首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Drought is a normal, recurrent feature of climate. In order to understand the potential effect of increasing atmospheric CO2 concentration (C a) on ecosystems, it is essential to determine the combined effects of drought and elevated C a (EC) under field conditions. A severe drought occurred in Central Florida in 1998 when precipitation was 88 % less than the average between 1984 and 2002. We determined daytime net ecosystem CO2 exchange (NEE) before, during, and after the drought in the Florida scrub-oak ecosystem exposed to doubled C a in open-top chamber since May 1996. We measured diurnal leaf net photosynthetic rate (P N) of Quercus myrtifolia Willd, the dominant species, during and after the drought. Drought caused a midday depression in NEE and P N at ambient CO2 concentration (AC) and EC. EC mitigated the midday depression in NEE by about 60 % compared to AC and the effect of EC on leaf P N was similar to its effect on NEE. Growth in EC lowered the sensitivity of NEE to air vapor pressure deficit under drought. Thus EC would help the scrub-oak ecosystem to survive the consequences of the effects of rising atmospheric CO2 on climate change, including increased frequency of drought, while simultaneously sequestering more anthropogenic carbon.  相似文献   

2.
Significant part of our work was developing a new type of CO2 and H2O gas exchange chambers fit for measuring stand patches. Ground areas of six chambers (ranged between 0.044–4.531 m2) constituted a logarithmic series with doubling diameters from 7.5 to 240.0 cm. We demonstrate one of the first results for stand net ecosystem CO2 exchange (NEE) rates and temporal variability for two characteristic Central European grassland types: loess and sand. The measured mean NEE rates and their ranges in these grasslands were similar to values reported in other studies on temperate grasslands. We also dealt with the spatial scale dependence from ecophysiological point of view. Our chamber-series measurement was performed in a perennial ruderal weed association. The variability of CO2-assimilation of this weed vegetation showed clear spatial scale-dependence. We found the lowest variability of the vegetation photosynthesis at the small-middle scales. The results of spatial variability suggest the 0.2832 m2 patch size is the characteristic unit of the investigated weed association and there is a kind of synphysiological minimi-area with characteristic size for each vegetation type.This work was supported by the Hungarian Scientific Research Fund (OTKA-32586), Plant Ecological Research Group of Hungarian Academy of Sciences, Kiskunsag National Park and CARBOMONT (EVK2-2002-00549) 5th R & D EU project. This project is also related to CARBOEUROPE-IP (GOCE-CT-2003-50-5572) and GREENGRASS 5th Framework Research Project (EVK-2-CT-2002-00105).Dedicated to Academician Prof. Gabor Fekete on the occasion of his 75th birthday.  相似文献   

3.
The relationship between leaf photosynthetic rate (A) in a vegetation canopy and the net ecosystem CO2 exchange (NEE) over an entire ecosystem is not well understood. The aim of the present study is to assess the coordinated changes in NEE derived with eddy covariance, A measured in leaf cuvette, and their associations in a rainfed maize field. The light response-curves were estimated for the carbon assimilation rate at both the leaf and ecosystem scales. NEE and A synchronically changed throughout the day and were greater around noon and persisted longer during rapid growth periods. The leaf A had a similar pattern of daytime changes in the top, middle, and bottom leaves. Only severe leaf ageing led to a significant decline in the maximum efficiency of photosystem II (PSII) photochemistry. The greater maximum NEE was associated with a higher ecosystem quantum yield. NEE was positively and significantly correlated with the leaf A averaged based on the vertical distribution of leaf area. The finding highlights the feasibility of assessing NEE by leaf CO2 exchange because of most of experimental data obtained with leaf cuvette methods; and also implies that simultaneously enhancing leaf photosynthetic rate, electron transport rate, net carbon assimilation at whole ecosystem might play a critical role for the enhancement of crop productivity.  相似文献   

4.
For most ecosystems, net ecosystem exchange of CO2 (NEE) varies within and among years in response to environmental change. We analyzed measurements of CO2 exchange from eight native rangeland ecosystems in the western United States (58 site‐years of data) in order to determine the contributions of photosynthetic and respiratory (physiological) components of CO2 exchange to environmentally caused variation in NEE. Rangelands included Great Plains grasslands, desert shrubland, desert grasslands, and sagebrush steppe. We predicted that (1) week‐to‐week change in NEE and among‐year variation in the response of NEE to temperature, net radiation, and other environmental drivers would be better explained by change in maximum rates of ecosystem photosynthesis (Amax) than by change in apparent light‐use efficiency (α) or ecosystem respiration at 10 °C (R10) and (2) among‐year variation in the responses of NEE, Amax, and α to environmental drivers would be explained by changes in leaf area index (LAI). As predicted, NEE was better correlated with Amax than α or R10 for six of the eight rangelands. Week‐to‐week variation in NEE and physiological parameters correlated mainly with time‐lagged indices of precipitation and water‐related environmental variables, like potential evapotranspiration, for desert sites and with net radiation and temperature for Great Plains grasslands. For most rangelands, the response of NEE to a given change in temperature, net radiation, or evaporative demand differed among years because the response of photosynthetic parameters (Amax, α) to environmental drivers differed among years. Differences in photosynthetic responses were not explained by variation in LAI alone. A better understanding of controls on canopy photosynthesis will be required to predict variation in NEE of rangeland ecosystems.  相似文献   

5.
Isoprene is the most abundant biogenic hydrocarbon released from vegetation and it plays a major role in tropospheric chemistry. Because of its link to climate change, there is interest in understanding the relationship between CO2, water availability and isoprene emission. We explored the effect of atmospheric elevated CO2 concentration and its interaction with vapour pressure deficit (VPD) and water stress, on gross isoprene production (GIP) and net ecosystem exchange of CO2 (NEE) in two Populus deltoides plantations grown at ambient and elevated atmospheric CO2 concentration in the Biosphere 2 Laboratory facility. Although GIP and NEE showed a similar response to light and temperature, their responses to CO2 and VPD were opposite; NEE was stimulated by elevated CO2 and depressed by high VPD, while GIP was inhibited by elevated CO2 and stimulated by high VPD. The difference in response between isoprene production and photosynthesis was also evident during water stress. GIP was stimulated in the short term and declined only when the stress was severe, whereas NEE started to decrease from the beginning of the experiment. This contrasting response led the carbon lost as isoprene in both the ambient and the elevated CO2 treatments to increase as water stress progressed. Our results suggest that water limitation can override the inhibitory effect of elevated CO2 leading to increased global isoprene emissions in a climate change scenario with warmer and drier climate.  相似文献   

6.
This paper estimates CO2 emission and net ecosystem exchange (NEE) between the atmosphere and the surface of bog in the south taiga of the European part of Russia for the summer periods of 2013–2015. Flux measurements are carried out by the static chamber method every 7–10 days in three experimental sites with homogenous conditions of soil moisture and vegetation type. Statistically significant differences in CO2 fluxes and NEE are found between different experimental sites. It is shown that an assessment of the significance of bogs in CO2 balance with the atmosphere must be made with consideration for the spatial heterogeneity of bogs.  相似文献   

7.
CO2 exchange components of a temperate semi-desert sand grassland ecosystem in Hungary were measured 21 times in 2000–2001 using a closed IRGA system. Stand CO2 uptake and release, soil respiration rate (R s), and micrometeorological values were determined with two types of closed system chambers to investigate the daily courses of gas exchange. The maximum CO2 uptake and release were –3.240 and 1.903 mol m–2 s–1, respectively, indicating a relatively low carbon sequestration potential. The maximum and the minimum R s were 1.470 and 0.226 mol(CO2) m–2 s–1, respectively. Water shortage was probably more effective in decreasing photosynthetic rates than R s, indicating water supply as the primary driving variable for the sink-source relations in this ecosystem type.  相似文献   

8.
In many coastal areas of South-East Asia, attempts have been made to revive coastal ecosystem by initiating projects that encourage planting of mangrove trees. Compared to the terrestrial trees, mangrove trees possess a higher carbon fixation capacity. It becomes a very significant option for clean development mechanism (CDM) program. However, a reliable method to estimate CO2 fixation capacity of mangrove trees has not been established. Acknowledging the above fact, we decided to set up an estimation method for the CDM program, using gas exchange analysis to estimate mangrove productivity, we put into consideration the net CO2 fixation of reforested Kandelia candel (5-, 10-, and 15-year-old stand). This was estimated by gas exchange analysis and growth curve analysis. In growth curve analysis, we drew a growth curve of a single stand using data of above- and below-ground biomass. In the gas exchange analysis, we calculated CO2 fixation capacity by (1) measuring respiration rate of each organ of stand and calculating respiratory CO2 emission from above- to below-ground biomass. (2) Measuring the single-leaf photosynthetic rate in response to light intensity and calculating the photosynthetic CO2 absorption. (3) We also developed a model for the diurnal changes in temperature, and monthly averages based on one-day estimation of CO2 absorption and emission, which we corrected by this model in order to estimate the net CO2 fixation capacity in response to temperature. Comparing the biomass accumulation of the two methods constructed for the same forest, the above-ground biomass accumulation of 10-year-old forest (34.3 ton ha−1 yr−1) estimated by gas exchange analysis was closely compared to those of growth curve analysis (26.6 ton ha−1 yr−1), suggesting that the gas exchange analysis was capable of estimating mangrove productivity. The validity of the estimated CO2 fixation capacity by the gas exchange analysis and the growth curve analysis was also discussed.  相似文献   

9.
Climate change may turn Arctic biomes from carbon sinks into sources and vice versa, depending on the balance between gross ecosystem photosynthesis, ecosystem respiration (ER) and the resulting net ecosystem exchange (NEE). Photosynthetic capacity is species specific, and thus, it is important to quantify the contribution of different target plant species to NEE and ER. At Ny Ålesund (Svalbard archipelago, Norway), we selected different Arctic tundra plant species and measured CO2 fluxes at plot scale and photosynthetic capacity at leaf scale. We aimed to analyze trends in CO2 fluxes during the transition seasons (beginning vs. end of the growing season) and assess which abiotic (soil temperature, soil moisture, PAR) and biotic (plot type, phenology, LAI, photosynthetic capacity) factors influenced CO2 emissions. NEE and ER differed between vegetation communities. All communities acted as CO2 sources, with higher source strength at the beginning than at the end of the growing season. The key factors affecting NEE were soil temperature, LAI and species-specific photosynthetic capacities, coupled with phenology. ER was always influenced by soil temperature. Measurements of photosynthetic capacity indicated different responses among species to light intensity, as well as suggesting possible gains in response to future increases in atmospheric CO2 concentrations. Species-specific adaptation to low temperatures could trigger significant feedbacks in a climate change context. Our data highlight the need to quantify the role of dominant species in the C cycle (sinks or sources), as changes of vegetation composition or species phenology in response to climate change may have great impact on the regional CO2 balance.  相似文献   

10.
We examined the effects of root and litter exclusion on the rate of soil CO2 efflux and microbial biomass using trenching and tent separation techniques in a secondary forest (SF) and a pine (Pinus caribaea Morelet) plantation in the Luquillo Experimental Forest in Puerto Rico. Soil surface CO2 efflux was measured using the alkali trap method at 12 randomly-distributed locations in each treatment (control, root exclusion, litter exclusion, and both root and litter exclusion) in the plantation and the SF, respectively. We measured soil CO2 efflux every two months and collected soil samples at each sampling location in different seasons to determine microbial biomass from August 1996 to July 1997. We found that soil CO2 efflux was significantly reduced in the litter and root exclusion plots (7-year litter and/or root exclusion) in both the secondary forest and the pine plantation compared with the control. The reduction of soil CO2 efflux was 35.6% greater in the root exclusion plots than in the litter exclusion plots in the plantation, whereas a reversed pattern was found in the secondary forest. Microbial biomass was also reduced during the litter and root exclusion period. In the root exclusion plots, total fungal biomass averaged 31.4% and 65.2% lower than the control plots in the plantation and the secondary forest, respectively, while the total bacterial biomass was 24% and 8.3% lower than the control plots in the plantation and the secondary forest, respectively. In the litter exclusion treatment, total fungal biomass averaged 69.2% and 69.7% lower than the control plots in the plantation and the secondary forest, respectively, while the total bacterial biomass was 48% and 50.1% lower than the control plots in the plantation and the secondary forest, respectively. Soil CO2 efflux was positively correlated with both fungal and bacterial biomass in both the plantation the secondary forest. The correlation between soil CO2 efflux and active fungal biomass was significantly higher in the plantation than in the secondary forest. However, the correlation between the soil CO2 efflux and both the active and total bacterial biomass was significantly higher in the secondary forest than in the plantation in the day season. In addition, we found soil CO2 efflux was highly related to the strong interactions among root, fungal and bacterial biomass by multiple regression analysis (R2 > 0.61, P < 0.05). Our results suggest that carbon input from aboveground litterfall and roots (root litter and exudates) is critical to the soil microbial community and ecosystem carbon cycling in the wet tropical forests.  相似文献   

11.
Tropical floodplain lake ecosystems are recognized as important sources of carbon (C) from the water to the atmosphere. They receive large amounts of organic matter and nutrients from the watershed, leading to intense net heterotrophy and carbon dioxide (CO2) emission from open waters. However, the role of extensive stands of floating macrophytes colonizing floodplains areas is still neglected in assessments of net ecosystem exchange of CO2 (NEE). We assessed rates of air-lake CO2 flux using static chambers in both open waters and waters covered by the widespread floating aquatic macrophyte (water hyacinth; Eichornia sp.) in two tropical floodplain lakes in Pantanal, Brazil during different hydrological seasons. In both lakes, areas colonized by floating macrophytes were a net CO2 sink during all seasons. In contrast, open waters emitted CO2, with higher emissions during the rising and high water periods. Our results indicate that the lake NEE can be substantially overestimated (fivefold or more in the studied lakes) if the carbon fixation by macrophytes is not considered. The contribution of these plants can lead to neutral or negative NEE (that is, net uptake of CO2) on a yearly basis. This highlights the importance of floating aquatic macrophytes for the C balance in shallow lakes and extensive floodplain areas.  相似文献   

12.
The surface of bogs is commonly patterned and composed of different vegetation communities, defined by water level. Carbon dioxide (CO2) dynamics vary spatially between the vegetation communities. An understanding of the controls on the spatial variation of CO2 dynamics is required to assess the role of bogs in the global carbon cycle. The water level gradient in a blanket bog was described and the CO2 exchange along the gradient investigated using chamber based measurements in combination with regression modelling. The aim was to investigate the controls on gross photosynthesis (PG), ecosystem respiration (RE) and net ecosystem CO2 exchange (NEE) as well as the spatial and temporal variation in these fluxes. Vegetation structure was strongly controlled by water level. The species with distinctive water level optima were separated into the opposite ends of the gradient in canonical correspondence analysis. The number of species and leaf area were highest in the intermediate water level range and these communities had the highest PG. Photosynthesis was highest when the water level was 11 cm below the surface. Ecosystem respiration, which includes decomposition, was less dependent on vegetation structure and followed the water level gradient more directly. The annual NEE varied from −115 to 768 g CO2 m−2, being lowest in wet and highest in dry vegetation communities. The temporal variation was most pronounced in PG, which decreased substantially during winter, when photosynthetic photon flux density and leaf area were lowest. Ecosystem respiration, which is dependent on temperature, was less variable and wintertime RE fluxes constituted approximately 24% of the annual flux.  相似文献   

13.
The success of invasive aridland plants may depend on their utilization of precipitation not fully exploited by native species, which could lead to seasonally altered ecosystem carbon and water fluxes. We measured volumetric soil water across 25-cm profiles (??25cm) and springtime whole-plant water- and carbon-fluxes of the exotic Lehmann lovegrass (Eragrostis lehmanniana) and a native bunchgrass, bush muhly (Muhlenbergia porteri), following typical (55?mm in 2009) and El Ni?o-enhanced accumulations (154?mm in 2010) in a SE Arizona savanna. Across both years, ??25cm was higher under lovegrass plots, with similar evapotranspiration (ET) between lovegrass and bush muhly plots. However, in 2010 transpiration (T) was higher in bush muhly than lovegrass, implying higher soil evaporation in lovegrass plots maintained similar ET. Net ecosystem carbon dioxide exchange (NEE) was similar between lovegrass and bush muhly plots in 2009, but was more negative in bush muhly plots following El Ni?o, indicating greater CO2 assimilation. Ecosystem respiration (R eco) and gross ecosystem photosynthesis (GEP) were similar between lovegrass and bush muhly plots in 2009, but were higher in bush muhly plots in 2010. As a result, lovegrass plots reduced ecosystem water-use efficiency (WUEe?=?NEE/ET), while bush muhly WUEe remained constant between 2009 and 2010. Concurrent whole-plant WUE (WUEp?=?GEP/T) did not change in lovegrass plots, but increased in bush muhly plots between these years. We concluded that cool-season precipitation use is not a component of Lehmann lovegrass invasive success, but that the change in ET partitioning and attendant shifts in cool-season WUEe may increase interannual variation in ecosystem water- and carbon-exchange dynamics in the water-limited systems it dominates.  相似文献   

14.
Abstract Climate change is predicted to bring about a water level (WL) draw-down in boreal peatlands. This study aimed to assess the effect of WL on the carbon dioxide (CO2) dynamics of a boreal oligotrophic fen ecosystem and its components; Sphagnum mosses, sedges, dwarf shrubs and the underlying peat. We measured CO2 exchange with closed chambers during four growing seasons in a study site that comprised different vegetation treatments. WL gradient in the site was broadened by surrounding half of the site with a shallow ditch that lowered the WL by 10–25 cm. We modeled gross photosynthesis (P G) and ecosystem respiration (R ECO) and simulated the CO2 exchange in three WL conditions: prevailing and WL draw-down scenarios of 14 and 22 cm. WL draw-down both reduced the P G and increased the R ECO, thus leading to a smaller net CO2 uptake in the ecosystem. Of the different components, Sphagnum mosses were most sensitive to WL draw-down and their physiological activities almost ceased. Vascular plant CO2 exchange, en bloc, hardly changed but whereas sedges contributed twice as much to the CO2 exchange as shrubs in the prevailing conditions, the situation was reversed in the WL draw-down scenarios. Peat respiration was the biggest component in R ECO in all WL conditions and the increase in R ECO following the WL draw-down was due to the increase in peat respiration. The results imply that functional diversity buffers the ecosystem against environmental variability and that in the long term, WL draw-down changes the vegetation composition of boreal fens.  相似文献   

15.
We examined the temperature response of CO2 exchange and soil biogeochemical processes in an Antarctic tundra ecosystem using laboratory incubations of intact tundra cores. The cores were collected from tundra near Anvers Island along the west coast of the Antarctic Peninsula that was dominated by the vascular plants Colobanthus quitensis and Deschampsia antarctica. After the initial 8-week incubation at moderate growth temperatures (12/7°C, day/night), the tundra cores were incubated for another 8 weeks at either a higher (17/12°C) or lower (7/4°C) temperature regime. Temperature responses of CO2 exchange were measured at five temperatures (4, 7, 12, 17, and 27°C) following each incubation and soil leachates were collected biweekly over the second incubation. Daytime net ecosystem CO2 exchange (NEE) per unit core surface area was higher across the five measurement temperatures after the warmer incubation (17/12°C > 7/4°C). Responses of ecosystem respiration (ER) were similar at each measurement temperature irrespective of incubation temperature regimes. ER, expressed on a leaf-area basis, however, was significantly lower following the warmer incubation, suggesting a downregulation of ER. Warmer incubation resulted in a greater specific leaf area and N concentration, and a lower δ13C in live aboveground C. quitensis, but a higher δ13C in D. antarctica, implying species-specific responses to warming. Concentrations of dissolved organic C and N and inorganic N in soil leachates showed that short-term temperature changes had no noticeable effect on soil biogeochemical processes. The results suggest that downregulation of ER, together with plant species differences in leaf-area production and N use, can play a crucial role in constraining the C-cycle response of Antarctic tundra ecosystems to warming.  相似文献   

16.
We describe the long-term effects of a CO2 exhalation, created more than 70 years ago, on a natural C4 dominated sub-tropical grassland in terms of ecosystem structure and functioning. We tested whether long-term CO2 enrichment changes the competitive balance between plants with C3 and C4 photosynthetic pathways and how CO2 enrichment has affected species composition, plant growth responses, leaf properties and soil nutrient, carbon and water dynamics. Long-term effects of elevated CO2 on plant community composition and system processes in this sub-tropical grassland indicate very subtle changes in ecosystem functioning and no changes in species composition and dominance which could be ascribed to elevated CO2 alone. Species compositional data and soil δ13C isotopic evidence suggest no detectable effect of CO2 enrichment on C3:C4 plant mixtures and individual species dominance. Contrary to many general predictions C3 grasses did not become more abundant and C3 shrubs and trees did not invade the site. No season length stimulation of plant growth was found even after 5 years of exposure to CO2 concentrations averaging 610 μmol mol−1. Leaf properties such as total N decreased in the C3 but not C4 grass under elevated CO2 while total non-structural carbohydrate accumulation was not affected. Elevated CO2 possibly lead to increased end-of-season soil water contents and this result agrees with earlier studies despite the topographic water gradient being a confounding problem at our research site. Long-term CO2 enrichment also had little effect on soil carbon storage with no detectable changes in soil organic matter found. There were indications that potential soil respiration and N mineralization rates could be higher in soils close to the CO2 source. The conservative response of this grassland suggests that many of the reported effects of elevated CO2 on similar ecosystems could be short duration experimental artefacts that disappear under long-term elevated CO2 conditions.  相似文献   

17.
Water‐use efficiency (WUE) has been recognized as an important characteristic of ecosystem productivity, which links carbon (C) and water cycling. However, little is known about how WUE responds to climate change at different scales. Here, we investigated WUE at leaf, canopy, and ecosystem levels under increased precipitation and warming from 2005 to 2008 in a temperate steppe in Northern China. We measured gross ecosystem productivity (GEP), net ecosystem CO2 exchange (NEE), evapotranspiration (ET), evaporation (E), canopy transpiration (Tc), as well as leaf photosynthesis (Pmax) and transpiration (Tl) of a dominant species to calculate canopy WUE (WUEc=GEP/T), ecosystem WUE (WUEgep=GEP/ET or WUEnee=NEE/ET) and leaf WUE (WUEl=Pmax/Tl). The results showed that increased precipitation stimulated WUEc, WUEgep and WUEnee by 17.1%, 10.2% and 12.6%, respectively, but decreased WUEl by 27.4%. Climate warming reduced canopy and ecosystem WUE over the 4 years but did not affect leaf level WUE. Across the 4 years and the measured plots, canopy and ecosystem WUE linearly increased, but leaf level WUE of the dominant species linearly decreased with increasing precipitation. The differential responses of canopy/ecosystem WUE and leaf WUE to climate change suggest that caution should be taken when upscaling WUE from leaf to larger scales. Our findings will also facilitate mechanistic understanding of the C–water relationships across different organism levels and in projecting the effects of climate warming and shifting precipitation regimes on productivity in arid and semiarid ecosystems.  相似文献   

18.
Spatial patterns of ecosystem processes constitute significant sources of uncertainty in greenhouse gas flux estimations partly because the patterns are temporally dynamic. The aim of this study was to describe temporal variability in the spatial patterns of grassland CO2 and N2O flux under varying environmental conditions and to assess effects of the grassland management (grazing and mowing) on flux patterns. We made spatially explicit measurements of variables including soil respiration, aboveground biomass, N2O flux, soil water content, and soil temperature during a 4-year study in the vegetation periods at grazed and mowed grasslands. Sampling was conducted in 80 × 60 m grids of 10 m resolution with 78 sampling points in both study plots. Soil respiration was monitored nine times, and N2O flux was monitored twice during the study period. Altitude, soil organic carbon, and total soil nitrogen were used as background factors at each sampling position, while aboveground biomass, soil water content, and soil temperature were considered as covariates in the spatial analysis. Data were analyzed using variography and kriging. Altitude was autocorrelated over distances of 40–50 m in both plots and influenced spatial patterns of soil organic carbon, total soil nitrogen, and the covariates. Altitude was inversely related to soil water content and aboveground biomass and positively related to soil temperature. Autocorrelation lengths for soil respiration were similar on both plots (about 30 m), whereas autocorrelation lengths of N2O flux differed between plots (39 m in the grazed plot vs. 18 m in the mowed plot). Grazing appeared to increase heterogeneity and linkage of the spatial patterns, whereas mowing had a homogenizing effect. Spatial patterns of soil water content, soil respiration, and aboveground biomass were temporally variable especially in the first 2 years of the experiment, whereas spatial patterns were more persistent (mostly significant correlation at p < 0.05 between location ranks) in the second 2 years, following a wet year. Increased persistence of spatial patterns after a wet year indicated the recovery potential of grasslands following drought and suggested that adequate water supply could have a homogenizing effect on CO2 and N2O fluxes.  相似文献   

19.
Plant communities around natural CO2 springs have been exposed to elevated CO2 levels over many generations and give us a unique opportunity to investigate the effects of long-term elevated CO2 levels on wild plants. We searched for natural CO2 springs in cool temperate climate regions in Japan and found three springs that were suitable for studying long-term responses of plants to elevated levels of CO2: Ryuzin-numa, Yuno-kawa and Nyuu. At these CO2 springs, the surrounding air was at high CO2 concentration with no toxic gas emissions throughout the growth season, and there was natural vegetation around the springs. At each site, high-CO2 (HC) and low-CO2 (LC) plots were established, and three dominant species at the shrub layers were used for physiological analyses. Although the microenvironments were different among the springs, dicotyledonous species growing at the HC plots tended to have more starch and less nitrogen per unit dry mass in the leaves than those growing at the LC plots. In contrast, monocotyledonous species growing in the HC and LC plots had similar starch and nitrogen concentrations. Photosynthetic rates at the mean growth CO2 concentration were higher in HC plants than LC plants, but photosynthetic rates at a common CO2 concentration were lower in HC plants. Efficiency of water and nitrogen use of leaves at growth CO2 concentration was greatly increased in HC plants. These results suggest that natural plants growing in elevated CO2 levels under cool temperate climate conditions have down-regulated their photosynthetic capacity but that they increased photosynthetic rates and resource use efficiencies due to the direct effect of elevated CO2 concentration.  相似文献   

20.
The influences of prior monsoon-season drought (PMSD) and the seasonal timing of episodic rainfall ('pulses') on carbon and water exchange in water-limited ecosystems are poorly quantified. *In the present study, we estimated net ecosystem exchange of CO(2) (NEE) and evapotranspiration (ET) before, and for 15 d following, experimental irrigation in a semi-arid grassland during June and August 2003. Rainout shelters near Tucson, Arizona, USA, were positioned on contrasting soils (clay and sand) and planted with native (Heteropogon contortus) or non-native invasive (Eragrostis lehmanniana) C4 bunchgrasses. Plots received increased ('wet') or decreased ('dry') monsoon-season (July-September) rainfall during 2002 and 2003. Following a June 2003 39-mm pulse, species treatments had similar NEE and ET dynamics including 15-d integrated NEE (NEE(pulse)). Contrary to predictions, PMSD increased net C uptake during June in plots of both species. Greater flux rates after an August 2003 39-mm pulse reflected biotic activity associated with the North American Monsoon. Furthermore, August NEE(pulse) and ecosystem pulse-use efficiency (PUE(e) = NEE(pulse)/ET(pulse)) was greatest in Heteropogon plots. PMSD and rainfall seasonal timing may interact with bunchgrass invasions to alter NEE and ET dynamics with consequences for PUE(e) in water-limited ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号