首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
中国东北城乡植被物候时空变化及其对地表温度的响应   总被引:1,自引:0,他引:1  
胡召玲  戴慧  侯飞  李二珠 《生态学报》2020,40(12):4137-4145
以中国东北地区的沈阳、长春、哈尔滨3个大城市及其周边的乡村为研究单元,在像元尺度上采用小波变换法对长时间序列中分辨率成像光谱仪(Moderate-resolution Imaging Spectroradiometer, MODIS)增强植被指数(Enhanced Vegetation Index, EVI)数据滤除噪声数据后重建平滑的EVI曲线,基于EVI曲线,采用动态阈值法提取出研究区2009—2016年植被关键物候期参数指标,即植被生长季开始时间(Start of Growing Season, SOS)和结束时间(End of Growing Season, EOS),分析各研究单元植被物候时空变化特征及其对地表温度的响应特征。结果表明:各研究单元SOS和EOS值的空间分布图存在明显的城乡差异。每一个像元所属的实际位置距离城区中心越近,其SOS值越小,EOS值越大,表明植被生长季开始日期早结束日期晚,整个植被生长期时间变长。各研究单元植被物候参数指标的年际变化趋势具有一定的相似性,即SOS随时间均呈现出提前趋势,且城区和乡村的SOS年际变化趋势保持一致,变化速率各不相同。研究区2012年的SOS值是研究时段内的最大值,从植被物候期反映来看,该年是一个最冷年,这与当年受寒潮影响,出现暴雪,低温等极端天气的气候现象相吻合。各研究单元年均地表温度(Land Surface Temperature,LST)与对应的植被关键物候期参数均有显著的相关性,SOS与LST呈显著负相关,EOS与LST呈高度正相关。即植被物候同期的平均温度越高,植被生长季的起始时间越早,结束时间越晚。  相似文献   

2.
城市地表温度与关键景观要素的关系   总被引:1,自引:0,他引:1  
利用Landsat ETM+遥感影像,提取上海市外环线范围内的地表温度、不透水面率、归一化差值植被指数、改进的归一化差异水体指数,定量研究地表温度与城市关键景观类型之间的关系.结果表明:地表温度与不透水面率呈显著的线性正相关( R2=0.837);地表温度与归一化差值植被指数和改进的归一化差异水体指数呈非线性关系,但地表温度与正的归一化差值植被指数和正的改进的归一化差值水体指数呈显著线性关系.鉴于归一化差值植被指数和改进的归一化差异水体指数大于0时才能真正代表植被和水体,因此,建议今后研究地表温度时使用正的归一化差值植被指数和改进的归一化差异水体指数;地表温度与不透水面率、归一化差值植被指数和改进的归一化差值水体指数的多元线性回归分析表明,不透水面起着增温作用,植被、水体起降温作用,植被较水体的降温作用大.  相似文献   

3.
Variation in the timing of plant phenology caused by phenotypic plasticity is a sensitive measure of how organisms respond to weather and climate variability. Although continental-scale gradients in climate and consequential patterns in plant phenology are well recognized, the contribution of underlying genotypic difference to the geography of phenology is less well understood. We hypothesize that different temperate plant genotypes require varying amount of heat energy for resuming annual growth and reproduction as a result of adaptation and other ecological and evolutionary processes along climatic gradients. In particular, at least for some species, the growing degree days (GDD) needed to trigger the same spring phenology events (e.g., budburst and flower bloom) may be less for individuals originated from colder climates than those from warmer climates. This variable intrinsic heat energy requirement in plants can be characterized by the term growth efficiency and is quantitatively reflected in the timing of phenophases—earlier timing indicates higher efficiency (i.e., less heat energy needed to trigger phenophase transitions) and vice versa compared to a standard reference (i.e., either a uniform climate or a uniform genotype). In this study, we tested our hypothesis by comparing variations of budburst and bloom timing of two widely documented plants from the USA National Phenology Network (i.e., red maple-Acer rubrum and forsythia-Forsythia spp.) with cloned indicator plants (lilac-Syringa x chinensis ‘Red Rothomagensis’) at multiple eastern US sites. Our results indicate that across the accumulated temperature gradient, the two non-clonal plants showed significantly more gradual changes than the cloned plants, manifested by earlier phenology in colder climates and later phenology in warmer climates relative to the baseline clone phenological response. This finding provides initial evidence supporting the growth efficiency hypothesis, and suggests more work is warranted. More studies investigating genotype-determined phenological variations will be useful for better understanding and prediction of the continental-scale patterns of biospheric responses to climate change.  相似文献   

4.
Changes in leaf phenology lengthen the growing season length (GSL, the days between leaf budburst and leaf fall) under the global warming. GSL and the leaf phenology response to climate change is one of the most important predictors of climate change effect on plants. Empirical evidence of climatic effects on GSL remains scarce, especially at a regional scale and the latitudinal pattern. This study analyzed the datasets of leaf budburst and fall phenology in Morus bombycis (Urticales), which were observed by the agency of the Japan Meteorological Agency (JMA) from 1953 to 2005 over a wide range of latitudes in Japan (31 to 44° N). In the present study, single regression slopes of leaf phenological timing and air temperature across Japan were calculated and their spatial patterns using general linear models were tested. The results showed that the GSL extension was caused mainly by a delay in leaf fall phenology. Relationships between latitude and leaf phenological and GSL responses against air temperature were significantly negative. The response of leaf phenology and GSL to air temperature at lower latitudes was larger than that at higher latitudes. The findings indicate that GSL extension should be considered with regards to latitude and climate change.  相似文献   

5.
The phenology of arctic ecosystems is driven primarily by abiotic forces, with temperature acting as the main determinant of growing season onset and leaf budburst in the spring. However, while the plant species in arctic ecosystems require differing amounts of accumulated heat for leaf‐out, dynamic vegetation models simulated over regional to global scales typically assume some average leaf‐out for all of the species within an ecosystem. Here, we make use of air temperature records and observations of spring leaf phenology collected across dominant groupings of species (dwarf birch shrubs, willow shrubs, other deciduous shrubs, grasses, sedges, and forbs) in arctic and boreal ecosystems in Alaska. We then parameterize a dynamic vegetation model based on these data for four types of tundra ecosystems (heath tundra, shrub tundra, wet sedge tundra, and tussock tundra), as well as ecotonal boreal white spruce forest, and perform model simulations for the years 1970–2100. Over the course of the model simulations, we found changes in ecosystem composition under this new phenology algorithm compared with simulations with the previous phenology algorithm. These changes were the result of the differential timing of leaf‐out, as well as the ability for the groupings of species to compete for nitrogen and light availability. Regionally, there were differences in the trends of the carbon pools and fluxes between the new phenology algorithm and the previous phenology algorithm, although these differences depended on the future climate scenario. These findings indicate the importance of leaf phenology data collection by species and across the various ecosystem types within the highly heterogeneous Arctic landscape, and that dynamic vegetation models should consider variation in leaf‐out by groupings of species within these ecosystems to make more accurate projections of future plant distributions and carbon cycling in Arctic regions.  相似文献   

6.
Anthropogenic climate change has altered temperate forest phenology, but how these trends will play out in the future is controversial. We measured the effect of experimental warming of 0.6–5.0 °C on the phenology of a diverse suite of 11 plant species in the deciduous forest understory (Duke Forest, North Carolina, USA) in a relatively warm year (2011) and a colder year (2013). Our primary goal was to dissect how temperature affects timing of spring budburst, flowering, and autumn leaf coloring for functional groups with different growth habits, phenological niches, and xylem anatomy. Warming advanced budburst of six deciduous woody species by 5–15 days and delayed leaf coloring by 18–21 days, resulting in an extension of the growing season by as much as 20–29 days. Spring temperature accumulation was strongly correlated with budburst date, but temperature alone cannot explain the diverse budburst responses observed among plant functional types. Ring‐porous trees showed a consistent temperature response pattern across years, suggesting these species are sensitive to photoperiod. Conversely, diffuse‐porous species responded differently between years, suggesting winter chilling may be more important in regulating budburst. Budburst of the ring‐porous Quercus alba responded nonlinearly to warming, suggesting evolutionary constraints may limit changes in phenology, and therefore productivity, in the future. Warming caused a divergence in flowering times among species in the forest community, resulting in a longer flowering season by 10‐16 days. Temperature was a good predictor of flowering for only four of the seven species studied here. Observations of interannual temperature variability overpredicted flowering responses in spring‐blooming species, relative to our warming experiment, and did not consistently predict even the direction of flowering shifts. Experiments that push temperatures beyond historic variation are indispensable for improving predictions of future changes in phenology.  相似文献   

7.
Spring leaf phenology in temperate climates is intricately related to numerous aspects of the lower atmosphere [e.g., surface energy balance, carbon flux, humidity, the diurnal temperature range (DTR)]. To further develop and improve the accuracy of ecosystem and climate models, additional investigations of the specific nature of the relationships between spring leaf phenology and various ecosystem and climate processes are required in different environments. This study used visual observations of maple leaf phenology, below-canopy light intensities, and micrometeorological data collected during the spring seasons of 2008, 2009, and 2010 to examine the potential influence of leaf phenology on a seasonal transition in the trend of the DTR. The timing of a reversal in the DTR trend occurred near the time when the leaves were unfolding and expanding. The results suggest that the spring decline in the DTR can be attributed primarily to the effect of canopy closure on daily maximum temperature. These findings improve our understanding of the relationship between leaf phenology and the diurnal temperature range in temperate maple forests during the spring. They also demonstrate the necessity of incorporating accurate phenological data into ecosystem and climate models and warrant a careful examination of the extent to which canopy phenology is currently incorporated into existing models.  相似文献   

8.
Urbanization is one of the major environmental challenges facing the world today. One of its particularly pressing effects is alterations to local and regional climate through, for example, the Urban Heat Island. Such changes in conditions are likely to have an impact on the phenology of urban vegetation, which will have knock‐on implications for the role that urban green infrastructure can play in delivering multiple ecosystem services. Here, in a human‐dominated region, we undertake an explicit comparison of vegetation phenology between urban and rural zones. Using satellite‐derived MODIS‐EVI data from the first decade of the 20th century, we extract metrics of vegetation phenology (date of start of growing season, date of end of growing season, and length of season) for Britain's 15 largest cities and their rural surrounds. On average, urban areas experienced a growing season 8.8 days longer than surrounding rural zones. As would be expected, there was a significant decline in growing season length with latitude (by 3.4 and 2.4 days/degree latitude in rural and urban areas respectively). Although there is considerable variability in how phenology in urban and rural areas differs across our study cities, we found no evidence that built urban form influences the start, end, or length of the growing season. However, the difference in the length of the growing season between rural and urban areas was significantly negatively associated with the mean disposable household income for a city. Vegetation in urban areas deliver many ecosystem services such as temperature mitigation, pollution removal, carbon uptake and storage, the provision of amenity value for humans and habitat for biodiversity. Given the rapid pace of urbanization and ongoing climate change, understanding how vegetation phenology will alter in the future is important if we wish to be able to manage urban greenspaces effectively.  相似文献   

9.
Many organisms rely on synchronizing the timing of their life‐history events with those of other trophic levels—known as phenological matching—for survival or successful reproduction. In temperate deciduous forests, the extent of matching with the budburst date of key tree species is of particular relevance for many herbivorous insects and, in turn, insectivorous birds. In order to understand the ecological and evolutionary forces operating in these systems, we require knowledge of the factors influencing leaf emergence of tree communities. However, little is known about how phenology at the level of individual trees varies across landscapes, or how consistent this spatial variation is between different tree species. Here, we use field observations, collected over 2 years, to characterize within‐ and between‐species differences in spring phenology for 825 trees of six species (Quercus robur, Fraxinus excelsior, Fagus sylvatica, Betula pendula, Corylus avellana, and Acer pseudoplatanus) in a 385‐ha woodland. We explore environmental predictors of individual variation in budburst date and bud development rate and establish how these phenological traits vary over space. Trees of all species showed markedly consistent individual differences in their budburst timing. Bud development rate also varied considerably between individuals and was repeatable in oak, beech, and sycamore. We identified multiple predictors of budburst date including altitude, local temperature, and soil type, but none were universal across species. Furthermore, we found no evidence for interspecific covariance of phenology over space within the woodland. These analyses suggest that phenological landscapes are highly complex, varying over small spatial scales both within and between species. Such spatial variation in vegetation phenology is likely to influence patterns of selection on phenology within populations of consumers. Knowledge of the factors shaping the phenological environments experienced by animals is therefore likely to be key in understanding how these evolutionary processes operate.  相似文献   

10.
中国热带和亚热带常绿林凋落物季节特征及适应策略 本研究收集了来自中国热带/亚热带常绿林共85个站点的凋落物量季节性变化数据,并采用线性回归、结构方程模型构建以及相位差分析等方法,综合探究中国热带/亚热带地区常绿阔叶林和针叶林叶片脱落对土壤水分、饱和水气压差和辐射强度等气候因子的响应机制。研究结果显示,在雨热同期和雨热异期两种热带/亚热带气候类型中,呈现出两种典型凋落物的物候类型(单峰季节型/双峰季节型)。在雨热同期气候条件下,光照强度和降水呈现季节性正相关,单峰的凋落物峰值和双峰的第一个峰值约出现在3–4月,不断增加的光照能促进新叶的萌发,老叶被代谢更强的新叶所替代,该类型属于一种最大程度利用光照来实现树木生长的自适应策略。双峰的第二个峰值出现在雨季末期,约在8–10月,是由不断增强的水分亏缺所导致的(常绿阔叶林:大气水分亏缺;常绿针叶林:土壤水分亏缺),这种类型是一种凋落老叶减少水分丢失来应对水分胁迫的自适应策略。在雨热异期气候条件下,光照强度和降水呈现季节性负相关,饱和水气压差与光照强度表现出一致的季节性动态变化,诱导了常绿阔叶林单峰和双峰物候的第一个凋落峰(约在3–4月),是一种权衡大气干旱胁迫和最大程度利用光照进行生长的综合自适应策略。在雨季初期,显著的土壤水分亏缺加速叶片凋落,诱导了常绿阔叶林双峰物候的第二个凋落峰(约在11月),属于凋落老叶应对土壤水分胁迫的自适应策略。这些研究结果可以为地球系统模式中热带物候的精确模拟提供重要参考。  相似文献   

11.
赖小红  李名扬  刘聪  钟雨航  林立  王海洋 《生态学报》2019,39(19):7025-7034
为探究植物物候对山地城市内部热岛效应的响应特征,于2016年1月—2017年1月对重庆市主城区80种木本植物进行地面物候观测,同时利用Landsat 8热红外数据反演研究区地表温度,结合同时期地面实测气温,对研究区热岛强度等级进行划分,进而比较城市内部不同热岛强度等级下植物物候变化特征。结果表明,热岛过渡区与热岛区植物展叶期较凉岛区分别提前了5.1 d和8.1 d,初花期分别提前了4.0 d和20.8 d,终花期分别提前了4.8 d和11.6 d,而落叶期分别推迟了8.5 d和18.9 d,即城市内部热岛増温使植物春季物候提前,秋季物候推迟,生长季延长,且物候变化幅度随热岛强度等级增大而增大。不同功能型植物物候对热岛増温的响应存在差异,灌木、常绿植物和引种植物物候比乔木、落叶植物和本土植物更加敏感。本研究在一定程度上填补了我国西南山区物候研究的空缺,可为预测城市植物物候对未来山地城市小气候变化乃至全球气候变暖趋势的响应提供早期预警。  相似文献   

12.
Recent studies using both field measurements and satellite-derived-vegetation indices have demonstrated that global warming is influencing vegetation growth and phenology. To accurately predict the future response of vegetation to climate variation, a thorough understanding of vegetation phenological cycles and their relationship to temperature and precipitation is required. In this paper, vegetation phenological transition dates identified using data from the moderate-resolution imaging spectroradiometer (MODIS) in 2001 are linked with MODIS land surface temperature (LST) data from the northern hemisphere between 35°N and 70°N. The results show well-defined patterns dependent on latitude, in which vegetation greenup gradually migrates northward starting in March, and dormancy spreads southward from late September. Among natural vegetation land-cover types, the growing-season length for forests is strongly correlated with variation in mean annual LST. For urban areas, the onset of greenup is 4–9 days earlier on average, and the onset of dormancy is about 2–16 days later, relative to adjacent natural vegetation. This difference (especially for urban vs. forests) is apparently related to urban heat island effects that result in both the average spring temperature and the mean annual temperature in urban areas being about 1–3°C higher relative to rural areas. The results also indicate that urban heat island effects on vegetation phenology are stronger in North America than in Europe and Asia. Finally, the onset of forest greenup at continental scales can be effectively described using a thermal time-chilling model, which can be used to infer the delay or advance of greenup onset in relation to climatic warming at global scale.  相似文献   

13.
Autumn senescence regulates multiple aspects of ecosystem function, along with associated feedbacks to the climate system. Despite its importance, current understanding of the drivers of senescence is limited, leading to a large spread in predictions of how the timing of senescence, and thus the length of the growing season, will change under future climate conditions. The most commonly held paradigm is that temperature and photoperiod are the primary controls, which suggests a future extension of the autumnal growing season as global temperatures rise. Here, using two decades of ground‐ and satellite‐based observations of temperate deciduous forest phenology, we show that the timing of autumn senescence is correlated with the timing of spring budburst across the entire eastern United States. On a year‐to‐year basis, an earlier/later spring was associated with an earlier/later autumn senescence, both for individual species and at a regional scale. We use the observed relationship to develop a novel model of autumn phenology. In contrast to current phenology models, this model predicts that the potential response of autumn phenology to future climate change is strongly limited by the impact of climate change on spring phenology. Current models of autumn phenology therefore may overpredict future increases in the length of the growing season, with subsequent impacts for modeling future CO2 uptake and evapotranspiration.  相似文献   

14.
Several North American broad-leaved tree species range from the northern United States at 47°N to moist tropical montane forests in Mexico and Central America at 15–20°N. Along this gradient the average minimum temperatures of the coldest month (T Jan), which characterize annual variation in temperature, increase from –10 to 12°C and tree phenology changes from deciduous to leaf-exchanging or evergreen in the southern range with a year-long growing season. Between 30 and 45°N, the time of bud break is highly correlated with T Jan and bud break can be reliably predicted for the week in which mean minimum temperature rises to 7°C. Temperature-dependent deciduous phenology—and hence the validity of temperature-driven phenology models—terminates in southern North America near 30°N, where T Jan>7°C enables growth of tropical trees and cultivation of frost-sensitive citrus fruits. In tropical climates most temperate broad-leaved species exchange old for new leaves within a few weeks in January-February, i.e., their phenology becomes similar to that of tropical leaf-exchanging species. Leaf buds of the southern ecotypes of these temperate species are therefore not winter-dormant and have no chilling requirement. As in many tropical trees, bud break of Celtis, Quercus and Fagus growing in warm climates is induced in early spring by increasing daylength. In tropical climates vegetative phenology is determined mainly by leaf longevity, seasonal variation in water stress and day length. As water stress during the dry season varies widely with soil water storage, climate-driven models cannot predict tree phenology in the tropics and tropical tree phenology does not constitute a useful indicator of global warming.  相似文献   

15.
The ecological impact of night-time lighting is of concern because of its well-demonstrated effects on animal behaviour. However, the potential of light pollution to change plant phenology and its corresponding knock-on effects on associated herbivores are less clear. Here, we test if artificial lighting can advance the timing of budburst in trees. We took a UK-wide 13 year dataset of spatially referenced budburst data from four deciduous tree species and matched it with both satellite imagery of night-time lighting and average spring temperature. We find that budburst occurs up to 7.5 days earlier in brighter areas, with the relationship being more pronounced for later-budding species. Excluding large urban areas from the analysis showed an even more pronounced advance of budburst, confirming that the urban ‘heat-island’ effect is not the sole cause of earlier urban budburst. Similarly, the advance in budburst across all sites is too large to be explained by increases in temperature alone. This dramatic advance of budburst illustrates the need for further experimental investigation into the impact of artificial night-time lighting on plant phenology and subsequent species interactions. As light pollution is a growing global phenomenon, the findings of this study are likely to be applicable to a wide range of species interactions across the world.  相似文献   

16.
Ungulates inhabiting high latitudes schedule the timing of conceptions so that offspring are born during the most favourable nutritional conditions for reproductive success. The optimal period for births is less reliably predictable in tropical and subtropical savanna environments where plant growth is governed by rainfall, suggesting that reproductive phenology could be influenced more proximately by resources affecting the body condition of females around the time of conceptions. To assess how these controls operate, we compared the timing of births and conceptions among tropical and subtropical savanna ungulates with the patterns shown by ungulates in northern temperate or subarctic latitudes. The association between the timing of births and the onset of plant growth early in the growing season is less consistent among tropical savanna ungulates than among ungulates inhabiting northern temperate environments, and apparently subject to other influences affecting vegetation phenology. Nevertheless, birth peaks seem to coincide with the time of the year when forage quality is expected to be best for offspring survival and growth for most tropical or subtropical ungulates with gestation periods shorter than a year. When gestation time exceeds one year, proximal effects of nutritional conditions around the time of conceptions apparently become overriding and birth synchrony with early season plant growth is no longer effective. Proximate nutritional influences on conceptions may also govern the somewhat diffuse spread of births shown by ungulate populations in equatorial latitudes where photoperiod cues controlling oestrus and mating cannot be used to schedule the later timing of births.  相似文献   

17.
Viticulture is a key socio‐economic sector in Europe. Owing to the strong sensitivity of grapevines to atmospheric factors, climate change may represent an important challenge for this sector. This study analyses viticultural suitability, yield, phenology, and water and nitrogen stress indices in Europe, for present climates (1980–2005) and future (2041–2070) climate change scenarios (RCP4.5 and 8.5). The STICS crop model is coupled with climate, soil and terrain databases, also taking into account CO2 physiological effects, and simulations are validated against observational data sets. A clear agreement between simulated and observed phenology, leaf area index, yield and water and nitrogen stress indices, including the spatial differences throughout Europe, is shown. The projected changes highlight an extension of the climatic suitability for grapevines up to 55°N, which may represent the emergence of new winemaking regions. Despite strong regional heterogeneity, mean phenological timings (budburst, flowering, veraison and harvest) are projected to undergo significant advancements (e.g. budburst/harvest can be >1 month earlier), with implications also in the corresponding phenophase intervals. Enhanced dryness throughout Europe is also projected, with severe water stress over several regions in southern regions (e.g. southern Iberia and Italy), locally reducing yield and leaf area. Increased atmospheric CO2 partially offsets dryness effects, promoting yield and leaf area index increases in central/northern Europe. Future biomass changes may lead to modifications in nitrogen demands, with higher stress in northern/central Europe and weaker stress in southern Europe. These findings are critical decision support systems for stakeholders from the European winemaking sector.  相似文献   

18.
In order to understand the ecological adaptations of primates to survive in temperate forests, we need to know the general patterns of plant phenology in temperate and tropical forests. Comparative analyses have been employed to investigate general trends in the seasonality and abundance of fruit and young leaves in tropical and temperate forests. Previous studies have shown that (1) fruit fall biomass in temperate forest is lower than in tropical forest, (2) non-fleshy species, in particular acorns, comprise the majority of the fruit biomass in temperate forest, (3) the duration of the fruiting season is shorter in temperate forest, and (4) the fruiting peak occurs in autumn in most temperate forests. Through our comparative analyses of the fruiting and flushing phenology between Asian temperate and tropical forests, we revealed that (1) fruiting is more annually periodic (the pattern in one year is similar to that seen in the next year) in temperate forest in terms of the number of fruiting species or trees, (2) there is no consistent difference in interannual variations in fruiting between temperate and tropical forests, although some oak-dominated temperate forests exhibit extremely large interannual variations in fruiting, (3) the timing of the flushing peak is predictable (in spring and early summer), and (4) the duration of the flushing season is shorter. The flushing season in temperate forests (17–28 % of that in tropical forests) was quite limited, even compared to the fruiting season (68 %). These results imply that temperate primates need to survive a long period of scarcity of young leaves and fruits, but the timing is predictable. Therefore, a dependence on low-quality foods, such as mature leaves, buds, bark, and lichens, would be indispensable for temperate primates. Due to the high predictability of the timing of fruiting and flushing in temperate forests, fat accumulation during the fruit-abundant period and fat metabolization during the subsequent fruit-scarce period can be an effective strategy to survive the lean period (winter).  相似文献   

19.
In temperate trees, the timings of plant growth onset and cessation affect biogeochemical cycles, water, and energy balance. Currently, phenological studies largely focus on specific phenophases and on their responses to warming. How differently spring phenology responds to the warming and cooling, and affects the subsequent phases, has not been yet investigated in trees. Here, we exposed saplings of Fagus sylvatica L. to warmer and cooler climate during the winter 2013–2014 by conducting a reciprocal transplant experiment between two elevations (1,340 vs. 371 m a.s.l., ca. 6°C difference) in the Swiss Jura mountains. To test the legacy effects of earlier or later budburst on the budset timing, saplings were moved back to their original elevation shortly after the occurrence of budburst in spring 2014. One degree decrease in air temperature in winter/spring resulted in a delay of 10.9 days in budburst dates, whereas one degree of warming advanced the date by 8.8 days. Interestingly, we also found an asymmetric effect of the warmer winter vs. cooler winter on the budset timing in late summer. Budset of saplings that experienced a cooler winter was delayed by 31 days compared to the control, whereas it was delayed by only 10 days in saplings that experienced a warmer winter. Budburst timing in 2015 was not significantly impacted by the artificial advance or delay of the budburst timing in 2014, indicating that the legacy effects of the different phenophases might be reset during each winter. Adapting phenological models to the whole annual phenological cycle, and considering the different response to cooling and warming, would improve predictions of tree phenology under future climate warming conditions.  相似文献   

20.
S. Cunningham  J. Read 《Oecologia》2002,133(2):112-119
Little is known about the differences in physiology between temperate and tropical trees. Australian rainforests extend from tropical climates in the north to temperate climates in the south over a span of 33° latitude. Therefore, they provide an opportunity to investigate differences in the physiology of temperate and tropical trees within the same vegetation type. This study investigated how the response of net photosynthesis to growth temperature differed between Australian temperate and tropical rainforest trees and how this correlated with differences in their climates. The temperate species showed their maximum rate of net photosynthesis at lower growth temperatures than the tropical species. However, the temperate species showed at least 80% of maximum net photosynthesis over a 12-16°C span of growth temperature, compared with a span of 9-11°C shown by the tropical species. The tropical species showed both larger reductions in maximum net photosynthesis at low growth temperatures and larger reductions in the optimum instantaneous temperature for net photosynthesis with decreasing growth temperature than the temperate species. The ability of the temperate species to maintain maximum net photosynthesis over a greater span of growth temperatures than the tropical species is consistent with the greater seasonal and day-to-day variation in temperature of the temperate climate compared with the tropical climate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号