首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Question: Does the increase in Populus tremuloides cover within the Picea mariana–feathermoss domain enhance establishment and growth conditions for Abies balsamea regeneration? Location: Boreal forest of northwest Quebec, Canada. Method: To document the effect of Populus tremuloides on A. balsamea regeneration, mixed stands with a heterogeneous presence of P. tremuloides adjacent to Picea mariana‐dominated stands were selected. Abies balsamea regeneration, understorey environment and canopy composition were characterized from 531 sampling units distributed along transects covering the mixed–coniferous gradient. Abundance of understorey A. balsamea regeneration was described using three height groups: seedling (<30 cm), small sapling (30 to <100 cm) and tall sapling (100 to 300 cm). Growth characteristics were measured from 251 selected individuals of A. balsamea (<3 m). Results: Results showed that A. balsamea regeneration was generally more abundant when P. tremuloides was present in the canopy. Differences between seedling and sapling abundance along the mixed–coniferous gradient suggest that while establishment probably occurs over a wide range of substrates, the better growth conditions found under mixed stands ensure a higher survival rate for A. balsamea seedlings. Conclusions: The abundant A. balsamea regeneration observed within mixed stands of the Picea mariana–feathermoss domain suggests that the increase in P. tremuloides cover, favoured by intensive management practices and climatic change, could contribute to acceleration of the northward expansion of the A. balsamea–Betula papyrifera domain into the northern boreal forest dominated by Picea mariana.  相似文献   

2.
Every other week over their second growing season, stem height, collar diameter, shoot and root dry masses, number of lateral roots and length of the tap root were measured on nursery grown seedlings ofAbies balsamea L. Mill.,Pinus banksiana Lamb.,Pinus resinosa Ait.,Picea mariana Mill. BSP andPicea glauca Moench Voss. Root elongation, branching and mycorrhizal development were also recorded.Given species showed distinct seasonal growth patterns. The rate and timing of maximum root growth (mg/dry weight/week) differed markedly between species.Except for the increase in height ofPinus banksiana, root and shoot growth were not negatively correlated.The results are discussed in relation to the performance of tree seedlings in the nursery.  相似文献   

3.
To address the central question of how climate change influences tree growth within the context of global warming, we used dendroclimatological analysis to understand the reactions of four major boreal tree species –Populus tremuloides, Betula papyrifera, Picea mariana, and Pinus banksiana– to climatic variations along a broad latitudinal gradient from 46 to 54°N in the eastern Canadian boreal forest. Tree‐ring chronologies from 34 forested stands distributed at a 1° interval were built, transformed into principal components (PCs), and analyzed through bootstrapped correlation analysis over the period 1950–2003 to identify climate factors limiting the radial growth and the detailed radial growth–climate association along the gradient. All species taken together, previous summer temperature (negative influences), and current January and March–April temperatures (positive influences) showed the most consistent relationships with radial growth across the gradient. Combined with the identified species/site‐specific climate factors, our study suggested that moisture conditions during the year before radial growth played a dominant role in positively regulating P. tremuloides growth, whereas January temperature and growing season moisture conditions positively impacted growth of B. papyrifera. Both P. mariana and P. banksiana were positively affected by the current‐year winter and spring or whole growing season temperatures over the entire range of our corridor. Owing to the impacts of different climate factors on growth, these boreal species showed inconsistent responsiveness to recent warming at the transition zone, where B. papyrifera, P. mariana, and P. banksiana would be the most responsive species, whereas P. tremuloides might be the least. Under continued warming, B. papyrifera stands located north of 49°N, P. tremuloides at northern latitudes, and P. mariana and P. banksiana stands located north of 47°N might benefit from warming winter and spring temperatures to enhance their radial growth in the coming decades, whereas other southern stands might be decreasing in radial growth.  相似文献   

4.
Forest succession following fire in a forest mosaic of northwestern Quebec has been studied in order to: (1) describe the successional pathways using communities of different ages and (2) evaluate convergence of successional pathways and possible effect of fire suppression on the establishment of steady-state communities. As a first step, ordination and classification techniques were used in order to remove changes in forest composition which are related to abiotic conditions. Then, ordinations based on tree diameter distributions were used to study shifts in species composition in relation to time since the last fire.Even under similar abiotic conditions, successional pathways are numerous. However, regardless of forest composition after fire, most stands show convergence toward dominance of Thuja occidentalis and Picea mariana on xeric sites and dominance of Abies balsamea and Thuja occidentalis on more mesic sites. Stable communities of >300 yr occur on xeric sites while on mesic sites directional succession still occurs after 224 yr. Nearly all species involved in succession are present in the first 50 yr following fire. Only Abies balsamea and Thuja occidentalis increase significantly in frequency during succession. Following initial establishment, successional processes can generally be explained by species longevity and shade tolerance. Early successional species may be abundant in the canopy for more than 200 yr while the rapid decrease of Picea glauca, a late successional species could be related to spruce budworm outbreaks. Considering the short fire rotation observed (about 150 yr), a steady-state forest is unlikely to occur under natural conditions, though it may be possible if fire is controlled.  相似文献   

5.
Although succession may follow multiple pathways in a given environment, the causes of such variation are often elusive. This paper describes how changes in fire interval mediate successional trajectory in conifer-dominated boreal forests of northwestern Canada. Tree densities were measured 5 and 19 years after fire in permanent plots and related to pre-fire vegetation, site and fire characteristics. In stands that were greater than 75 years of age when they burned, recruitment density of conifers was significantly correlated with pre-fire species basal area, supporting the expectation of stand self-replacement as the most common successional pathway in these forests. In contrast, stands that were under 25 years of age at the time of burning had significantly reduced conifer recruitment, but showed no change in recruitment of trembling aspen (Populus tremuloides). As a result, young-burned stands had a much higher probability of regenerating to deciduous dominance than mature-burned stands, despite the dominance of both groups by spruce (Picea mariana and Picea glauca) and pine (Pinus contorta) before the fire. Once initiated, deciduous-dominated stands may be maintained across subsequent fire cycles through mechanisms such as low on-site availability of conifer seed, competition with the aspen canopy, and rapid asexual regeneration of aspen after fire. We suggest that climate-related increases in fire frequency could trigger more frequent shifts from conifer to deciduous-dominated successional trajectories in the future, with consequent effects on multiple ecosystem processes.  相似文献   

6.
Pollen, plant macrofossil and charcoal analyses of sediments from two Alaskan lakes provide new data for inferring Lateglacial and Holocene environmental change. The records span the past 14,700 years at Lost Lake, 240 m a.s.l., central Alaska, north of the Alaska Range and 9600 years at Grizzly Lake, 720 m a.s.l., Copper River Plateau, south of the Alaska Range. Salix shrubs expanded in the herb tundra about 14,400 cal b.p., and Betula shrub tundra became established at ca. 13,200 cal b.p. Diminished Betula shrub cover in association with the increased abundance of herbaceous taxa occurred at 12,500–11,600 cal b.p., although the timing of these changes is not well constrained. Populus expanded at 11,200 cal b.p. and formed dense stands until 9600–9400 cal b.p. when Picea glauca forests or woodlands became established at both sites. The abundance of Alnus viridis increased markedly around 8500 cal b.p. at both sites, marking the development of alder shrub thickets around the lakes and on mountain slopes in these areas. Boreal forests dominated by Picea mariana became established around 7200 cal b.p. at Grizzly Lake and 5700 cal b.p. at Lost Lake. At Grizzly Lake, marked vegetational oscillations occurred within the past 8500 years; for example, A. viridis expanded at 2750 cal b.p. and 450 cal b.p. and declined at 150 cal b.p. Some of these oscillations coincide with large-scale climatic events, such as the Little Ice Age cooling (LIA), and they probably reflect vegetational sensitivity to climatic change at this high site. Microscopic charcoal at Lost Lake suggests that fire was important in the lateglacial birch tundra, probably because of severe moisture deficits of the regional climate and/or high abundance of fine fuels. On the basis of the Grizzly Lake microscopic charcoal record, regional fires were common between 8500 and 6800 cal b.p. and between 450 and 150 cal b.p. Around Grizzly Lake, the mean return intervals of local fires estimated from macroscopic charcoal were ∼386 years between 6800 and 5500 cal b.p. when Picea glauca dominated over P. mariana, ∼254 years between 5500 and 3900 cal b.p. when P. mariana was more abundant than P. glauca, and ∼200 years after 3900 cal b.p. in both P. glauca and P. mariana dominated forests. Correlation analysis of pollen and microscopic charcoal at Grizzly Lake reveals that increased fire activity led to the reductions of P. glauca, P. mariana, and tree Betula in association with the expansions of A. viridis, Epilobium, Lycopodium clavatum, and L. annotinum.  相似文献   

7.
Boreal forests are critical to the global carbon (C) cycle. Despite recent advances in our understanding of boreal C budgets, C dynamics during compositional transition to late-succession forests remain unclear. Using a carefully replicated 203-year chronosequence, we examined long-term patterns of forest C stocks and net ecosystem productivity (NEP) following stand-replacing fire in the boreal forest of central Canada. We measured all C pools, including understorey vegetation, belowground biomass, and soil C, which are often missing from C budgets. We found a slight decrease in total ecosystem C stocks during early stand initiation, between 1 and 8 years after fire, at ?0.90 Mg C ha?1 y?1. As stands regenerated, live vegetation biomass increased rapidly, with total ecosystem C stocks reaching a maximum of 287.72 Mg C ha?1 92 years after fire. Total ecosystem C mass then decreased in the 140- and 203-year-old stands, losing between ?0.50 and ?0.74 Mg C ha?1 y?1, contrasting with views that old-growth forests continue to maintain a positive C balance. The C decline corresponded with canopy transition from dominance of Populus tremuloides, Pinus banksiana, and Picea mariana in the 92-year-old stands to Betula papyrifera, Picea glauca, and Abies balsamea in the 203-year-old stands. Results from this study highlight the role of succession in long-term forest C dynamics and its importance when modeling terrestrial C flux.  相似文献   

8.
We quantified the effect of stand age and tree species composition on canopy transpiration (EC) by analysing transpiration per unit leaf area (EL) and canopy stomatal conductance (GS) for boreal trees comprising a five stand wildfire chronosequence. A total of 196 sap flux sensors were used on 90 trees consisting of Betula papyrifera Marsh (paper birch; present in the youngest stand), Populus tremuloides Michx (quaking aspen), Pinus banksiana Lamb. (jack pine), and Picea mariana (Mill.) (black spruce). While fine roots were positively correlated with stand EC; leaf area index, basal area, and sapwood area were not. Stands less than 70 years old were dominated by Populus tremuloides and Pinus banksiana and stands greater than 70 years old were composed almost entirely of Picea mariana. As Populus tremuloides and Pinus banksiana increased in size and age, they displayed an increasing sapwood to leaf area ratio (AS : AL), a constant minimum leaf water potential (ΨL), and a constant proportionality between GS at low vapour pressure deficit (Dj GSref) and the sensitivity of GS to D (–δ). In contrast, AS : AL, minimum ΨL, and the proportionally between –δ and GSref decreased with height and age in Picea mariana. A GS model that included the effects of D, AS : AL, tree height, and for Picea mariana an increasing soil to leaf water potential gradient with stand age, was able to capture the effects of contrasting hydraulic properties of Picea mariana, Populus tremuloides and Pinus banksiana during stand development after wildfire.  相似文献   

9.
Abstract. The age structure and growth patterns of 53 young conifer-hardwood stands on upland, south-facing sites of interior Alaska were analyzed to determine the length of time for stand establishment after disturbance, the composition of early-successional stands compared to existing stands, and the potential for late-successional stands dominated by conifers. Mixed stands of Picea glauca, Populus tremuloides and Betula papyrifera represented five plant community types and developed as single cohorts after stand-replacement fires. In the Populus tremuloides/Arctostaphylos uva-ursi and Populus tremuloides/Shepherdia canadensis community types, hardwoods established rapidly and Picea glauca established slowly. In contrast, stands in the Betula papyrifera-Populus tremuloides/Viburnum edule, Betula papyrifera-Populus tremuloides/Alnus crispa, and Picea glauca-Betula papyrifera/Hylocomium splendens community types generally developed as a result of rapid, concurrent establishment of conifers and hardwoods. These single-cohort, mixed species development patterns are not consistent with continual establishment of conifers and are likely the result of unique life-history traits and frequent stand-replacement fires.  相似文献   

10.
The objective of this study was to characterize the effects of soil burn severity and initial tree composition on long-term forest floor dynamics and ecosystem biomass partitioning within the Picea mariana [Mill.] BSP-feathermoss bioclimatic domain of northwestern Quebec. Changes in forest floor organic matter and ecosystem biomass partitioning were evaluated along a 2,355-year chronosequence of extant stands. Dendroecological and paleoecological methods were used to determine the time since the last fire, the soil burn severity of the last fire (high vs. low severity), and the post-fire tree composition of each stand (P. mariana vs. Pinus banksiana Lamb). In this paper, soil burn severity refers to the thickness of the organic matter layer accumulated above the mineral soil that was not burned by the last fire. In stands originating from high severity fires, the post-fire dominance by Pinus banksiana or P. mariana had little effect on the change in forest floor thickness and tree biomass. In contrast, stands established after low severity fires accumulated during the first century after fire 73% thicker forest floors and produced 50% less tree biomass than stands established after high severity fires. Standing tree biomass increased until approximately 100 years after high severity fires, and then decreased at a logarithmic rate in the millennial absence of fire. Forest floor thickness also showed a rapid initial accumulation rate, and continued to increase in the millennial absence of fire at a much slower rate. However, because forest floor density increased through time, the overall rate of increase in forest floor biomass (58 g m−2 y−1) remained constant for numerous centuries after fire (700 years). Although young stands (< 200 years) have more than 60% of ecosystem biomass locked-up in living biomass, older stands (> 200 years) sequester the majority (> 80%) of it in their forest floor. The results from this study illustrate that, under similar edaphic conditions, a single gradient related to time since disturbance is insufficient to account for the full spectrum of ecosystem biomass dynamics occurring in eastern boreal forests and highlights the importance of considering soil burn severity. Although fire severity induces diverging ecosystem biomass dynamics in the short term, the extended absence of fire brings about a convergence in terms of ecosystem biomass accumulation and partitioning.  相似文献   

11.
Random amplified polymorphic DNA (RAPD) analysis was used to determine genetic relationships amongP. mariana (black spruce),P. rubens (red spruce), andP. glauca (white spruce) and to assess the degree of polymorphism within populations from different provenances and among spruce hybrids. Eleven arbitrary decamer primers were used to amplify genomic DNAs extracted from embryogenic cultures and seedlings. Species-specific RAPD markers were identified.Picea mariana andP. rubens showed similar RAPD profiles confirming their close genetic relationship. Species-specific RAPD markers were identified and were useful in distinguishing white spruce from black and red spruces. RAPD differentiation between populations within each species was small. The level of polymorphism was much higher in spruce hybrid populations than in the pure species. Cytological analysis ofP. mariana ×P. rubens hybrids showed normal mitotic behaviour at prophase, metaphase, anaphase, and telophase. All the hybrids analyzed from different cross combinations were euploids.  相似文献   

12.
A detailed karyotype analysis was made on the somatic complement ofPicea rubens andP. glauca. B-chromosomes were observed in someP. glauca populations. The karyotypes are generally asymmetrical with most of the chromosomes having median to median-submedian centromeres.Picea glauca chromosomes 2, 3, 7, and 8 have secondary constriction on their short arm and chromosome 10 has a secondary constriction on the long arm. Chromosome 3 was the most easily identifiable, as it has two secondary constrictions located on the short arm. InP. rubens, all the chromosomes but chromosomes 8 and 9 have one to four distinctive secondary constrictions. In general, the diagrammatic comparisons show a high degree of similarity amongP. mariana, P. rubens, andP. glauca. GenomicP. mariana probe strongly hybridized to dots of genomic DNA fromP. rubens andP. glauca indicating that there is a high sequence homology among these three species. The synchronizing agent, hydroxyurea was used at different concentrations to enhance the mitotic index of cell suspensions derived from embryogenic cultures. Hydroxyurea at 1.25 mM increased significantly the mitotic index. An increase of hydroxyurea from 1.25 mM to 5 mM and 10 mM resulted in a steady decrease of mitotic index.  相似文献   

13.
In the absence of fire in black spruce-feathermoss stands, a thick forest floor layer dominated by bryophytes and sphagnum accumulates. This layer is associated with wet, cool and nutrient-poor soil conditions conducive to the paludification process and pushing the ecosystem towards an unproductive open black spruce forest. The presence of Populus tremuloides in theses stands may halt this process because this species has a high nutrient cycling rate and a litter that represses moss cover. The main hypothesis of this study is that, despite similar abiotic conditions (slope and drainage), the presence of Populus tremuloides in a stand dominated by Picea mariana affects surface soil nutrient availability, total N, pH as well as the decomposition process. The abundance of Populus tremuloides trees was associated with higher exchangeable cations, cationic exchangeable capacity and pH of the forest floor layer on all sites. A decrease in organic matter thickness with increasing aspen presence was also found on all sites, suggesting that this species affects the decomposition process by the quality of its litter as well as by a general improvement of soil physical and chemical properties. The decomposition rate of a standard substrate as well as in vitro potential net nitrogen mineralization were positively related to Populus tremuloides on only one of the three sites, and non-significant on the other sites. Strong immobilization of added nitrogen during incubation was observed on all sites and was not related to aspen, which suggested that in these stands, the soil microbial community is uniformly and strongly nitrogen limited. The zone of influence of Populus tremuloides was evaluated in areas around the soil sampling plot ranging from 3 to 7 m. The results revealed that this zone varies with soil properties. The results suggest that the presence of Populus tremuloides accelerate nutrient cycling, which could affect stand productivity to some extent.  相似文献   

14.
Pinus banksiana andPicea glauca inoculated or not with the ectomycorrhizal fungusSuillus luteus were grown in a sandy loam soil containing a range of Cd, Cu, Ni, Pb and Zn concentrations. Ectomycorrhizal colonization rates were significantly reduced on Pinus and Picea seedlings by the heavy metals, particularly Cd and Ni. Needle tissue metal concentrations were lower in ectomycorrhizal seedlings at low soil metal concentrations. However, at higher soil concentrations, heavy metal concentrations of needle tissue were similar in ectomycorrhizal and nonmycorrhizal plants. The growth of nonmycorrhizal seedlings exposed to heavy metals was reduced compared to those inoculated withSuillus luteus. Apparently ectomycorrhizal colonization can protect Pinus and Picea seedlings from heavy metal toxicity at low or intermediate soil concentrations of Cd, Cu, Ni, Pb and Zn.  相似文献   

15.
Question: In the boreal forest of eastern Canada, how does forest vegetation change in the sustained absence of fire? Location: Eastern boreal forest in Quebec's North Shore region, Canada (49°30′–50°00′N; 67°30′–68°35′W). Methods: Aerial photos from three different periods (1930, 1965 and 1987) were used to characterize changes in vegetation composition in 23 scenes of 200 ha. Time since fire, presence of secondary disturbances and data on soil and topographic variables were obtained. Ordination and clustering techniques were used to define compositional trajectories of change over the 57‐yr period. These trajectories were further grouped into pathways based on compositional changes, time since fire and preferential deposit‐drainage types. Results: Among the 26 compositional trajectories, three successional pathways were distinguished. Two start post‐fire succession with a dominance of intolerant hardwood. In one of these, this is followed by an increase in Abies balsamea, while in the second the importance of Picea mariana increases with time. In the third pathway P. mariana is an important component from the outset. In this pathway, we observed modest fluctuation in the relative dominance of P. mariana and A. balsamea and variation in stand structure. Conclusion: The boreal forest vegetation of Eastern Canada is diverse and dynamic even in the absence of fire, notably under the influence of partial disturbances. Such disturbances can be associated with changes in composition or stand structure. The development of management strategies aimed at maintaining stand diversity by emulating a broader variety of partial and secondary disturbances should be encouraged.  相似文献   

16.
Fire, which is the dominant disturbance in the boreal forest, creates substantial heterogeneity in soil burn severity at patch and landscape scales. We present results from five field experiments in Yukon Territory, Canada, and Alaska, USA that document the effects of soil burn severity on the germination and establishment of four common boreal trees: Picea glauca, Picea mariana, Pinus contorta subsp. latifolia, and Populus tremuloides. Burn severity had strong positive effects on seed germination and net seedling establishment after 3 years. Growth of transplanted seedlings was also significantly higher on severely burned soils. Our data and a synthesis of the literature indicated a consistent, steep decline in conifer establishment on organic soils at depths greater than 2.5 cm. A meta-analysis of seedling responses found no difference in the magnitude of severity effects on germination versus net establishment. There were, however, significant differences in establishment but not germination responses among deciduous trees, spruce, and pine, suggesting that small-seeded species experience greater mortality on lightly burned, organic soils than large-seeded species. Together, our analyses indicate that variations in burn severity can influence multiple aspects of forest stand structure, by affecting the density and composition of tree seedlings that establish after fire. These effects are predicted to be most important in moderately-drained forest stands, where a high potential variability in soil burn severity is coupled with strong severity effects on tree recruitment.  相似文献   

17.
Increasing air temperatures and changing precipitation patterns due to climate change can affect tree growth in boreal forests. Periodic insect outbreaks affect the growth trajectory of trees, making it difficult to quantify the climate signal in growth dynamics at scales longer than a year. We studied climate‐driven growth trends and the influence of spruce budworm (Choristoneura fumiferana Clem.) outbreaks on these trends by analyzing the basal area increment (BAI) of 2058 trees of Abies balsamea (L.) Mill., Picea glauca (Moench) Voss, Thuja occidentalis L., Populus tremuloides Michx., and Betula papyrifera Marsh, which co‐occurs in the boreal mixedwood forests of western Quebec. We used a generalized additive mixed model (GAMM) to analyze species‐specific trends in BAI dynamics from 1967 to 1991. The model relied on tree size, cambial age, degree of spruce budworm defoliation, and seasonal climatic variables. Overall, we observed a decreasing growth rate of the spruce budworm host species, A. balsamea and P. glauca between 1967 and 1991, and an increasing growth rate for the non‐host, P. tremuloides, B. papyrifera, and T. occidentalis. Our results suggest that insect outbreaks may offset growth increases resulting from a warmer climate. The observation warrants the inclusion of the spruce budworm defoliation into models predicting future forest productivity.  相似文献   

18.
Decayed wood from fallen white spruce (Picea glauca) and trembling aspen (Populus tremuloides) collected in northeastern Alberta, Canada, was the source of new isolates of species in the ascomycete generaGymnostellatospora andPseudogymnoascus. In addition to new reports ofG. japonica, G. frigida andP. roseus, two new species are described.Gymnostellatospora canadensis sp. nov. resemblesG. japonica but differs in producing brown ascomata and in the formation of an arthroconidial anamorph.Gymnostellatospora subnuda sp. nov. is distinct in lacking differentiated peridial hyphae.Gymnostellatospora alpina was not found in decayed wood but is reviewed based on extralimital material. A dichtomous key to the five species ofGymnostellatospora is provided.  相似文献   

19.
Genetic modification of conifers through gene transfer technology is now an important field in forest biotechnology. Two basic methodologies, particle bombardment and Agrobacterium-mediated transformation, have been used on conifers. The use of particle bombardment has produced stable transgenic plants in Picea abies, P. glauca, P. mariana, and Pinus radiata. Transgenic plants have been produced from Larix decidua, Picea abies, P. glauca, P. mariana, Pinus strobus, P. taeda, and P. radiata via Agrobacterium-mediated transformation. Agrobacterium-mediated transformation has advantages over particle bombardment such as a simpler integration pattern and a limited rearrangement in the introduced DNA. At present, genetic transformation of conifers has been directed toward improving growth rate, wood properties and quality, pest resistance, stress tolerance, and herbicide resistance, which will drive forestry to enter a new era of productivity and quality.Abbreviations 35S 35S promoter of cauliflower mosaic virus - 4CL 4-Coumarate–coenzyme A ligase - AEOMT Multi-functional O-methyltransferase - APHIS Animal Plant Health Inspection Agency - Bt Bacillus thuringensis toxin - CAld5H Coniferaldehyde 5-hydroxylase - CaMV Cauliflower mosaic virus - CAT Chloramphenicol acetyltransferase - EPSP 5-Enolpyruvylshikimate 3-phosphate - EPA Environmental Protection Agency - GFP Green fluorescent protein - GUS -Glucuronidase - Luc luciferase - NPT Neomycin phosphotransferase - USDA US Department of AgricultureCommunicated by P.P. Kumar  相似文献   

20.
There is an urgent need to accelerate the development of informative codominant markers of coding regions such as ESTPs (expressed sequence tag polymorphisms) to estimate map synteny within and among taxa. A set of primer pairs for 207 ESTs or cDNAs from Picea and Pinus taxa was screened on three distantly-related taxa in the genus Picea, P. mariana (Mill.) B.S.P., P. glauca (Moench) Voss and P. abies (L.) Karst. Of these, 118 (57%) resulted in positive amplification of single-locus gene products in the first two species. To detect polymorphism, these 118 markers were further screened on a panel of 10 pedigree parents for each of P. mariana and P. glauca, either by agarose gel electrophoresis (AGE) or by parallel denaturing gradient gel electrophoresis (DGGE) with standard conditions of 15-45% urea-formamide. Of these, 87 and 74 were found polymorphic in P. mariana and P. glauca, respectively, and 65 were polymorphic in both species. DNA pool sequencing has been explored as a possible strategy to increase economically the detection throughput of SNPs and small indels, and to characterize the types of DNA polymorphism detected by DGGE. Different DNA samples of known sequences were pooled in different ratio mixtures before and after PCR amplifications to determine their minimum relative abundance for detection of DNA polymorphisms by sequencing. For detection of a polymorphism in the DNA pools, the minimum level of relative abundance was 10%. Pooling DNA samples before or after PCR amplification had no effect on the detection of polymorphism by sequencing. For each species panel, the DNAs were pooled and then amplified and sequenced for the 118 primer pairs. With this strategy, the number of ESTPs increased to 107 in P. mariana and 106 in P. glauca, and the number of ESTPs shared by both species increased to 99. About half of the ESTP markers displayed both SNP and indel polymorphisms while the other half displayed only SNPs. Most of the additional ESTPs were amenable to detection by DGGE or CAPS (Cleaved Amplified Polymorphic Sequence) for mapping purposes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号