首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The level of endogenous gibberellin-like and cytokinin-like substances was estimated in the plumule and the root of 2-to 3-day-old intact pea seedlings, in the plumule of seedlings from which the radicle was cut off, and in the root of seedlings from which the plumule was removed. An increase in the level of gibberellin-like substances and a decrease in the level of cytokininlike substances in the plumule as a consequence of radicle amputation were observed within 48 h. Plumule amputation resulted in a decreased level of both gibberellin-like and cytokinin-like substances in the root in the same period.  相似文献   

2.
Root biomass is quantitatively and qualitatively important in most ecosystems, but its contribution to the pool of organic matter in the soil is not clear. This work was designed to specify root ageing on an ultrastructural scale by transmission electron microscopy combined with microanalysis by electron energy loss spectroscopy. This approach is very suitable for studying the soil/plant interface, and for semi-quantitative analysis of the evolution of polyphenolic substances during root evolution. Three root segments were studied according to a gradient of root senescence: the apical and basal segments of the mycorrhiza and the mycorrhiza-carrier root. Each segment contained a certain proportion of senescent cells, some of which were of fungal origin, and this proportion increased as the root aged. In the three segments, the soil/plant interfaces were differentiated, and the micro-organisms observed in situ were described. Senescent root cells contained many polyphenolic substances and our results showed that these substances were, according to the root segment, differently associated with Ca, N and Si. When all these ultrastructural data are correlated with more global data, they can be usefully applied to root cell physiology, microbiology and pedology. This approach makes it possible to specify the evolution of organic matter in situ in soils whatever its origin.  相似文献   

3.
植物的根系分泌物是植物根系与周围环境之间的化学媒介,通过传递特定的信息,调节根际微环境,影响周围植物的生长。玉米(Zea mays L.)和荞麦(Fagopyrum esculentum Moench)是农作物间套作体系中典型的不能搭配的组合,其障碍因素尚不清楚。以玉米为受体植物,采用根悬空培养的方法,研究了荞麦、高粱(Sorghum bicolor(L.) Moench)根系分泌物对玉米根边缘细胞和根生长的影响。结果发现,玉米根边缘细胞离体培养条件下,用荞麦根系分泌物中的小分子物质处理4、8 h显著诱导边缘细胞凋亡、死亡,细胞活率分别比对照降低了71.6%和72.3%;荞麦根系分泌物中的小分子物质对玉米根产生氧化胁迫,诱导根SOD、POD和CAT活性分别比对照高22.6%、33.9%和107.2%,根中超氧阴离子(O2)和脯氨酸含量分别比对照高33.9%和49.8%;荞麦根系分泌物中小分子物质的胁迫使根细胞膜透性增大,与对照相比升高80.0%,丙二醛(MDA)含量比对照升高31.5%;荞麦根系分泌物中小分子物质诱导根内源激素(IAA)含...  相似文献   

4.
肉桂酸和香草醛对嫁接茄子根系生长及生理特性的影响   总被引:4,自引:1,他引:3  
以“托鲁巴姆”茄子为砧木,“西安绿”茄子为接穗,采用盆栽试验研究了自毒物质肉桂酸和香草醛对嫁接、自根和砧木茄子根系生长及抗氧化酶活性、渗透调节物质含量的影响.结果表明:肉桂酸、香草醛对茄子根系生长及生理代谢的化感作用基本表现为“低促高抑”,两物质对自根茄子根系表现促进、抑制效应的临界浓度点分别为0.1和0.5 mmol·kg-1;对嫁接、砧木茄子表现促进、抑制效应的临界浓度点分别为0.5和1 mmo·kg-1.茄子根系对自毒物质耐性大小依次为:砧木茄>嫁接茄>自根茄;在较高浓度肉桂酸(0.5~4 mmol·kg-1)和香草醛(1~4mmol·kg-1)作用下,与自根茄子相比,嫁接茄子根系SOD活性提高了8.50%~24.50%,脯氨酸含量增加了9.39%~27.64%,可溶性糖含量增加了12.77%~81.81%,可溶性蛋白含量、根系鲜、干物质量和根系活力显著高于自根茄.表明嫁接换根使茄子根系具有了砧木抗自毒物质的特性,缓解了自毒物质给茄子根系生长带来的不良影响.  相似文献   

5.
摘要 目的:探究次氯酸钠和洗必泰作为牙根管消毒冲洗液的对根管内感染物质的影响。方法:选取76例接受根管治疗的患者根据随机数字表法分为观察组和对照组2组,其中对照组患者采用次氯酸钠治疗,观察组患者则采用次氯酸钠和洗必泰联合治疗。对比分析两组患者根管内细菌菌落计数、根管内感染物质、治疗效果、远期有效率和不良反应发生率。结果:根管消毒冲洗后观察组根管内细菌菌落计数和根管内感染物质显著低于对照组,差异具有统计学意义(P<0.05);观察组患者治疗总有效率和不良反应的发生率分别为100.00%和13.16%,对照组患者治疗总有效率和不良反应的发生率分别为88.00%和65.79%,差异具有统计学意义(P<0.05)。另外,观察组患者第3个月、第6个月和1年后的治疗有效率均大于对照组。结论:次氯酸钠和洗必泰作为牙根管消毒冲洗液能够有效的减少根管内的感染物质的数量,提高治疗有效率,降低不良反应的发生率,值得临床推广使用。  相似文献   

6.
The effect of a low-molecular weight, water-extractable fraction of humic substances (WEHS) derived from sphagnum peat on post-embryonic plant development has been studied using Arabidopsis roots. Application of humic substances caused an array of changes in root morphology, such as an increase in root hair length and density, formation of ectopic root hairs, and an increase in cell proliferation in the root ground tissue. Application of WEHS affected genes involved in epidermal cell fate specification, suggesting that humic substances can alter developmental programs at an early stage of root cell differentiation. The WEREWOLF and GLABRA2 genes, encoding negative regulators of the root hair cell fate, were significantly down-regulated in the presence of WEHS. Thus, the presence of humic substances caused an ordered remodeling of the root morphology, leading to an increased absorptive surface of the root. Growth in the presence of WEHS did not rescue the phenotype of the root hair defective rhd6 mutant. Analyzing BA3:uidA and DR5:uidA transgenic plants, carrying auxin response elements, and monitoring the expression of the auxin-responsive GH3 gene by real-time RT-PCR did not provide evidence for a WEHS-induced expression of auxin-related genes. It is concluded that WEHS do not exert their effects in an auxin-like manner.  相似文献   

7.
The effects of several growth and trophic substances on bud and root neoformation on leaf fragments ofBegonia rex were studied in precisely defined environmental conditions. IAA, depending on the type of treatment, had different effects. In aseptic cultures, a notable stimulation of bud formation was observed at certain concentrations. However, non aseptic treatments of IAA had no visible effects except at very high concentrations.(10?3 M) where bud formation was totally inhibited and root formation was favored. NAA, at 10?6 M and 10?5 M strongly stimulated root formation and inhibited shoot formation. All the cytokinins used stimulated bud formation and inhibited partially or totally root formation. Gibberellic acid inhibited bud and root formation. Glucose and sucrose clearly stimulated bud and root formation and sucrose, when applied simultaneously with other growth substances, modified the effects of these substances alone. The most favorable environmental conditions were at 24°C in a 24 h photoperiod but other temperatures (17 to 27°C) and photoperiods (9 or 16 h) did not prevent neoformation.  相似文献   

8.
Proteoid root morphology and function inLupinus albus   总被引:1,自引:1,他引:0  
Summary Current theories of phosphorus uptake by plants imply that they can augment diffusion to their root axes by the development of abundant root hairs or mycorrhizas. Some phosphorus efficient plants have root morphology with multi-branched roots and localised regions of densely packed root hairs, which we suggest is better suited to the retention of substances exuded by the roots than uptake of substances moving to the root by diffusion. Evidence of substantial exudation by the proteoid roots ofLupinus albus is presented.  相似文献   

9.
The effects of three growth substances, viz. indol-3yl-aceticacid (IAA), gibberellic acid (GA3), and kinetin (KIN), and differentialshoot and root temperatures on growth of sugar-beet (Beta vulgarisL.) plants have been studied. IAA, GA3, and KIN were applied in aqueous lanolin at differentconcentrations (50 ppm to 5000 ppm) to decapitated sugar-beetplants at the eight-leaf stage, one group also having alternateleaves removed. The growth substances significantly increasedthe dry weights of the plants when all the leaves were present,which was mainly explained by the large increase in roots. Thegrowth substances probably stimulated cambial activity and hencethe mobilization of substrates resulting in a bigger root whena relatively large leaf area existed. The failure of the plantsto respond to treatments following the removal of alternateleaves suggests that under such conditions the growth substanceshave hardly any major effect on the production of substrates;rather they influence growth by regulating the movement of substratesby altering the ‘sink strength’ if the supply ofsubstrates is not limiting. It could also be that the rootsproduce sufficient growth substances to maintain half the leavesat maximum expansion and maximum photosynthesis. Treatment withgrowth substances would therefore have little effect. When allthe leaves were present, they are limited by insufficient growthsubstances. All combinations of root and shoot temperatures of 17 and 25°C were imposed on plants decapitated at the eight-leafstage, one group also having each alternate leaf removed. Leaf8 expanded most at shoot and root temperature of 25 °C whereasother leaves had the largest areas at shoot and root temperatureof 17 °. When all the leaves were present root growth wasmaximal at shoot temperature of 17°C and root temperatureof 25 °C, but when alternate leaves were removed maximumroot growth occurred at shoot and root temperatures of 25 °C.Generally, a higher concentration of soluble carbohydrates wasfound in the roots and leaves when either the shoot or rootor both were kept at 17 °C. Concentrations of nitrogen,phosphorus, and potassium in different organs were less at 17°C than at higher shoot or root temperatures and decreasedwith age.  相似文献   

10.
Chen  Jixing  Xuan  Jiaxiang  Du  Chenglin  Xie  Jianchang 《Plant and Soil》1997,188(1):131-137
With four soils differing in K supplying power and with four rice cultivars (Oryza sativa L.) differing in K uptake kinetic parameters, the relationship between K fertilizer application and soil redox status in rhizosphere and; the distribution of ferrous iron and other toxic substances on the root surface and in the rhizosphere; and the effect of K supply on uptake of reduced iron by rice plants have been studied.The results show that K application on K-deficient soils reduced the content of active reducing substances and ferrous iron in the soil, raised the soil redox potential in the rhizosphere, increased the Eh value of rice roots and lowered the content of iron in the rice plants. These effects of K varied with different rice cultivars. When no K fertilizer was applied, active reducing substances and ferrous iron in rhizosphere soils were decreased more by the rice cultivars absorbing K strongly (e.g. Shanyou 64) than by cultivars absorbing K weakly (e.g. Zhongguo 91). Therefore, the diminution of the toxic substances by K application in the weakly K-absorbing cultivars was more significant.The observation of a rhizobox separated by a nylon screen showed that appreciably more iron oxides, compared with the control, were deposited at or adjacent to the root surfaces of the rice plant supplied with K fertilizer, fully demonstrating the relationship between K nutrition and the total oxidizing power of rice plants. According to the distribution of active reducing substances and ferrous iron, the oxidizing range of the rice root extended in K application treatment a few centimeters away from the root plane. K application to rice affected the soil redox status in rhizosphere in many ways. The main effect was an increase of the oxidizing power of the rice root. As a result, the value of soil Eh was increased, the contents of active reducing substances and ferrous iron were lowered, as well as the number of oxygen consuming microorganisms.  相似文献   

11.
The enhancing effect of three marine bioactive substances (MBS) – EXT1116, NA9158 and 251104 – on the absorption of ammonium and potassium by the root system and the growth of potted grapevine (Vitis vinifera L.) plants is reported. Root ion influxes were determined in vivo by the non-invasive vibrating probe technique. Treatment with MBS generally enhanced nutrient absorption only in the root region between 0.8 and 1.7 mm from the root apex. Among the three substances tested, EXT1116 was the most effective in terms of enhancing the absorption of both ions, with significantly higher values than those of the other two substances and the control. NA9158 and 251104 were more effective in improving ammonium absorption than potassium absorption, while NA9158 was the most effective MBS in enhancing both biomorphometric parameters (shoot length, number of leaves, visual assessment of root system) and dry weight. Based on these results, we suggest that a combination of NA9158 and EXT1116 may be useful in enhancing plant growth by combining the capacity of NA9158 to increase root biomass and that of EXT1116 to enhance mineral absorption.  相似文献   

12.
嫁接对茄子根系分泌物中肉桂酸和香草醛的调节效应   总被引:6,自引:0,他引:6  
茄子根系分泌物中普遍存在肉桂酸和香草醛等化感物质.本文采用盆栽试验研究了嫁接对这两种物质的调节效应.结果表明:嫁接降低了茄子根系对这两种物质的分泌,尤其是显著降低了对香草醛的分泌,与自根茄子相比,嫁接使根系分泌的肉桂酸最多降低68.96%,香草醛最多降低100%.在外源肉桂酸和香草醛胁迫下,特别在外源肉桂酸胁迫下,与自根茄子相比,嫁接促进了茄子植株的株高、茎粗,使叶绿素含量增加5.26%~13.12%,降低了根系电导率和MDA含量,提高了根系的SOD活性,明显缓解了肉桂酸的胁迫.  相似文献   

13.
Plants show various responses to phosphorus (P) deficiency. Root oxidizing capacity enhancement is one of adaptive mechanisms for rice (Oryza sativa L.) to P deficiency. However, it remains unclear how P deficiency enhances the root oxidizing capacity. In this study, rice seedlings were treated in P-deficient nutrient solution for different periods. Variations of reactive oxygen species (ROS), antioxidant enzyme activity, root lignin content, root porosity, root oxygen release, total oxidative substances and root structural changes in rice roots in response to P-sufficient and P-deficient treatments were investigated. Results indicated that P deficiency induced the production of H2O2 and O 2 ·? in roots significantly, which reached their maximum after 1- to 2-day P-deficient treatment. Interestingly, the endogenous total oxidative substances kept stable in rice roots. P deficiency increased the activities of peroxidase and superoxide dismutase by 89.5 and 51.8 % after 4-day P-deficient treatment, respectively. Moreover, one-day P deficiency elevated lignin accumulation. Root porosity of rice seedling under 2-day P-deficient treatment was 19.8 % higher than that under P-sufficient treatment. P deficiency also enhanced the release of both O2 and total oxidative substances after 1- to 4-day P deficiency. In addition, results from electronic microscopy indicated that the thickness of root cell wall tended to increase after 2-day P-deficient treatment. Taken together, our results suggested that P-deficiency-induced enhancement of root oxidizing capacity in rice roots was probably associated with ROS production, antioxidant enzyme activity increment in root tissues, and the release of O2 and oxidative substances from root inside to rhizosphere.  相似文献   

14.
韩善华  张红 《西北植物学报》2005,25(8):1512-1516
用透射电镜研究了红豆草(Onobrychis viciifolia)根瘤侵染细胞中液泡内含物的超微结构特征。结果表明,早期发育侵染细胞的液泡中只含有少量的纤维状物质。随着细胞的发育,液泡不断变大,液泡中的纤维状物质和膜状物质越来越多。在中央液泡形成后,液泡中的纤维状物质逐渐减少,类细胞质、泡状和膜状物质明显增多,它们常由一层来自液泡膜的膜包围,其形状一般近似圆形或椭圆形。液泡内含物的大量出现可能与红豆草及其根瘤具有高度的抗旱件有关。  相似文献   

15.
Association of Azospirillum with Grass Roots   总被引:20,自引:13,他引:7       下载免费PDF全文
The association between grass roots and Azospirillum brasilense Sp 7 was investigated by the Fahraeus slide technique, using nitrogen-free medium. Young inoculated roots of pearl millet and guinea grass produced more mucilaginous sheath (mucigel), root hairs, and lateral roots than did uninoculated sterile controls. The bacteria were found within the mucigel that accumulated on the root cap and along the root axes. Adherent bacteria were associated with granular material on root hairs and fibrillar material on undifferentiated epidermal cells. Significantly fewer numbers of azospirilla attached to millet root hairs when the roots were grown in culture medium supplemented with 5 mM potassium nitrate. Under these growth conditions, bacterial attachment to undifferentiated epidermal cells was unaffected. Aseptically collected root exudate from pearl millet contained substances which bound to azospirilla and promoted their adsorption to the root hairs. This activity was associated with nondialyzable and proteasesensitive substances in root exudate. Millet root hairs adsorbed azospirilla in significantly higher numbers than cells of Rhizobium, Pseudomonas, Azotobacter, Klebsiella, or Escherichia. Pectolytic activities, including pectin transeliminase and endopolygalacturonase, were detected in pure cultures of A. brasilense when this species was grown in a medium containing pectin. These studies describe colonization of grass root surfaces by A. brasilense and provide a possible explanation for the limited colonization of intercellular spaces of the outer root cortex.  相似文献   

16.
Root exudates were sampled from detopped root systems of castor bean (Ricinus communis). Different volume flux rates were imposed by changing the pneumatic pressure around the root system using a Passioura-type pressure chamber. The concentrations of cations, anions, amino acids, organic acids and abscisic acid decreased hyperbolically when flux rates increased from pure root exudation up to values typical for transpiring plants. Concentrations at low and high fluxes differed by up to 40 times (phosphate) and the ratio of substances changed by factors of up to 10. During the subsequent reduction of flux produced by lowering the pneumatic pressure in the root pressure chamber, the concentrations and ratios of substances deviated (at a given flux rate) from those found when flux was increased. The flux dependence of exudate composition cannot therefore be explained by a simple dilution mechanism. Xylem sap samples from intact, transpiring plants were collected using a Passioura-type root pressure chamber. The concentrations of the xylem sap changed diurnally. Substances could be separated into three groups: (1) calcium, magnesium and amino acid concentrations correlated well with the values expected from their concentration-flux relationships, whereas (2) the concentrations of sulphate and phosphate deviated from the expected relationships during the light phase, and (3) nitrate and potassium concentrations in intact plants varied in completely the opposite manner from those in isolated root systems. Abscisic acid concentrations in the root exudate were dependent on the extent of water use and showed strong diurnal variations in the xylem sap of intact plants even in droughtstressed plants. Calculations using root exudates overestimated export from the root system in intact plants, with the largest deviation found for proton flux (a factor of 10). We conclude that root exudate studies cannot be used as the sole basis for estimating fluxes of substances in the xylem of intact plants. Consequences for studying and modelling xylem transport in whole plants are discussed.  相似文献   

17.
Plant root excretions in relation to the rhizosphere effect   总被引:1,自引:1,他引:0  
Summary 1. The treatment of soil with root exudate solution resulted in increased numbers of Gram-negative bacteria.2. The oxygen uptake and nitrification of root exudate treated soils were no greater than the controls unless readily decomposable substances such as glucose or peptone were added.3. The release of phosphate from soil organic matter or yeast nucleic acid was not increased with root exudate supplements.  相似文献   

18.
Abscisic acid as a root growth inhibitor: Physiological analyses   总被引:2,自引:2,他引:0  
P. E. Pilet 《Planta》1975,122(3):299-302
Summary Abscisic acid (ABA) moves basipetally and laterally in maize (Zea mays L.) root segments placed horizontally; its transport properties are thus similar to those of the growth-inhibiting substances produced by the root cap. The two opposite flows af ABA and of indolyl-3-acetic acid (IAA) — substances both present in the cap — may control elongation and georeaction of the root.  相似文献   

19.
Azospirillum brasilense, a nitrogen-fixing bacterium found in the rhizosphere of various grass species, was investigated to establish the effect on plant growth of growth substances produced by the bacteria. Thin-layer chromatography, high-pressure liquid chromatography, and bioassay were used to separate and identify plant growth substances produced by the bacteria in liquid culture. Indole acetic acid and indole lactic acid were produced by A. brasilense from tryptophan. Indole acetic acid production increased with increasing tryptophan concentration from 1 to 100 μg/ml. Indole acetic acid concentration also increased with the age of the culture until bacteria reached the stationary phase. Shaking favored the production of indole acetic acid, especially in a medium containing nitrogen. A small but biologically significant amount of gibberellin was detected in the culture medium. Also at least three cytokinin-like substances, equivalent to about 0.001 μg of kinetin per ml, were present. The morphology of pearl millet roots changed when plants in solution culture were inoculated. The number of lateral roots was increased, and all lateral roots were densely covered with root hairs. Experiments with pure plant hormones showed that gibberellin causes increased production of lateral roots. Cytokinin stimulated root hair formation, but reduced lateral root production and elongation of the main root. Combinations of indole acetic acid, gibberellin, and kinetin produced changes in root morphology of pearl millet similar to those produced by inoculation with A. brasilense.  相似文献   

20.
P. E. Pilet 《Planta》1976,130(3):245-249
Summary Under light, some growth inhibiting substances were produced in the root cap of maize; they moved basipetally from the tip to the extending zone. An asymmetrical uptake by the root stumps of these inhibitors induced a curvature of the root segments. Evidence was given that these growth regulators, formed in the root cap on exposure to light, can cause root curvature in darkness. Assays with two varieties of maize (Anjou which is georeactive both in dark and in light, and Kelvedon georeacting in light only) and with IAA—applied on the basal cut end of the root segments—were discussed in relation to the light effect on the formation of the cap growth factors. Experiments involving use of ABA-which has some growth properties identical to those of these inhibitors—lead to the conclusion that the light was only acting on the formation, in the root, of the growth-inhibiting substances. But light seems not to have an effect on the transport of these inhibitors from the cap to the stump or on their action on the elongating part of the roots.Abbreviations IAA indolyl-3-acetic acid - ABA abscisic acid  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号