首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 616 毫秒
1.
Hydroxyeicosatetraenoic acids (HETEs) and hydroxyoctadecadienoic acids (HODEs) are major bioactive lipids formed via the lipoxygenase oxygenation of arachidonic and linoleic acid, respectively. These metabolites appear to be involved in various cellular actions including cell proliferation, migration and regulation of enzyme activities such as phospholipases and kinases. In view of the diversity of biological effects of these hydroxy fatty acids, it seems likely that multiple mechanisms are involved. Previous reports showed that 15(S)-HETE inhibited the 5-lipoxygenase in rat basophilic leukemia (RBL-1) cell homogenates and established the presence of specific cellular HETE binding sites in these and other cells. The present study used 15(S)-HETE biotin hydrazide and 15(S)-HETE biotin pentyl amide as probes to identify membrane target proteins present in RBL-1 cells that specifically interact with HETEs and HODEs. Two membrane-associated proteins, with apparent molecular weights of 43 and 58 kDa, were identified that specifically interact with these probes and competition experiments indicated that 13(S)-HODE and 15(S)-HETE were the most effective competitors for the hydrazide probe, followed in decreasing effectiveness by 5(S)-HETE, arachidonic acid, 15(R)-HETE, stearic acid and 12(S)-HHT, a cyclooxygenase product. The two proteins were isolated and microsequencing analysis established their identities as actin and the alpha-subunit of mitochondrial ATP synthase, respectively. In vitro binding studies confirmed that purified actin is a potential 15-HETE binding protein. Subcellular cytosolic fractions exhibited fewer protein-probe complexes than membrane fractions. The association of HETEs and HODEs with these cytoskeletal and mitochondrial proteins, respectively, represents a new development in the potential actions of these hydroxy fatty acids.  相似文献   

2.
Recent work has shown that oocytes of the starfish synthesize (8R)-hydroxyeicosatetraenoic acid and that this eicosanoid has a potent and highly specific action in induction of oocyte maturation. These striking results prompted us to examine the lipoxygenase activity of eggs of the sea urchin Strongylocentrotus purpuratus. Four hydroxyeicosanoids were formed in homogenates of sea urchin eggs; their structures and stereochemistry were characterized by high pressure liquid chromatography, UV spectroscopy, and gas chromatography-mass spectrometry. The compounds were identified as (11R)-hydroxy-5,8,12,14-ZZEZ-eicosatetraenoic acid and (12R)-hydroxy-5,8,10,14-ZZEZ-eicosatetraenoic acid (from arachidonic acid) and the corresponding (11R)- and (12R)-hydroxy analogs of eicosapentaenoic acid. The formation of these egg products was not blocked by a cyclooxygenase inhibitor, indomethacin (10 microM), and their precise structures are consistent with their formation by a lipoxygenase reaction. Eicosapentaenoic acids with a prochiral tritium label in the 10-D or 10-L position were used to investigate the mechanism of biosynthesis. The formation of (12R)-hydroxyeicosapentaenoic acid proceeded with the stereoselective abstraction of the 10-D hydrogen from the substrate. This reaction was shown to be opposite to the (12S) oxygenation catalyzed by porcine leukocyte 12-lipoxygenase. These results with S. purpuratus eggs constitute the first demonstration of (11R)- or (12R)-lipoxygenase activity in any cell type or tissue.  相似文献   

3.
12-Lipoxygenase and cyclooxygenase 1 are the dominating enzymes that metabolize arachidonic acid in human platelets. In addition to the conversion of arachidonic acid to 12(S)-hydroxyeicosatetraenoic acid, 12-lipoxygenase can also utilize 5(S)-hydroxyeicosatetraenoic acid and 15(S)-hydroxyeicosatetraenoic acid to form 5(S), 12(S)-dihydroxyeicosatetraenoic acid and 14(R), 15(S)-dihydroxyeicosatetraenoic acid, respectively. Furthermore, 15(S)-hydroxyeicosatetraenoic acid works as an inhibitor for 12-lipoxygenase. In the present paper we have studied the influence of albumin on the in vitro metabolism of 5 - and 15 -hydroxyeicosatetraenoic acids, and 5,15 -dihydroxyeicosatetraenoic acid by the platelet 12-lipoxygenase. The presence of albumin reduced the formation of 5(S),12(S)- dihydroxyeicosatetraenoic acid from 5(S)-hydroxyeicosatetraenoic acid, however, it had no effect on the 12(S)-hydroxyeicosatetraenoic acid production from endogenous arachidonic acid. In contrast, when 15(S)-hydroxyeicosatetraenoic acid was incubated with activated platelets, the formation of 14(R), 15(S)- dihydroxyeicosatetraenoic acid was stimulated by the presence of albumin. Furthermore, albumin reduced the inhibitory action 15(S)-hydroxyeicosatetraenoic acid had on 12(S)-hydroxyeicosatetraenoic acid formation from endogenous arachidonic acid. However, addition of exogenous arachidonic acid (20 microm) to the incubations inverted the effects of albumin on the conversion of 15(S)-hydroxyeicosatetraenoic acid to 14(R),15(S)- dihydroxyeicosatetraenoic acid and the production of 12(S)-hydroxyeicosatetraenoic acid in these incubations. Based on the Scatchard equation, the estimates of the binding constants to albumin were 1.8 x 10(5) for 15 -HETE, 1.4 x 10(5) for 12-HETE, and 0.9 x 10(5) for 5 -HETE respectively. These results suggest an important role of albumin for the regulation of the availability of substrates for platelet 12-lipoxygenase.  相似文献   

4.
Resident mouse peritoneal macrophages when exposed to zymosan during the first day of cell culture synthesize and secrete large amounts of prostaglandin E2 (PGE2) and leukotriene C4 (LTC4), the respective products of cyclo-oxygenase- and 5-lipoxygenase-catalysed oxygenations of arachidonic acid. Under these conditions of cell stimulation only small amounts of hydroxyeicosatetraenoic acids (HETEs) are concomitantly produced. However, exogenously added arachidonic acid is metabolized to large amounts of 12- and 15-HETE and only relatively small amounts of PGE2. No LTC4 is formed under these conditions. In contrast, resident mouse peritoneal macrophages in cell culture for 4 days synthesized less PGE2 and LTC4 when exposed to zymosan. However, these macrophage populations continue to synthesize 12-HETE from exogenously added arachidonic acid. Zymosan induced the secretion of a lysosomal enzyme, N-acetyl-beta-glucosaminidase, equally in both 1- and 4-day cultures. Both 12- and 15-hydroperoxyeicosatetraenoic acids (HPETEs), the precursors of 12- and 15-HETE, were found to be irreversible inhibitors of the cyclo-oxygenase pathway and reversible inhibitors of the 5-lipoxygenase pathway in macrophages. 15-HETE were found to be reversible inhibitors of both pathways. Thus the oxidation of arachidonic oxidation of arachidonic acid to both prostaglandins and leukotrienes may be under intracellular regulation by products of 12- and 15-lipoxygenases.  相似文献   

5.
Lipoxygenase pathways of macrophages   总被引:2,自引:0,他引:2  
Resident mouse peritoneal macrophages when exposed to zymosan during the first day of cell culture synthesize and secrete large amounts of prostaglandin E2 and leukotriene (LT) C4, the respective products of cyclooxygenase- and 5-lipoxygenase-catalyzed oxygenations of arachidonic acid. Under these conditions of cell stimulation only small amounts of hydroxyeicosatetraenoic acids (HETEs) are concomitantly produced. However, exogenously added arachidonic acid is metabolized to large amounts of 12- and 15-HETE. No LTC4 is formed under these conditions. Inasmuch as 12- and 15-HETE have been shown to modulate certain lymphocyte responses, further study of the regulation of their production by macrophages is warranted.  相似文献   

6.
In higher plants, C6 and C9 aldehydes are formed from C18 fatty acids, such as linoleic or linolenic acid, through formation of 13- and 9-hydroperoxides, followed by their stereospecific cleavage by fatty acid hydroperoxide lyases (HPL). Some marine algae can also form C6 and C9 aldehydes, but their precise biosynthetic pathway has not been elucidated fully. In this study, we show that Laminaria angustata, a brown alga, formed C6 and C9 aldehydes enzymatically. The alga forms C9 aldehydes exclusively from the C20 fatty acid, arachidonic acid, while C6 aldehydes are derived either from C18 or from C20 fatty acid. The intermediates in the biosynthetic pathway were trapped by using a glutathione/glutathione peroxidase system, and subjected to structural analyses. Formation of (S)-12-, and (S)-15-hydroperoxy arachidonic acids [12(S)HPETE and 15(S)HPETE] from arachidonic acid was confirmed by chiral HPLC analyses. These account respectively for C9 aldehyde and C6 aldehyde formation, respectively. The HPL that catalyzes formation of C9 aldehydes from 12(S)HPETE seems highly specific for hydroperoxides of C20 fatty acids.  相似文献   

7.
5-, 8-, 9-, 11-, 12-, and 15-hydroxy-eicosatetraenoic acids (HETEs) were prepared from arachidonic acid by reaction with H2O2 in the presence of Cu2+ ions. They were separated by high-performance liquid chromatography on silica gel (μPorasil), using a linear solvent gradient from hexane to chloroform: only the 8- and 9-isomers were not resolved. Multi-milligram quantities of highly purified HETEs could be easily generated by this method, which thus provides a useful tool to study the biological activity of these compounds. Octadeuterated analogs of HETEs prepared from octadeuterated arachidonic acid by this procedure were suitable for use as internal standards in stable isotope dilution assays, by combined gas chromatography and mass spectrometry, with selected ion monitoring. The detection limit of the HETEs was less than 1 ng.  相似文献   

8.
Liver fatty acid binding protein (L-FABP) binds avidly the arachidonic acid metabolites, hydroperoxyeicosatetraenoic acids (HPETEs) and hydroxyeicosatetraenoic acids (HETEs). Binding of 15-[3H]HPETE was specific, saturable, reversible, and rapid. Protein specificity was indicated by the following order: L-FABP greater than bovine serum albumin greater than ovalbumin = beta-lactoglobulin greater than ribonuclease. Ligand specificity was evidenced by the following order of apparent competition: 15-HPETE greater than or equal to 5-HETE greater than or equal to 5-HPETE = oleic acid greater than 12-HETE greater than 12-HPETE greater than or equal to 15-HETE greater than prostaglandin E1 much greater than leukotriene C4 greater than prostaglandin E2 much greater than thromboxane B2 = leukotriene B4. Once bound, 15-HPETE was reversibly displaced. Ligand was recovered from the protein complex and confirmed to be 15-[3H]HPETE by TLC. L-FABP bound HPETE with a dissociation constant of 76 nM,5-HETE at 175 nM, and 15-HETE at 1.8 microM, and the reference fatty acids oleic acid at 1.2 microM and arachidonic acid at 1.7 microM. Thus, the affinity was approximately 16-fold greater for 15-HPETE, and 7-fold higher for 5-HETE, than for oleic acid. The need exists for studies of complexes of L-FABP with the HPETEs and HETEs in hepatocytes, especially since L-FABP has previously been associated with mitosis in normal hepatocytes, and shown to be the target protein of two liver carcinogens, and these arachidonic acid metabolites have been found to be able to modulate activities related to cell growth.  相似文献   

9.
Abstract: Rat cerebrum, prelabeled in vivo by intraventric-ular injection of [1-14C]arachidonic acid, was used to assess cyclooxygenase and lipoxygenase reaction products in total homogenates, cytosol, synaptosomes, and microsomes. Effects of bicuculline-induced status epilepticus on arachi-donic acid metabolism in synaptosomes and microsomes were also measured. Lipoxygenase activity, resulting in the synthesis of hydroxyeicosatetraenoic acids (HETEs), and cyclooxygenase activity, resulting in the synthesis of prostaglandins (PGs), were measured by reverse-phase and normal-phase HPLC with flow scintillation detection. Endogenous lipoxygenase products in synaptosomes were identified by capillary gas chromatography-mass spectrometry. PGs and HETEs were detected in all subcellular fractions. The synaptosomal fraction showed the highest lipoxygenase activity, with 5-HETE, 12-HETE, and leukotriene B4 as the major products. Following bicuculline-induced status epilepticus, endogenous free arachidonic acid and other fatty acids accumulated in synaptosomes, but not in microsomes. Incorporation of [1-l4C]arachidonic acid into synaptosomal and microsomal phospholipids was decreased after bicuculline treatment. Bicuculline-induced status epilepticus resulted in increased synthesis of HETEs in synaptosomes. PG synthesis increased in the microsomal fraction. When [1-14C]arachidonic acid-labeled synaptosomes and microsomes were incubated for 1 h at 37°C the synthesis of eicosa-noids, particularly PGD2, was increased significantly in bi-cuculline-treated rats, as compared with untreated rats. Depolarization (45 mM K+) of synaptosomes induced a loss of [1-14C]arachidonic acid from phosphatidylinositol, and increased the synthesis of PGD2 and HETEs, an effect that was enhanced in bicuculline-treated rats. This study localizes changes in arachidonic acid metabolism and lipoxygenase activity resulting from bicuculline-induced status epilepticus in the brain subcellular fraction enriched in nerve endings.  相似文献   

10.
Endothelial cells release several factors which influence vascular tone, leukocyte function and platelet aggregation. Some of these factors are metabolites of arachidonic acid, most notably prostacyclin. However, many of the endothelial metabolites of arachidonic acid have not been positively identified. The purpose of these studies is to identify the arachidonic acid metabolites synthesized by bovine coronary endothelial cells. Cultured bovine coronary artery endothelial cells were incubated with [ 14C]arachidonic acid. The incubation media was extracted and the radioactive metabolites resolved by a combination of reverse phase- and normal phase-high pressure liquid chromatography (HPLC). The cells synthesized 6-keto prostaglandin (PG)F, PGE2, 12-hydroxyheptadecatrienoic acid (HHT), 12-, 15-, and 11- hydroxyeicosatetraenoic acids (HETE), and 14,15-, 11,12-, 8,9-, and 5,6-epoxyeicosatrienoic acids (EET). Several of the HETEs were further analyzed by chiral-phase HPLC. The cells synthesized predominately 12(S)-, 15(S)-, and 11(R)-HETE. The synthesis of the S optical isomers of 12- and 15-HETE suggested that the 12- and 15-lipoxygenases were present in these cells. 11(R)-HETE is probably derived from cyclooxygenase. They also synthesized smaller amounts of 9-, 8- and 5-HETEs. The structures of the HETEs and EETs were confirmed by mass spectrometry. The release of 6-keto PGF and 15-HETE was measured by specific radioimmunoassays. Melittin, thrombin, arachidonic acid and A23187 stimulated the release of both eicosanoids in a concentration-related matter. Under all conditions, the release of 6-keto PGF exceed the release of 15-HETE. Therefore, cultured bovine coronary artery endothelial cells synthesize cyclooxygenase, lipoxygenase and cytochrome P-450 metabolites of arachidonic acid.  相似文献   

11.
Products of the lipoxygenase pathway have been implicated in the development of the cerebrovascular spasm that arises after subarachnoid hemorrhage. In particular the hydroperoxyeicosatetranenoic acids (HPETEs), which are unstable and break down rapidly to the corresponding 5-hydroxy acids (HETEs), are vasoconstrictor agents that mimic some aspects of cerebrovascular spasm. It is not, however, well established whether segments of cerebral artery can manufacture these products. We have studied the lipoxygenase product profile of cerebral arteries stimulated with arachidonic acid. Rings of bovine cerebral arteries were incubated in Krebs solution containing arachidonic acid. The lipoxygenase products were studied using high performance liquid chromatography. The largest peaks had the retention times of 5- and 15-HETEs, and the identity of these peaks was confirmed using specific radioimmunoassays. Stimulation with arachidonic acid resulted in a time- and dose-dependent increase in the formation of both HETEs, with 15-HETE being most abundant. The release of both HETEs was markedly reduced in the presence of AA-861, an inhibitor of lipoxygenase, but not with the cyclooxygenase inhibitor indomethacin. These data are thus consistent with our previous suggestion that the contractile activity of arachidonic acid in cerebral arteries arises, at least in part, from HPETE formation and with a possible role for these compounds in cerebral vasospasm.  相似文献   

12.
Oocyte maturation (meiosis reinitiation) in starfish is induced by the natural hormone 1-methyladenine. This induction of meiotic divisions can be triggered also by four fatty acids: 5,8,11-20:3; 5,8,11,14-20:4 (arachidonic acid); 6,9,12,15-20:4; 5,8,11,14,17-20:5, all other fatty acids being completely inactive. This maturation triggered by eicosanoids occurs in the micromolar range and is facilitated by the presence of calcium. A variety of arachidonic acid derivatives (esters, epoxides, etc.) and metabolites (cyclooxygenase and lipoxygenase products) has been tested; the biological activity is restricted to 8-hydroxyeicosatetraenoic acid (8-HETE), other mono- and poly-HETEs being completely inactive. Maturation triggered by 8-HETE occurs around 10 nM and is insensitive to the presence of calcium. 8-HETE methyl ester and 8-hydroperoxyeicosatetraenoic acid are able to induce maturation at higher concentrations. Both (8S) and (8R) stereoisomers have been tested; the biological activity is strictly restricted to the (8R) isomer. 8-HETE triggers a complete maturation, i.e. maturation-promoting factor appearance, germinal vesicle breakdown, emission of the polar bodies, and formation of a female pronucleus. (8R)-HETE, but not (8S)-HETE, triggers the typical decrease in cyclic AMP concentration induced by 1-methyladenine and the burst of protein phosphorylation associated with maturation. Starfish oocytes oxidize exogenous arachidonic acid into 8-HETE and other HETEs. 8-HETE was identified, after high pressure liquid chromatography purification, by gas chromatography mass spectrometry. Furthermore, it was found that the starfish oocytes only produce the (8R)-HETE isomer. This highly stereospecific induction of oocyte maturation by (8R)-HETE suggests that this fatty acid, or a very closely related fatty acid, may play a role in the transduction of the 1-methyladenine message at the plasma membrane level.  相似文献   

13.
Metabolites of arachidonic acid appear to be involved in the regulation of aldosterone secretion. Adrenal cells metabolize arachidonic acid to several products including hydroxyeicosatetraenoic acids (HETEs). Since HETEs may be incorporated into the membrane lipids in some cells, we investigated whether HETEs were incorporated into lipids of adrenal glomerulosa cells and tested the influence of incorporation on aldosterone secretion. Cells were incubated with [3H] -arachidonic acid, -5-HETE, -12-HETE, -15-HETE or -LTB4. The cellular lipids were extracted and analyzed by TLC. Arachidonic acid was incorporated into all of the cell lipids with greatest accumulations in phospholipids (22%), cholesterol esters (50%), and triglycerides (21%). Uptake was maximal by 30 min. 5-HETE was incorporated into diglycerides and monoglycerides but not into phospholipids or other neutral lipids. The uptake followed a similar temporal pattern as arachidonic acid. 12-HETE was incorporated to a small extent into phospholipids, predominantly phosphatidylcholine. Neither 15-HETE or LTB4 were associated with cellular lipids. Angiotensin increased the uptake of 5-HETE and arachidonic acid into phosphatidylinositol/phosphatidylserine without altering uptake into the other lipids. When cells were pretreated with 5-HETE and washed to remove the unesterified HETE, basal aldosterone release as well as release stimulated by angiotensin, potassium and ACTH were significantly reduced. 15-HETE, which is not incorporated into cellular lipids, was without effect on aldosterone secretion. These studies indicate that 5-HETE may be incorporated into the cellular lipids of adrenal cells and may modulate steroidogenesis.  相似文献   

14.
We report herein for the first time the formation by freshly grown garlic roots and the structural characterization of 14,15-epoxide positional analogs of the hepoxilins formed via the 15-lipoxygenase-induced oxygenation of arachidonic acid. These compounds are formed through the combined actions of a 15(S)-lipoxygenase and a hydroperoxyeicosatetraenoic acid (HPETE) isomerase. The compounds were formed when either arachidonic acid or 15-HPETE were used as substrates. Both the "A"-type and the "B"-type products are formed although the B-type compounds are formed in greater relative quantities. Chiral phase high performance liquid chromatography analysis confirmed the formation of hepoxilins from 15(S)- but not 15(R)-HPETE, indicating high stereoselectivity of the isomerase. Additionally, the lipoxygenase was of the 15(S)-type as only 15(S)-hydroxyeicosatetraenoic acid was formed when arachidonic acid was used as substrate. The structures of the products were confirmed by gas chromatography-mass spectrometry of the methyl ester trimethylsilyl ether derivatives as well as after characteristic epoxide ring opening catalytically with hydrogen leading to dihydroxy products. That 15(S)-lipoxygenase activity is of functional importance in garlic was shown by the inhibition of root growth by BW 755C, a dual cyclooxygenase/lipoxygenase inhibitor and nordihydroguaiaretic acid, a lipoxygenase inhibitor. Additional biological studies were carried out with the purified intact 14(S), 15(S)-hepoxilins, which were investigated for hepoxilin-like actions in causing the release of intracellular calcium in human neutrophils. The 14,15-hepoxilins dose-dependently caused a rise in cytosolic calcium, but their actions were 5-10-fold less active than 11(S), 12(S)-hepoxilins derived from 12(S)-HPETE. These studies provide evidence that 15(S)-lipoxygenase is functionally important to normal root growth and that HPETE isomerization into the hepoxilin-like structure may be ubiquitous; the hepoxilin-evoked release of calcium in human neutrophils, which is receptor-mediated, is sensitive to the location within the molecule of the hydroxyepoxide functionality.  相似文献   

15.
In starfish oocyte maturation (meiosis reinitiation) is induced by the natural hormone 1-methyladenine (1-Me-Ade). This paper shows that arachidonic acid (AA) induces oocyte maturation at concentrations above 0.5 microM. This maturation shares many characteristics with 1-MeAde-induced maturation: same kinetics, same required contact time, same stimulations of protein phosphorylation and sodium influx. Although calcium facilitates the AA-induced but not the 1-MeAde-induced maturation, AA, like 1-MeAde, does not stimulate the uptake of calcium. Calcium does not facilitate the uptake of AA by oocytes. Out of 36 different fatty acids (saturated and unsaturated), only eicosatetraenoic (AA) and eicosapentaenoic acids were found to mimic 1-MeAde. Calcium-dependent phospholipases A2 from bee venom and Naja venom also induce maturation (0.1-1 unit/ml) when added externally to the oocytes. Phospholipase A2 inhibitors (quinacrine, bromophenacylbromide) block maturation; inhibition is reversed by increasing the 1-MeAde concentration and only occurs during the hormone-dependent period. AA is usually metabolized through oxidation by cyclooxygenase or lipoxygenase. Cyclooxygenase inhibitors (acetylsalicylic acid, indomethacin, tolazoline) do not block maturation; prostaglandins E2, D2, F2 alpha, I2, and thromboxane B2 do not induce meiosis reinitiation. On the other hand, lipoxygenase inhibitors (quercetin, butylated hydroxytoluene, and eicosatetraynoic acid) block 1-MeAde-induced maturation; although leukotrienes (A4, B4, C4, D4, E4) have no effects on oocytes, two other lipoxygenase products, 12- and 15-hydroxyeicosatetraenoic acids (and their corresponding hydroperoxy-) induce oocyte maturation (around 1 microM). The possible mode of action of the fatty acids inducing oocyte maturation is discussed.  相似文献   

16.
Monohydroxy fatty acids (MHFAs) were isolated from homogenates of the barnacle Balanus balanoides and identified by gas chromatography-mass spectrometry (GC-MS) as 14- and 17-hydroxy docosahexaenoic acids, 8-, 11-, 12-, 15- and 18-hydroxy eicosapentaenoic acids, 13- and 16-hydroxyoctadecatrienoic acids and 9-, 13- and 15-hydroxyoctadecadienoic acids. Each monohydroxy fatty acid was tested for egg hatching activity in a bioassay using Elminius modestus egg masses, but 8-hydroxy-5, 9, 11, 14, 17-eicosapentaenoic acid (8-HEPE) was the only MHFA with barnacle egg hatching activity. Studies on the egg hatching activity of MHFAs prepared from the oxidation of polyunsaturated fatty acids showed that activity was confined to the 8-hydroxy isomer of eicosapentaenoic acid and arachidonic acid, and that unsaturation at C5 and C14, but not C17, was essential for activity. In addition, the 8(R) conformation is necessary for activity, as 8(R)-HEPE caused egg hatching at 10(-7) M whereas the enantiomer 8(S)-HEPE was inactive.  相似文献   

17.
Hydroxyeicosatetraenoic acid (HETE) derivatives of arachidonic acid are produced in the brain and have been implicated as pathologic mediators in various types of brain injury. To understand better their fate in the brain, particularly in cerebral microvessels, several HETEs were incubated with cultured mouse cerebromicrovascular endothelium for 1, 2, and 4 h, followed by HPLC analysis of medium and cellular lipids. 5(S)-, 8(RS)-, and 9(RS)-HETE were not metabolized by the cells, but were extensively incorporated, unmodified, into cell lipids. On the other hand, 11(RS)-, 12(S)-, and 15(S)-HETE were extensively metabolized and only minimally incorporated into cell lipids. Previously, the major 12-HETE metabolite was identified as 8-hydroxyhexadecatrienoic acid. In the present study, we identified the major 11-HETE metabolite as 7-hydroxyhexadecatrienoic acid and the major 15-HETE metabolite as 11-hydroxyhexadecatrienoic acid. omega-3 compounds, 15(S)- and 12(S)-hydroxyeicosapentaenoic acids (HEPE), were also metabolized to more polar compounds, but to a lesser extent than their tetraenoic acid, omega-6 counterparts. Comparison of 5-, 12-, and 15-HETE enantiomers revealed no differences in metabolism or incorporation between the R and S stereoisomers. These data suggest that many isomers of HETE and HEPE can be incorporated into cell lipids or metabolized by pathways that do not distinguish between enantiomers. These pathways, however, are sensitive to the position or number of double bonds and are selective based on the position of the hydroxyl group.  相似文献   

18.
The proinflammatory effects of unsaturated fatty acids and, where appropriate, their monohydroxy derivatives, have been investigated both by application to human skin and with respect to human polymorphonuclear leukocyte (PMN) migration. Of the fatty acids applied to the skin only eicosapentaenoic and arachidonic acids (EPA; AA) produced consistent, measurable erythema. The monohydroxy derivatives of the two fatty acids also caused erythema, the 12-hydroxy isomers being the most potent. Chemokinetic activity towards PMNs was observed in the presence of AA, EPA and alpha-linolenic acid using an agarose microdroplet chemokinesis assay. In contrast to their in vivo properties, the 5-hydroxy isomers of AA and EPA were the most potent, being approximately 10 times more chemokinetically active than the other isomers. Quantification of the hydroxyeicosatetraenoic and hydroxyeicosapentaenoic acids (HETEs; HEPEs) in the lesional skin of psoriatic patients demonstrated that, of the metabolites measured, 12-HETE was present in the greatest amounts. Twenty five times more 12-HETE than 12- or 15-HEPE was detected, these being the most abundant of the HEPEs formed. The monohydroxy derivatives of AA and EPA may contribute to the inflammatory changes observed in psoriasis. The HETEs appear to be of greater importance than the HEPEs in view of the relative amounts present.  相似文献   

19.
The proinflammatory effects of unsaturated fatty acids and, where appropriate, their monohydroxy derivatives, have been investigated both by application to human skin and with respect to human polymorphonuclear leukocyte (PMN) migration. Of the fatty acids applied to the skin only eicosapentaenoic and arachidonic acids (EPA;AA) produced consistent, measurable erythema. The monohydroxy derivatives of the two fatty acids also caused erythema. the 12-hydroxy isomers being the most potent. Chemokinetic activity towards PMNs was observed in the presence of AA, EPA and α-linolenic acid using an agarose microdroplet chemokinesis assay. In contrast to their properties, the 5-hydroxy isomers of AA and EPA were the most potent, being approximately 10 times more chemokinetically active than the other isomers. Quantification of the hydroxyeicosatetraenoic and hydroxyeicosapentaenoic acids (HETEs;HEPEs) in the lesional skin of psoriatic patients demonstrated that, of the metabolites measured, 12-HETE was present in the greatest amounts. Twenty five times more 12-HETE than 12- or 15-HEPE was detected, these being the most abundant of teh HEPEs formed. The monohydroxy derivatives of AA and EPA may contribute to the inflammatory changes observed in psoriasis. The HETEs appear to be of greater importance than the HEPEs in view of the relative amounts present.  相似文献   

20.
Eicosanoids participate in the regulation of cellular proliferation. Thus, we observed that prostaglandin E(2) interaction with membrane receptors is involved in the control of 3T6 fibroblast growth induced by serum. However, our results suggested that another arachidonic acid pathway might be implicated in these events. Our results show that 3T6 fibroblasts synthesized hydroxyeicosatetraenoic acids (HETEs) such as 12-HETE through the cytochrome P-450 (CYP450) pathway. However, 3T6 fibroblasts did not produce leukotriene B(4) (LTB(4)), and lipoxygenase inhibitors and LT antagonists failed to inhibit 3T6 fibroblast growth induced by FBS. In contrast, we observed that CYP450 inhibitors such as SKF-525A, 17-octadecynoic acid, 1-aminobenzotriazole, and 6-(2-propargyloxyphenyl)hexanoic acid reduced 12(S)-HETE levels, 3T6 fibroblast growth, and DNA synthesis induced by FBS. The impairment of DNA synthesis and 3T6 fibroblast growth induced by SKF-525A were reversed by exogenous addition of HETEs. Moreover, we report that 5-HETE, 12(S)-HETE, and 15(S)-HETE are mitogenic on 3T6 fibroblast in the absence of another growth factor, and this effect was dependent on the activation of the phosphatidylinositol-3-kinase pathway. In conclusion, our results show that HETEs, probably produced by CYP450, are involved in the control of 3T6 fibroblast growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号