首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
  总被引:1,自引:0,他引:1  
Long-chain fatty acids (LCFA) associated with anaerobic sludge by mechanisms of precipitation, adsorption, or entrapment can be biodegraded to methane. The mineralization kinetics of biomass-associated LCFA were established according to an inhibition model based on Haldane's enzymatic inhibition kinetics. A value around 1,000 mg COD-LCFA..g VSS(-1) was obtained for the optimal specific LCFA content that allowed the maximal mineralization rate. For sludge with specific LCFA contents of 2,838 +/- 63 and 4,571 +/- 257 mg COD-LCFA..g VSS(-1), the specific methanogenic activities in the presence of acetate, butyrate, and H(2)/CO(2) were significantly enhanced after the mineralization of the biomass-associated LCFA. For sludge with a specific LCFA content near the optimal value defined by the kinetic model, the effect of adding VFA to the medium was studied during the mineralization of the biomass-associated LCFA. Different patterns were obtained for each individual substrate. Acetate and butyrate were preferentially consumed by the consortium, but in the case of propionate no evidence of a sequential consumption pattern could be withdrawn. It was concluded that LCFA do not exert a bactericidal neither a permanent toxic effect toward the anaerobic consortia. A discussion is addressed to the relative roles of a reversible inhibitory effect and a transport limitation effect imposed by the LCFA surrounding the cells.  相似文献   

2.
  总被引:4,自引:0,他引:4  
Kinetics were determined for methanogenic activity and chlorinated ethylene dehalogenation by a methanol-enriched, anaerobic sediment consortium. The culture reductively dechlorinated perchloroethylene (PCE) to trichloroethylene (TCE), 1,1-dichloroethylene (1,1-DCE), vinylchloride (VC), and ethylene and ethane. The absence : of methanol or the addition of 2-bromoethanesulfonic. acid in the presence of methanol suppressed both methanogenic activity and dechlorination. In contrast, acetate production continued in the presence of 2-bromoethanesulfonic acid. These results suggest that dechlorination was strongly linked to methane formation and not to acetate production. A kinetic model, developed to describe both methanogenesis and dechlorination, successfully predicted experimentally measured concentrations of biomass, methane, substrate, and chlorinated ethylenes. The average maximum specific dehalogenation rates for PCE, TCE, 1,1-DCE, and VC were 0.9 +/- 0.6, 0.4 +/- 0.1, 12 +/- 0.1, and 2.5 +/- 1.7 mumol contaminant/ g. DW/day, respectively. This pattern for dechlorination rates is distinctly different than that reported for transition metal cofactors, where rates drop by approximately one order of magnitude as each successive chlorine is removed. The experimental results and kinetic analysis suggest that it will be impractical to targeting methanol consuming methanogenic organisms for in situ ground-water restoration. (c) 1995 John Wiley & Sons, Inc.  相似文献   

3.
Different preservation methods were evaluated for the storage of anaerobic sludges: room temperature, refrigeration at 4 °C, freezing at –20 °C and freeze-drying. Specific methanogenic activity for glucose and acetate were used as indicators of the subsequent recovery of the anaerobic sludge. Storage at room temperature and refrigeration resulted in a better conservation of the methanogenic activity than freezing and freeze-drying.  相似文献   

4.
    
Two laboratory-scale expanded granular sludge bed (EGSB) anaerobic bioreactors (R1 and R2) were inoculated with biomass from different mesophilic (37 °C) treatment plants, and used for the treatment of an organic solvent-based wastewater at 9–14 °C at applied organic loading rates (OLRs) of 1.2–3.6 kg chemical oxygen demand (COD) m−3 d−1. Replicated treatment performance was observed at 10–14 °C, which suggested the feasibility of the process at pilot-scale. Stable and efficient COD removal, along with high methane productivity, was demonstrated at 9 °C at an applied OLR of 2.4 kg COD m−3 d−1. Clonal libraries and fluorescence in situ hybridization (FISH) indicated that the seed sludges were dominated (>60%) by acetoclastic Methanosaeta-like organisms. Specific methanogenic activity (SMA) profiles indicated shifts in the physiological profiles of R1 and R2 biomass, including the development of psychrotolerant methanogenic activity. Acetoclastic methanogenesis represented the primary route of methane production in R1 and R2, which is in contrast with several previous reports from low-temperature bioreactor trials. A reduction in the abundance of Methanosaeta-like clones (R2), along with the detection of hydrogenotrophic methanogenic species, coincided with altered granule (sludge) morphology and the development of hydrogenotrophic SMA after prolonged operation at 9 °C.  相似文献   

5.
The ability for biomass colonization of four porous mineral microcarriers (sepiolite, clay, pozzolana and foam glass-Poraver), was studied and related to their surface properties. The surface hydrophobicity of the mineral carriers was a more important factor influencing colonization by the anaerobic consortium than was surface charge. It was possible to correlate linearly the degree of hydrophobicity with the biomass retention capacity. Although the thermodynamic theory did not explain adhesion, an increase in cell attachment was directly related to the decrease of the positive values of the free energy of adhesion. Surface roughness, porosity and the amount of surface Mg2+, were also determinant factors in bacterial immobilization. However a great biomass accumulation can originate a decrease in biological activity due to mass transfer limitations. Journal of Industrial Microbiology & Biotechnology (2000) 24, 181–186. Received 09 August 1999/ Accepted in revised form 01 December 1999  相似文献   

6.
    
A titration bioassay, designed to accurately determine the activity of acetoclastic methanogens, is described that also allows evaluation of inhibition due to potential toxicants on the active biomass. The instrument is made of a pH-stat connected to an anaerobic batch reactor. Acetate is blended and mixed with anaerobic sludge in the reactor where a 1:1 N2 and CO2 mixture is sparged at the beginning of each test. As the acetoclastic methanogens consume acetate, the pH increase, and the titration unit adds acetic acid and keeps the pH constant. The rate of titrant addition is directly proportional to the methanogenic activity. A very useful feature of the system is its potential to operate for long periods (days) at constant pH and substrate (acetate) concentration. The theoretical background and principle of operation are described as well as some of the practical problems encountered with the use of the instrument. Estimation of kinetic constants for an anaerobic culture according to the Michaelis-Menten model is presented. Examples of inhibition by inorganics (NaCl) and chlorinated solvents (chloroform) are also given.  相似文献   

7.
Aims: Anaerobic sludge granules underpin high‐rate waste‐to‐energy bioreactors. Granulation is a microbiological phenomenon involving the self‐immobilization of several trophic groups. Low‐temperature anaerobic digestion of wastes is of intense interest because of the economic advantages of unheated bioenergy production technologies. However, low‐temperature granulation of anaerobic sludge has not yet been demonstrated. The aims of this study were to (i) investigate the feasibility of anaerobic sludge granulation in cold (15°C) bioreactors and (ii) observe the development of methanogenic activity and microbial community structure in developing cold granules. Methods and Results: One mesophilic (R1; 37°C) and two low‐temperature (R2 and R3, 15°C) laboratory‐scale, expanded granular sludge bed bioreactors were seeded with crushed (diameter <0·4 mm) granules and were fed a glucose‐based wastewater for 194 days. Bioreactor performance was assessed by chemical oxygen demand removal, biogas production, granule growth and temporal methanogenic activity. Granulation was observed in R2 and R3 (up to 33% of the sludge). Elevated hydrogenotrophic methanogenesis was observed in psychrophilically cultivated biomass, but acetoclastic methanogenic activity was also retained. Denaturing gradient gel electrophoresis of archaeal 16S rRNA gene fragments indicated that a distinct community was associated with developing and mature granules in the low‐temperature (LT) bioreactors. Conclusions: Granulation was observed at 15°C in anaerobic bioreactors and was associated with H2/CO2‐mediated methanogenesis and distinct community structure development. Significance and Impact of the Study: Granulation underpins high‐rate anaerobic waste treatment bioreactors. Most LT bioreactor trials have employed mesophilic seed sludge, and granulation <20°C was not previously documented.  相似文献   

8.
    
The effect of pre-loading and in situ loading of cobalt onto a cobalt-limited granular sludge on the performance of methanol fed bioreactors was investigated. One upflow anaerobic sludge bed (UASB) reactor was inoculated with cobalt pre-loaded sludge (24h; 30 degrees C; 1 mM CoCl2) and a second UASB with unloaded sludge. The UASB reactors (30 degrees C; pH 7) were operated for 77 days at 8 h hydraulic retention time and organic loading rates ranging from 5 to 20 g COD.L reactor(-1).d(-1). Cobalt pre-loading clearly stimulated the methanogenic activity of the sludge with methanol as the substrate, e.g., after 30 days of reactor operation this activity was 5.8 times higher than that of the cobalt unloaded sludge. During the experiment, part of the cobalt leached from the pre-loaded sludge, i.e., 54% of the cobalt content was lost during the 77 days of reactor operation. Sequential metal extraction showed that losses mainly occurred from the exchangeable and carbonate fraction and in the sludge remaining cobalt was mainly present in the organic/sulfide fraction of the sludge. In situ loading of cobalt in the unloaded UASB reactor on day 57 by adding 31 microM cobalt to the influent for a 24-h period (16% of the cobalt present in the loaded sludge at day 11) resulted in a 4 time increase of the methanogenic activity of the sludge with methanol as the substrate at the end of the reactor experiment, while the accumulated amount of cobalt in the sludge only amounted to 6% of the cobalt accumulated in the loaded sludge (on day 11). This study showed that both pre-loading sludge and in situ loading are adequate for achieving an increased reactor performance of methanol fed UASB reactors operating under cobalt limitation. However, the in situ dosing procedure needs substantially lower amounts of cobalt, while it also gives significantly smaller losses of cobalt with the effluent.  相似文献   

9.
    
Two shock loads of a commercial detergent (I-150 mg chemical oxygen demand (COD)/L, fed for 56 h; II-300 mg COD/L fed for 222 h) were applied in a lab-scale Expanded Granular Sludge Blanket (EGSB) reactor, fed with 1,500 mg COD/L of ethanol. The impact of the surfactant was assessed in terms of granular sludge morphology, specific methanogenic activity (SMA) in the presence of individual substrates, and reactor performance. COD removal efficiency remained unaffected in the shock I, but 80 h after starting exposure to the shock II, the COD removal efficiency decreased drastically from 75 to 17%. In the first 8 h of operation of shock I, the SMA was stimulated and decreased afterwards, being recovered 5 days after the end of exposure time. Concerning to shock II, the SMA was immediately and persistently reduced during the exposure time, although, the inhibition of SMA in presence of H(2)/CO(2) showed a trend to increase after the exposure time. Acetoclastic bacteria were observed as the most sensitive to the toxic effects of surfactant whereas the hydrogenotrophic bacteria were less affected. The inhibitory effects were dependent on surfactant concentration and exposure time. The ratio filaments length per total aggregates area (LfA) was an early-warning indicator of biomass washout, since it increased 3 and 5 days before effluent volatile suspended solids (VSS) rise, respectively, in shocks I and II.  相似文献   

10.
    
The objective of this study was to investigate the effects of a flaxseed-supplemented diet on archaeal abundance and gene expression of methanogens in the rumen of dairy cows. In all, 11 non-lactating dairy cows were randomly divided into two groups: group A (five cows) and B (six cows). The two diets fed were: (1) the control diet, a conventional dry cow ration; and (2) the flaxseed-supplemented diet, the conventional dry cow ration adjusted with 12.16% ground flaxseed incorporated into the total mixed ration. A cross-over experiment was performed with the two groups of cows fed the two different diets for five 21-day periods, which included the first adaptation period followed by two treatment and two wash out periods. At the end of each feeding period, rumen fluid samples were collected via rumenocentesis and DNA was extracted. Quantitative PCR was utilized to analyze the gene abundance of 16S ribosomal RNA (16S rRNA) targeting the ruminal archaea population and the mcrA gene coding for methyl coenzyme-M reductase subunit A, a terminal enzyme in the methanogenesis pathway. Results demonstrated a 49% reduction of 16S rRNA and 50% reduction of mcrA gene abundances in the rumen of dairy cows fed the flaxseed-supplemented diet in comparison with those fed the control diet. This shows flaxseed supplementation effectively decreases the methanogenic population in the rumen. Future studies will focus on the mechanisms for such reduction in the rumen of dairy cattle, as well as the relationship between methanogenic gene expression and methane production.  相似文献   

11.
    
Length of the terminal alkyl chains at dicyanovinyl (DCV) groups of two dithienosilole (DTS) containing small molecules ( DTS(Oct)2‐(2T‐DCV‐Me)2 and DTS(Oct)2‐(2T‐DCV‐Hex)2 ) is investigated to evaluate how this affects the molecular solubility and blend morphology as well as their performance in bulk heterojunction organic solar cells (OSCs). While the DTS(Oct)2‐(2T‐DCV‐Me)2 (a solubility of 5 mg mL?1) system exhibits both high short circuit current density (J sc) and high fill factor, the DTS(Oct)2‐(2T‐DCV‐Hex)2 (a solubility of 24 mg mL?1) system in contrast suffers from a poor blend morphology as examined by atomic force morphology and grazing incidence X‐ray scattering measurements, which limit the photovoltaic properties. The charge generation, transport, and recombination dynamics associated with the limited device performance are investigated for both systems. Nongeminate recombination losses in DTS(Oct)2‐(2T‐DCV‐Hex)2 system are demonstrated to be significant by combining space charge limited current analysis and light intensity dependence of current–voltage characteristics in combination with photogenerated charge carrier extraction by linearly increasing voltage and transient photovoltage measurements. DTS(Oct)2‐(2T‐DCV‐Me)2 in contrast performs nearly ideal with no evidence of nongeminate recombination, space charge effects, or mobility limitation. These results demonstrate the importance of alkyl chain engineering for solution‐processed OSCs based on small molecules as an essential design tool to overcome transport limitations.  相似文献   

12.
The impact of a trichloroethylene (TCE) contaminated wastewater on the microbial community structure of an anaerobic granular biomass at 15 °C compared to 37 °C was investigated. Four expanded granular sludge bed (EGSB) bioreactors (R1-R4) were employed in pairs at 37 and 15 °C. The influents of one of each pair were supplemented with increasing concentrations of TCE (max. 60 mg l−1). At 37 °C, stable operation was maintained with 88% COD removal and >99% TCE removal at maximum influent TCE concentrations. R3 performance decreased at influent TCE concentration of 60 mg l−1, although TCE removal rates of >97% were recorded. Archaeal community analysis via clone library and quantitative polymerase chain reaction (qPCR) analysis, and bacterial community analysis via denaturing gradient gel electrophoresis (DGGE), indicated that temperature resulted in a greater change in community structure than the presence of TCE, and clones related to cold adaptation of biomass were identified at 15 °C.  相似文献   

13.
Liu J  Hu J  Zhong J  Luo J  Zhao A  Liu F  Hong R  Qian G  Xu ZP 《Bioresource technology》2011,102(9):5466-5472
This research investigated the calcium effect on the anaerobic treatment of fresh leachate in an expanded granular sludge bed (EGSB) bioreactor under mesophilic conditions. The observations show that the bioreactor, inoculated with anaerobic granular sludge, can be started up only in about 40 days for the treatment of calcium-containing fresh leachate with chemical oxygen demand (COD) removal efficiency above 90% and organic loading rate up to 72.84 kg COD/m3 day. The calcium accumulation onto the granules was monotonically related to the calcium concentration, accounting for 17-18 wt.% of Ca in the suspended solid in the form of calcium carbonate, phosphates/phosphonates and carboxylates. The mineral formation significantly increased the granule settling velocity (by ∼50%) and the suspended solid concentration (by ∼100%). However, the effect of calcium precipitation on the specific methanogenic activity and the CH4 production rate was complex, first positive during the start-up but later on negative.  相似文献   

14.
    
The acidification of mesophilic (30 degrees C) methanol-fed upflow anaerobic sludge bed (UASB) reactors induced by cobalt deprivation from the influent was investigated by coupling the reactor performance (pH 7.0; organic loading rate 4.5 g COD . L(-1) . d(-1)) to the microbial ecology of the bioreactor sludge. The latter was investigated by specific methanogenic activity (SMA) measurements and fluorescence in situ hybridization (FISH) to quantify the abundance of key organisms over time. This study hypothesized that under cobalt limiting conditions, the SMA on methanol of the sludge gradually decreases, which ultimately results in methanol accumulation in the reactor effluent. Once the methanol accumulation surpasses a threshold value (about 8.5 mM for the sludge investigated), reactor acidification occurs because acetogens outcompete methylothrophic methanogens at these elevated methanol concentrations. Methanogens present in granular sludge at the time of the acidification do not use methanol as the direct substrate and are unable to degrade acetate. Methylotrophic/acetoclastic methanogenic activity was found to be lost within 10 days of reactor operation, coinciding with the disappearance of the Methanosarcina population. The loss of SMA on methanol can thus be used as an accurate parameter to predict reactor acidification of methanol-fed UASB reactors operating under cobalt limiting conditions.  相似文献   

15.
pH、温度和癸酸对厌氧颗粒污泥产甲烷毒性关系的研究   总被引:4,自引:0,他引:4  
在间歇培养中研究了癸酸对UASB反应器厌氧颗粒污泥的产甲烷毒性,并考察了pH、温度和癸酸抑制的关系。结果表明,癸酸对厌氧颗粒污泥产甲烷活性有强烈的抑制,对厌氧颗粒污泥比产甲烷活性产生50%抑制的浓度为1.9mmol/L。pH影响癸酸在液相中的存在形式,pH越低,游离癸酸比例越大,对厌氧颗粒污泥的抑制越严重。高温条件下癸酸使厌氧颗粒污泥的结构变得松散,对厌氧颗粒污泥产甲烷毒性较中温和低温条件下严重。  相似文献   

16.
Several wastes from agro-industrial activities were mixed in different ratios to evaluate the co-digestion process. Methane yield (YCH4), specific methanogenic activity (SMA) and a kinetic parameter (k0) were determined. A second feeding was also performed to examine the recovery of bacterial activity after exhaustion.Mixture ratios of 1:1:1:1 and 1:3:4:0.5 (w/w) showed the best performance, with YCH4 of 664; 582 NmL CH4/gVSsubstrate, as well as SMA of 0.12; 0.13 gCODNmLCH4/gVSinoculum/d, respectively, during the digestion of the first feed. It was possible to relate synergetic effects with enhancement in YCH4 by up to 43%, compared with values calculated from YCH4 of the individual substrates. All batches started up the biogas production after an exhaustion period, when a second feed was added. However, long lag phases (up to 21 days) were observed due to stressed conditions caused by the substrate limitation prior to the second feed.  相似文献   

17.
Methanogenic bacteria in mangrove sediments   总被引:3,自引:0,他引:3  
The occurrence of methanogenic bacteria in the Kodiakkarai (10° 18 N; 79° 52 E) mangrove sediments, whereAvicennia spp are predominant, was studied. Trimethylamine under N2:CO2 (80:20% v/v) was used as the substrate. Most Probable Number (MPN) of methanogenic bacteria was determined for a period of one year from July 1987 to June 1988 with monthly sampling. The methanogenic bacterial populations were found to be at the maximum of 1.1 × 105 MPN gm–1 of wet sediment during August 1987 and from February to June 1988. The bacterial numbers were found to decrease during October to December 1987 with a minimal value of 3.6 × 102 MPN gm–1 during December 1987. Environmental factors were correlated with the methanogenic bacterial population.  相似文献   

18.
The objective of this study was to evaluate the influence of substrate concentration and moisture content on the specific methanogenic activity (SMA) of a fresh dry mesophilic digestate from a municipal solid waste digester plant. For this purpose, SMA tests were performed under mesophilic conditions into glass bottles of 500 mL volume used as batch reactors, during a period of 20-25 days. Propionate was used as substrate at concentrations ranging from 1 to 10 gCOD/kg. Four moisture contents were studied: 65%, 75%, 80% and 82%. Experimental results showed that propionate concentration and moisture content strongly influenced the SMA. The highest SMA was observed at a substrate concentration of 10 gCOD/kg (11.3 mgCOD gVS−1 d−1 for the second dose of propionate) and at a moisture content of 82% (7.8 mgCOD gVS−1 d−1 for the second dose of propionate, at a concentration of 5 gCOD/kg). SMA was found to decrease linearly when decreasing the moisture content.  相似文献   

19.
Syntrophic relationships are the key for biodegradation in methanogenic environments. We review the ecological and physiological features of syntrophic communities involved in the degradation of saturated and unsaturated long-chain fatty acids (LCFA), as well as their potential application to convert lipids/fats containing waste to biogas. Presently, about 14 species have been described with the ability to grow on fatty acids in syntrophy with methanogens, all belonging to the families Syntrophomonadaceae and Syntrophaceae . The principle pathway of LCFA degradation is through β-oxidation, but the initial steps in the conversion of unsaturated LCFA are unclear. Communities enriched on unsaturated LCFA also degrade saturated LCFA, but the opposite generally is not the case. For efficient methane formation, the physical and inhibitory effects of LCFA on methanogenesis need to be considered. LCFA adsorbs strongly to biomass, which causes encapsulation of active syntrophic communities and hampers diffusion of substrate and products in and out of the biomass. Quantification of archaea by real-time PCR analysis suggests that potential LCFA inhibitory effect towards methanogens might be reversible. Rather, the conversion of adsorbed LCFA in batch assays was shown to result in a significant increase of archaeal cell numbers in anaerobic sludge samples.  相似文献   

20.
Microbial diversity of anaerobic sludge after extended contact with long chain fatty acids (LCFA) was studied using molecular approaches. Samples containing high amounts of accumulated LCFA were obtained after continuous loading of two bioreactors with oleate or with palmitate. These sludge samples were then incubated in batch assays to allow degradation of the biomass-associated LCFA. In addition, sludge used as inoculum for the reactors was also characterized. Predominant phylotypes of the different samples were monitored using denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S rRNA gene fragments. Fingerprinting analysis showed changes in bacterial and archaeal communities during LCFA accumulation and degradation. Full-length 16S rRNA gene sequences of 22 clones, representing the predominant bacteria and archaea, were determined. Most bacterial clones (80%) clustered within the Clostridiaceae. Two major groups of methanogens were identified: hydrogen- and formate-utilizing organisms, closely related to Methanobacterium, and acetoclastic organisms closely related to Methanosaeta and Methanosarcina. Quantification by FISH and real-time PCR showed that the relative abundance of archaea increased during degradation of biomass-accumulated LCFA. These results provide insight into the importance and dynamics of balanced communities of bacteria and methanogens in LCFA-accumulation/degradation cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号