coronary reactivity in vivo and in vitro. Reactivity to serotonin + U-46619 was determined by angiography in surgically postmenopausal [ovariectomized (Ovx)] rhesus monkeys without progesterone replacement and after 2-wk progesterone treatment (1-2 ng/ml). In untreated Ovx animals, 100 micromol/l serotonin + 1 micromol/l U-46619 (syringe concentrations) provoked vasospasm-like constrictions in six of six monkeys; zero of six progesterone-treated monkeys developed vasospasms. Sustained Ca(2+) responses in vascular muscle cells isolated from Ovx coronaries (208 +/- 63% of basal 20 min after stimulation) treated with serotonin + U-46619 contrasted with transient Ca(2+) responses (143 +/- 18% of basal and decreasing 5 min after stimulation) in progesterone-treated monkeys. The maximum density of [1S-(1I,2J(5Z),3I(1E,3R*),4I)]-7-[3-(3-hydroxy-4-(4'-[(125)I]iodophenoxy)- 1-butenyl)-7-oxabicyclo[2.2.1]heptan-2-yl]-5-heptenoic acid ([(125)I]-BOP) binding was greater (P < 0.01) in carotid arteries and aortic membranes from Ovx (109 +/- 11 fmol/mg) compared with progesterone-treated (43 +/- 15 fmol/mg) monkeys. TxA(2)R immunolabeling revealed greater coronary TxA(2)R labeling in Ovx compared with progesterone-treated monkeys. The results suggest that progesterone can decrease arterial TxA(2)R in Ovx monkeys.  相似文献   

8.
The aim of this work is to evaluate the anti-thromboxane activity of two pure enantiomers of (R,S)-BM-591, a nitrobenzene sulfonylurea chemically related to torasemide, a loop diuretic. The drug affinity for thromboxane A2 receptor (TP) of human washed platelets has been determined. In these experiments, (R)-BM-591 (IC50 = 2.4+/-0.1 nM) exhibited a significant higher affinity than (S)-BM-591 (IC50 = 4.2+/-0.15 nM) for human washed platelets TP receptors. Both enantiomers were stronger ligands than SQ-29548 (IC50 = 21.0+/-1.0 nM) and sulotroban (IC50 = 930+/-42 nM), two reference TXA2 receptor antagonists. Pharmacological characterisations of (S)-BM-591 and (R)-BM-591 were compared in several models. Thus, (R)-BM-591 strongly prevented platelet aggregation induced by arachidonic acid (AA) (600 microM) and U-46619 (1 microM) while (S)-BM-591 showed a lower activity. On isolated tissues pre-contracted by U-46619, a stable TXA2 agonist, (S)-BM-591 was more potent in relaxing guinea-pig trachea (EC50 = 0.272+/-0.054 microM) and rat aorta (EC50 = 0.190+/-0.002 microM) than (R)-BM-591 (EC50 of 9.60+/-0.63 microM and 0.390+/-0.052 microM, respectively). Moreover, at 1 microM, (R)-BM-591 totally inhibited TXA2 synthase activity, expressed as TXB2 production from human platelets, while at the same concentration, (S)-BM-591 poorly reduced the TXB2 synthesis (22%). Finally, in rats, both enantiomers lost the diuretic activity of torasemide. In conclusion, (R)-BM-591 exhibits a higher affinity and antagonism on human platelet TP receptors than (S)-BM-591 as well as a better thromboxane synthase inhibitory potency. In contrast, (S)-BM-591 is more active than the (R)-enantiomer in relaxing smooth muscle contraction of rat aorta and trachea guinea pig. Consequently, (R)-BM-591 represents the best candidate for further development in the field of thrombosis disorders.  相似文献   

9.
Liu A  Sun Q  Cui J  Zheng J  Liu W  Wan X 《Chirality》2011,23(Z1):E74-E83
Two pairs of calamitic liquid crystalline molecules, (+)-2-[4'-(S)-sec-butoxyphenyl]-5-(4'-hexoxyphenyl)toluene ((+)-S-1) and (+)-2-(4'-hexoxyphenyl)-5-[4'-(S)-sec-butoxyphenyl]toluene ((+)-S-2), (-)-2-[4'-(R)-sec-butoxyphenyl]-5-(4'-hexoxyphenyl)toluene ((-)-R-1) and (-)-2-(4'-hexoxyphenyl)-5-[4'-(R)-sec-butoxyphenyl]toluene ((-)-R-2), have been designed and synthesized. Each of the molecules consists of a p-terphenyl core substituted with a methyl group on the middle ring, a chiral sec-butoxy tail, and an achiral n-hexoxy tail. The geometrical difference between (+)-S-1 ((-)-R-1) and (+)-S-2 ((-)-R-2) lies only in the location of the methyl group on the effective mesogenic core. Yet, such a small change in the structure gives rise to remarkable differences in mesogenic properties and handedness. Both (+)-S-1 and (-)-R-1 have an enantiotropic cholesteric phase (N*) and a monotropic twist grain boundary C* phase (TGBC*), whereas (+)-S-2 and (-)-R-2 exhibit only a monotropic N* phase. Moreover, (+)-S-1 ((-)-R-1) and (+)-S-2 ((-)-R-2) have opposite handedness in the N* phase, and (+)-S-1 and (-)-R-1 even have a helical inversion from N* to TGBC* phase through a non-helical chiral mesophase.  相似文献   

10.
Although (-)-(S)-trimetoquinol [1-(3,4,5-trimethoxy-benzyl)- 6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline; TMQ] is recognized as a potent bronchodilator, (+)-(R)-TMQ is a selective antagonist of human platelet aggregation and serotonin secretion induced by thromboxane A2 (TXA2) agonists. To confirm the pharmacological actions of TMQ analogs, the interaction of the drugs with TXA2 receptors was examined in human platelets and in a mouse sudden death model. The inhibitory potencies of TMQ analogs (pIC50 values) for displacement of [3H]SQ 29,548 binding to platelets showed excellent correlation with the respective pIC50 (-log IC50) values for U46619-induced aggregation (r = 0.99, P less than 0.01) and serotonin secretion (r = 0.99, P less than 0.01) in human platelet-rich plasma and for whole blood aggregation (r = 0.99, P less than 0.01). In each system, the rank order of inhibitory potencies was rac-iodoTMQ greater than or equal to (+)-(R)-TMQ greater than rac-TMQ much greater than (-)-(S)-TMQ. Antithrombotic effects of TMQ analogs were evaluated in a mouse sudden death model. In vivo antithrombotic potencies of these compounds were consistent with the in vitro potencies as TXA2 receptor antagonists in platelet systems. Administration of rac-iodoTMQ, (+)-(R)-TMQ and rac-TMQ 15 min before the injection of U46619 (800 micrograms/kg, iv) protected mice against U46619-induced sudden death. On the other hand, (-)-(S)-TMQ did not protect animals against death. Protection of U46619-induced cardiopulmonary thrombosis by TMQ analogs was seen at doses of 3-100 mg/kg.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Vasoconstricting prostaglandins were injected, in bolus doses, into the lower abdominal aorta on the left circumflex coronary artery (LCCA) of conscious sheep. Local blood flow, mean arterial pressure (MAP), heart rate (HR) and ECG were continuously monitored. Thromboxane B2 had no effect on either vascular bed in doses up to 100 micrograms. PGF2 alpha produced mild vasoconstriction in both vascular beds with no systemic response. The endoperoxide analogues, U-44069 and U-46619, produced complex responses in both vascular beds. Initial vasodilation was followed rapidly by prolonged vasoconstriction. In the coronary circulation, vasoconstriction was temporarily masked by a hyperaemic phase. The U-compounds also affected MAP, possibly as a result of pulmonary and systemic vasoconstriction.  相似文献   

12.
The aim of this study was to investigate the effects of U-46619, a thromboxane A2-mimetic, and 6-keto prostaglandin E1 (6-keto PGE1) a biologically active metabolite of prostacyclin, on vasoconstrictor responses to noradrenaline and 5-hydroxytryptamine (5-HT). In vitro, U-46619 (3-100 nmol/l) amplified responses to both noradrenaline and 5-HT in a concentration-dependent manner. This effect was not caused by an increase in the affinity of the alpha-adrenoceptor for noradrenaline because U-46619 (100 nmol/l) did not alter the pA2 of phentolamine. In vivo, U-46619 (100 nmol/l) induced vasoconstriction and consequently significantly shifted the log-concentration-effect curves to noradrenaline and 5-HT upward in an additive manner. 6-Keto PGE1 (1 mumol/l) did not affect either perfusion pressure or vasoconstriction in response to noradrenaline in vivo. The study highlights some differences in responses between in vitro- and in vivo-perfused mesentery.  相似文献   

13.
U-46619, a stable epoxymethano analog of thromboxane A2 elicited a direct positive inotropic effect on guinea pig left atrium paced at a constant rate (EC50 = 2.5 nM). This novel observation contrasts with previous reports of a decrease in myocardial contractility by thromboxane mimetic compounds in coronary-perfused preparations, an action recognized as secondary to vasoconstriction. The positive inotropic effect of U-46619 was competitively antagonized by the specific thromboxane receptor blocker L-655,240 (pA2 = 8.02; identical to that reported in smooth muscle), but was unaffected by blockers of alpha 1-, beta 1-, and H1-receptors and by cyclooxygenase and lipoxygenase inhibitors. Increased tissue levels of inositol phosphates, but not cAMP, were associated with the positive inotropic action of U-46619, in analogy to the actions of alpha 1- and H1-receptor agonists. However, the inotropic effect of U-46619 and the concomitant increase in phosphoinositide breakdown were both selectively antagonized by L-655,240. Thus, U-46619 acts on specific thromboxane receptors in guinea pig left atrium and elicits a positive inotropic effect that probably results from an increase in phosphoinositide metabolism.  相似文献   

14.
Infusion of the thromboxane A2 analogue U-46619 into isolated perfused rat livers resulted in dose-dependent increases in glucose output and portal vein pressure, indicative of constriction of the hepatic vasculature. At low concentrations, e.g. less than or equal to 42 ng/ml, glucose output occurred only during agonist infusion; whereas at concentrations greater than or equal to 63 ng/ml, a peak of glucose output also was observed upon termination of agonist infusion coincident with relief of hepatic vasoconstriction. Effluent perfusate lactate/pyruvate and beta-hydroxybutyrate/acetoacetate ratios increased significantly in response to U-46619 infusion. Hepatic oxygen consumption increased at low U-46619 concentrations (less than or equal to 20 ng/ml) and became biphasic with a transient spike of increased consumption followed by a prolonged decrease in consumption at higher concentrations. Increased glucose output in response to 42 ng/ml U-46619 was associated with a rapid activation of glycogen phosphorylase, slight increases in tissue ADP levels, and no increase in cAMP. At 1000 ng/ml, U-46619 activation of glycogen phosphorylase was accompanied by significant increases in tissue levels of AMP and ADP, decreases in ATP, and slight increases in cAMP. In isolated hepatocytes, U-46619 did not stimulate glucose output or activate glycogen phosphorylase. Reducing the perfusate calcium concentration from 1.25 to 0.05 mM resulted in a marked reduction of the glycogenolytic response to U-46619 (42 ng/ml) with no efflux of calcium from the liver. U-46619-induced glucose output and vasoconstriction displayed a similar dose dependence upon the perfusate calcium concentration. Thus, U-46619 exerts a potent agonist effect on glycogenolysis and vasoconstriction in the perfused rat liver. The present findings support the concept that U-46619 stimulates hepatic glycogenolysis indirectly via vasoconstriction-induced hypoxia within the liver.  相似文献   

15.
The aim of this study was to investigate if a low concentration of endothelin-1 (ET-1; 8 x 10(-10) M) may amplify the skin vasoconstrictor effect of other vasoactive substances in the pathogenesis of skin vasospasm. Pig skin flaps (6 x 16 cm) were perfused with Krebs buffer equilibrated with 95% O(2) and 5% CO(2) at 37 degrees C and pH 7.4. Skin perfusion pressure measured by a pressure transducer and skin perfusion assessed by the dermofluorometry technique were used for assessment of skin vasoconstriction. We observed that ET-1 (8 x 10(-10) M) significantly amplified the concentration-dependent (10(-7)-10(-5) M) skin vasoconstrictor effect of norepinephrine. More importantly, we observed for the first time that this low concentration of ET-1 also amplified the concentration-dependent (10(-8)-10(-6) M) skin vasoconstrictor effect of the thromboxane A(2) mimetic U-46619, and this amplification effect of ET-1 was completely blocked by the protein kinase C (PKC) inhibitor chelerythrine (5 x 10(-6) M). Conversely, the PKC activator phorbol 12,13-dibutyrate (10(-7) M) amplified the vasoconstrictor effect of U-46619. Furthermore, the sensitivity of the skin vasculature to the vasoconstrictor effect of extracellular Ca(2+) in U-46619-induced skin vasoconstriction was significantly enhanced in the presence of 8 x 10(-10) M ET-1. Finally, the cyclooxygenase inhibitor indomethacin (5 x 10(-6) M) did not affect the amplification effect of ET-1 on U-46619-induced skin vasoconstriction. We conclude that a low concentration of ET-1 can amplify the skin vasoconstrictor effect of U-46619 independent of endogenous cyclooxygenase products, and the mechanism may involve activation of PKC and increase in sensitivity of the contractile apparatus to Ca(2+) in smooth muscle cells.  相似文献   

16.
Previous reports showed that 17beta-estradiol implants attenuate in vivo coronary hyperreactivity (CH), characterized by long-duration vasoconstrictions (in coronary angiographic experiments), in menopausal rhesus monkeys. Prolonged Ca2+ contraction signals that correspond with CH in coronary vascular muscle cells (VMC) to the same dual-constrictor stimulus, serotonin + the thromboxane analog U-46619, in estrogen-deprived VMC were suppressed by >72 h in 17beta-estradiol. The purpose of this study was to test whether an endogenous estrogen metabolite with estrogen receptor-beta (ER-beta) binding activity, estriol (E3), suppresses in vivo and in vitro CH. E3 treatment in vivo for 4 wk significantly attenuated the angiographically evaluated vasoconstrictor response to intracoronary serotonin + U-46619 challenge. In vitro treatment of rhesus coronary VMC for >72 h with nanomolar E3 attenuated late Ca2+ signals. This reduction of late Ca2+ signals also appeared after >72 h of treatment with subnanomolar 5alpha-androstane-3beta,17beta-diol (3beta-Adiol), an endogenous dihydrotestosterone metabolite with ER-beta binding activity. R,R-tetrahydrochrysene, a selective ER-beta antagonist, significantly blocked the E3- and 3beta-Adiol-mediated attenuation of late Ca2+ signal increases. ER-beta and thromboxane-prostanoid receptor (TPR) were coexpressed in coronary arteries and aorta. In vivo E3 treatment attenuated aortic TPR expression. Furthermore, in vitro treatment with E3 or 3beta-Adiol downregulated TPR expression in VMC, which was blocked for both agonists by pretreatment with R,R-tetrahydrochrysene. E3- and 3beta-Adiol-mediated reduction in persistent Ca2+ signals is associated with ER-beta-mediated attenuation of TPR expression and may partly explain estrogen benefits in coronary vascular muscle.  相似文献   

17.
Vasoconstrictive lipid mediators, thromboxane A(2) (TxA(2)), platelet-activating factor (PAF) and leukotriene D(4) (LTD(4)) have been implicated as mediators of liver diseases. There are species differences in the primary site of hepatic vasoconstriction in response to these mediators. We determined the effects of a TxA(2) analogue (U-46619), PAF and LTD(4) on the vascular resistance distribution, weight and oxygen consumption of isolated rat livers portally perfused with blood. The sinusoidal pressure was measured by the double occlusion pressure (P(do)), and was used to determine the pre- (R(pre)) and post-sinusoidal (R(post)) resistances. All these three mediators increased the hepatic total vascular resistance (R(t)). The responsiveness to PAF was 100 times greater than that to U-46619 or LTD(4). Both of PAF and U-46619 predominantly increased R(pre) over R(post). At the comparable increased R(t) levels, U-46619 more preferentially increased R(pre) than PAF. In contrast, LTD(4) increased both the R(pre) and R(post) to similar extent. U-46619 caused liver weight loss, while high concentrations of either LTD(4) or PAF produced liver weight gain, which was caused by substantial post-sinusoidal constriction and increased P(do). PAF and U-46619 decreased hepatic oxygen consumption while LTD(4) induced biphasic change of an initial transient decrease followed by an increase. In conclusion, PAF is the most potent vasoconstrictor of rat hepatic vessels among these three mediators. Both TxA(2) and PAF constrict the pre-sinusoidal veins predominantly. TxA(2) more preferentially constricts the pre-sinusoids than PAF, resulting in liver weight loss. However LTD(4) constricts both the pre- and post-sinusoidal veins similarly. High concentrations of LTD(4) and PAF cause liver weight gain by substantial post-sinusoidal constriction. PAF and TxA(2) decrease hepatic oxygen consumption, whereas LTD(4) causes a biphasic change of it.  相似文献   

18.
Although thromboxane (TX)A2 is involved in allergic rhinitis, the mechanisms inducing nasal blockage have not been elucidated. We evaluated the roles of nasal mucosal vascular changes following intranasal instillation of the TXA2 analog U-46619 or leukotriene (LT)D4 to induce nasal blockage in a guinea pig model of allergic rhinitis. Both U-46619- and LTD4-induced nasal blockages in sensitized animals were swiftly and completely suppressed by a vasoconstrictor, naphazoline. The nitric oxide synthase inhibitor N(omega)-nitro-l-arginine methyl ester relieved LTD4-induced nasal blockage, but not U-46619-induced nasal blockage. Although both agonists produced vasodilatation of nasal mucosa in vivo, LTD4 caused vasodilatation while U-46619 caused vasoconstriction in vitro. Both LTD4- and U-46619-induced nasal blockages in vivo should depend on vasodilatation of nasal mucosa. LTD4-induced nasal blockage is induced by direct vasodilatation via nitric oxide. In contrast, U-46619-induced nasal blockage may be associated with contraction of a certain vein that should exist at the exit of capacitance vessels, leading to congestion of the nasal mucosa.  相似文献   

19.
U-46619, a stable "functional" thromboxane/endoperoxide receptor agonist, produced potent contractile responses in isolated canine, rhesus monkey and human left circumflex coronary arteries (EC50 = 9.11 x 10(-9)M, 1.98 x 10(-8)M and 3.50 x 10(-9)M, respectively). Canine intrapulmonary veins were also contracted potently by U-46619 (EC50 = 1.22 x 10(-9)M). SK&F 88046, a thromboxane A2 (TxA2) end-organ receptor antagonist, blocked the vasoconstrictor effects of U-46619 in the canine circumflex artery (KB = 1.33 x 10(-8)M), canine intrapulmonary vein (KB = 1.46 x 10(-9)M), monkey circumflex artery (KB = 8.47 x 10(-8)M), and human circumflex artery (KB = 8.49 x 10(-7)M). SK&F 88046 was 10-60 times more potent in the canine and rhesus monkey coronary vasculature than in the human coronary preparations. Intracoronary administration of U-46619 to anesthetized, open chest dogs produced a dose-related decrease in left circumflex coronary artery blood flow which resulted in decreases in left ventricular developed pressure, left ventricular positive and negative dP/dt, ascending aortic blood flow, and an increase in left ventricular end-diastolic pressure. The decrease in coronary blood flow and the hemodynamic changes were either attenuated or completely inhibited by i.v. administration of SK&F 88046 (2.5 mg/kg + 0.05 mg/kg/min or 5.0 mg/kg + 0.1 mg/kg/min). SK&F 88046 was compared to two other TxA2 receptor antagonists in canine isolated intrapulmonary veins. SQ 29,548 was approximately 2-times more potent than SK&F 88046 as an antagonist of U-44619 mediated contractions (KB = 7.0 x 10(-10)M). In contrast, BM 13.177 was 150-fold less potent (KB = 2.19 x 10(-7)M) than SK&F 88046. Thus, the present study demonstrates species variability in response to TxA2 agonists and antagonists and reconfirms the relative importance of species selection in studying these agents.  相似文献   

20.
We hypothesized that exercise training preserves endothelium-dependent relaxation, lessens receptor-mediated constriction of coronary resistance arteries, and reduces myocardial contractile dysfunction in response to ischemia. After 10 wk of treadmill running or cage confinement, regional and global indexes of left ventricular contractile function were not different between trained and sedentary animals in response to three 15-min periods of ischemia (long-term; n = 17), one 5-min bout of ischemia (short-term; n = 18), or no ischemia (sham-operated; n = 24). Subsequently, coronary resistance vessels ( approximately 106 +/- 4 microm ID) were isolated and studied using wire myographs. Maximal ACh-evoked relaxation was approximately 25, 40, and 60% of KCl-induced preconstriction after the long-term, short-term, and sham-operated protocols, respectively, and was similar between groups. Maximal sodium nitroprusside-evoked relaxation also was similar between groups among all protocols, and vasoconstrictor responses to endothelin-1 and U-46619 were not different in trained and sedentary rats after short-term ischemia or sham operation. We did observe that, after long-term ischemia, maximal tension development in response to endothelin-1 and U-46619 was blunted (P < 0.05) in trained animals by approximately 70 and approximately 160%, respectively. These results support our hypothesis that exercise training lessens receptor-mediated vasoconstriction of coronary resistance vessels after ischemia and reperfusion. However, training did not preserve endothelial function of coronary resistance vessels, or myocardial contractile function, after ischemia and reperfusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号