首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
LIN-2, -7 (L27) homology domains are putative protein-protein interaction modules found in several scaffold proteins involved in the assembly of polarized cell-signaling structures. These specific interaction pairs are well conserved across metazoan species, from worms to man. We have expressed and purified L27 domains from multiple species and find that certain domains from proteins such as Caenorhabditis elegans LIN-2 and LIN-7 can specifically heterodimerize. Biophysical analysis of interacting L27 domains demonstrates that the domains interact with a 1:1 stoichiometry. Circular dichroism studies reveal that the domains appear to function as an obligate heterodimer; individually the domains are largely unfolded, but when associated they show a significant increase in helicity, as well as a cooperative unfolding transition. These novel obligate interacting pairs are likely to play a key role in regulating the organization of signaling proteins at polarized cell structures.  相似文献   

2.
KIF3A/B, a kinesin involved in intraflagellar transport and Golgi trafficking, is distinctive because it contains two nonidentical motor domains. Our hypothesis is that the two heads have distinct functional properties, which are tuned to maximize the performance of the wild-type heterodimer. To test this, we investigated the motility of wild-type KIF3A/B heterodimer and chimaeric KIF3A/A and KIF3B/B homodimers made by splicing the head of one subunit to the rod and tail of the other. The first result is that KIF3A/B is processive, consistent with its transport function in cells. Secondly, the KIF3B/B homodimer moves at twice the speed of the wild-type motor but has reduced processivity, suggesting a trade-off between speed and processivity. Third, the KIF3A/A homodimer moves fivefold slower than wild-type, demonstrating distinct functional differences between the two heads. The heterodimer speed cannot be accounted for by a sequential head model in which the two heads alternate along the microtubule with identical speeds as in the homodimers. Instead, the data are consistent with a coordinated head model in which detachment of the slow KIF3A head from the microtubule is accelerated roughly threefold by the KIF3B head.  相似文献   

3.
The structural organization and topology of the Lcb1p subunit of yeast and mammalian serine palmitoyltransferases (SPT) were investigated. In the yeast protein, three membrane-spanning domains were identified by insertion of glycosylation and factor Xa cleavage sites at various positions. The first domain of the yeast protein, located between residues 50 and 84, was not required for the stability, membrane association, interaction with Lcb2p, or enzymatic activity. Deletion of the comparable domain of the mammalian protein SPTLC1 also had little effect on its function, demonstrating that this region is not required for membrane localization or heterodimerization with SPTLC2. The second and third membrane-spanning domains of yeast Lcb1p, located between residues 342 and 371 and residues 425 and 457, respectively, create a luminal loop of approximately 60 residues. In contrast to the first membrane-spanning domain, the second and third membrane-spanning domains were both required for Lcb1p stability. In addition, mutations in the luminal loop destabilized the SPT heterodimer indicating that this region of the protein is important for SPT structure and function. Mutations in the extreme carboxyl-terminal region of Lcb1p also disrupted heterodimer formation. Taken together, these data suggest that in contrast to other members of the alpha-oxoamine synthases that are soluble homodimers, the Lcb1p and Lcb2p subunits of the SPT heterodimer may interact in the cytosol, as well as within the membrane and/or the lumen of the endoplasmic reticulum.  相似文献   

4.
5.
Heterodimeric proteins with homologous subunits of same fold are involved in various biological processes. The objective of this study is to understand the evolution of structural and functional features of such heterodimers. Using a non‐redundant dataset of 70 such heterodimers of known 3D structure and an independent dataset of 173 heterodimers from yeast, we note that the mean sequence identity between interacting homologous subunits is only 23–24% suggesting that, generally, highly diverged paralogues assemble to form such a heterodimer. We also note that the functional roles of interacting subunits/domains are generally quite different. This suggests that, though the interacting subunits/domains are homologous, the high evolutionary divergence characterize their high functional divergence which contributes to a gross function for the heterodimer considered as a whole. The inverse relationship between sequence identity and RMSD of interacting homologues in heterodimers is not followed. We also addressed the question of formation of homodimers of the subunits of heterodimers by generating models of fictitious homodimers on the basis of the 3D structures of the heterodimers. Interaction energies associated with these homodimers suggests that, in overwhelming majority of the cases, such homodimers are unlikely to be stable. Majority of the homologues of heterodimers of known structures form heterodimers (51.8%) and a small proportion (14.6%) form homodimers. Comparison of 3D structures of heterodimers with homologous homodimers suggests that interfacial nature of residues is not well conserved. In over 90% of the cases we note that the interacting subunits of heterodimers are co‐localized in the cell. Proteins 2015; 83:1766–1786. © 2015 Wiley Periodicals, Inc.  相似文献   

6.
Li Y  Karnak D  Demeler B  Margolis B  Lavie A 《The EMBO journal》2004,23(14):2723-2733
L27 is a protein-binding domain that can assemble essential proteins for signaling and cell polarity into complexes by interacting in a heterodimeric manner. One of these protein complexes is the PATJ/PALS1/Crumbs tripartite complex, which is crucial for the establishment and maintenance of cell polarity. To reveal the structural basis underlining the obligate heterodimerization, we have determined the crystal structure of the PALS1-L27N/PATJ-L27 heterodimer complex. Each L27 domain is composed of three helices. The two L27 domains heterodimerize by building a compact structure consisting of a four-helix bundle formed by the first two helices of each L27 domain and one coiled-coil formed by the third helix of each domain. The large hydrophobic packing interactions contributed by all the helices of both L27 domains predominantly drive the heterodimer formation, which is likely to be a general feature of L27 domains. Combined with mutational studies, we can begin to understand the structural basis for the specificity of L27 binding pairs. Our results provide unique insights into L27 domain heterodimer complex, which is critical for cell polarization.  相似文献   

7.
The ultimate step common to almost all DNA repair pathways is the ligation of the nicked intermediate to form contiguous double-stranded DNA. In the mammalian nucleotide and base excision repair pathways, the ligation step is carried out by ligase III-α. For efficient ligation, ligase III-α is constitutively bound to the scaffolding protein XRCC1 through interactions between the C-terminal BRCT domains of each protein. Although structural data for the individual domains has been available, no structure of the complex has been determined and several alternative proposals for this interaction have been advanced. Interpretation of the models is complicated by the formation of homodimers that, depending on the model, may either contribute to, or compete with heterodimer formation. We report here the structures of both homodimer complexes as well as the heterodimer complex. Structural characterization of the heterodimer formed from a longer XRCC1 BRCT domain construct, including residues comprising the interdomain linker region, revealed an expanded heterodimer interface with the ligase III-α BRCT domain. This enhanced linker-mediated binding interface plays a significant role in the determination of heterodimer/homodimer selectivity. These data provide fundamental insights into the structural basis of BRCT-mediated dimerization, and resolve questions related to the organization of this important repair complex.  相似文献   

8.
Platelet-derived growth factor, PDGF, purified from human platelets is a disulfide-bonded dimer consisting of two homologous polypeptide chains denoted A and B; it has not been known whether it is a heterodimer or a mixture of homodimers. We present here evidence that a major part of PDGF has a heterodimer structure. A highly homogeneous, 31-kDa PDGF was purified in the presence of protease inhibitors and shown to contain both chains by means of immunoprecipitations with peptide antisera specific for the A and B chains, respectively. The susceptibility of PDGF to mild acid treatment and its chromatographic behavior in reversed-phase high performance liquid chromatography and immobilized metal ion affinity chromatography, as compared to A and B chain homodimers, is consistent with a heterodimer structure. Analysis of PDGF purified according to our routine, large scale procedure revealed the major part to have a heterodimer structure. In addition, B chain homodimers were also found. With the demonstration that a major part of PDGF purified from human platelets occurs as a heterodimer, all three dimeric forms of PDGF have been identified. The following nomenclature to distinguish the various forms is suggested: PDGF-AA, a homodimer of A chains; PDGF-AB, a heterodimer; PDGF-BB, a homodimer of B chains; PDGF, any dimeric form of A or B chains.  相似文献   

9.
The structure of Aq_328, an uncharacterized protein from hyperthermophilic bacteria Aquifex aeolicus, has been determined to 1.9 A by using multi-wavelength anomalous diffraction (MAD) phasing. Although the amino acid sequence analysis shows that Aq_328 has no significant similarity to proteins with a known structure and function, the structure comparison by using the Dali server reveals that it: (1) assumes a histone-like fold, and (2) is similar to an ancestral nuclear histone protein (PDB code 1F1E) with z-score 8.1 and RMSD 3.6 A over 124 residues. A sedimentation equilibrium experiment indicates that Aq_328 is a monomer in solution, with an average sedimentation coefficient of 2.4 and an apparent molecular weight of about 20 kDa. The overall architecture of Aq_328 consists of two noncanonical histone domains in tandem repeat within a single chain, and is similar to eukaryotic heterodimer (H2A/H2B and H3/H4) and an archaeal histone heterodimer (HMfA/HMfB). The sequence comparisons between the two histone domains of Aq_328 and six eukaryotic/archaeal histones demonstrate that most of the conserved residues that underlie the Aq_328 architecture are used to build and stabilize the two cross-shaped antiparallel histone domains. The high percentage of salt bridges in the structure could be a factor in the protein's thermostability. The structural similarities to other histone-like proteins, molecular properties, and potential function of Aq_328 are discussed in this paper.  相似文献   

10.
Multiprotein complexes mediate static and dynamic functions to establish and maintain cell polarity in both epithelial cells and neurons. Membrane-associated guanylate kinase (MAGUK) proteins are thought to be scaffolding molecules in these processes and bind multiple proteins via their obligate postsynaptic density (PSD)-95/Disc Large/Zona Occludens-1, Src homology 3, and guanylate kinase-like domains. Subsets of MAGUK proteins have additional protein-protein interaction domains. An additional domain we identified in SAP97 called the MAGUK recruitment (MRE) domain binds the LIN-2,7 amino-terminal (L27N) domain of mLIN-2/CASK, a MAGUK known to bind mLIN-7. Here we show that SAP97 binds two other mLIN-7 binding MAGUK proteins. One of these MAGUK proteins, DLG3, coimmunoprecipitates with SAP97 in lysates from rat brain and transfected Madin-Darby canine kidney cells. This interaction requires the MRE domain of SAP97 and surprisingly, both the L27N and L27 carboxyl-terminal (L27C) domains of DLG3. We also demonstrate that SAP97 can interact with the MAGUK protein, DLG2, but not the highly related protein, PALS2. The ability of SAP97 to interact with multiple MAGUK proteins is likely to be important for the targeting of specific protein complexes in polarized cells.  相似文献   

11.
12.
13.
Immunoglobulin fold characteristics of B7-1 (CD80) and B7-2 (CD86).   总被引:2,自引:0,他引:2       下载免费PDF全文
B7-1 and B7-2 are expressed on antigen-presenting cells and bind to the CD28 and CTLA-4 receptors on T cells. These interactions trigger a costimulatory pathway that is essential for T-cell activation. B7-1 and B7-2 are members of the immunoglobulin superfamily (IgSF) and, despite sharing common function, have only limited sequence similarity. The B7-1 extracellular region was previously subdivided into 2 IgSF domains, an N-terminal V(ariable)-like domain, followed by a C(onstant)-like domain. We recently reported that the V-like domains of B7-1 and B7-2 share some significant sequence similarities with 3 major histocompatibility complex (MHC)-encoded members of the IgSF. We have now applied inverse folding methodology to assess the compatibility of the B7-1 and B7-2 extracellular region sequences with currently available 3-dimensional structures. In these calculations, the sequences of the N-terminal (V-like) domains in B7-1 and B7-2 were not compatible with known structures, including the IgSF V-set. In contrast, the sequences of the C-like domains were compatible with IgSF C-set structures and were best recognized by the beta 2-microglobulin (beta 2m) domain of MHC Class I. A sequence comparison of the C-like domains in the B7 molecules showed that 11 of 17 rigorously conserved residues in B7-1 and B7-2 are not IgSF C-1 set consensus residues. When mapped onto the corresponding positions of the beta 2m structure, the conserved residues in B7 cluster on the surface, where they may interact with the B7 V-like domain or other molecules.  相似文献   

14.
The hyperthermophilic archaeon Methanothermus fervidus contains two small basic proteins, HMfA (68 amino acid residues) and HMfB (69 residues) that share a common ancestry with the eukaryal nucleosome core histones H2A, H2B, H3, and H4. HMfA and HMfB have sequences that differ at 11 locations, they have different structural stabilities, and the complexes that they form with DNA have different electrophoretic mobilities. Here, crystal structures are documented for recombinant (r) HMfA at a resolution of 1.55 A refined to a crystallographic R-value of 19.8 % (tetragonal form) and at 1.48 A refined to a R-value of 18.8 % (orthorhombic form), and for rHMfB at 1.9 A refined to a R-value of 18.0 %. The rHMfA and rHMfB monomers have structures that are just histone folds in which a long central alpha-helix (alpha2; 29 residues) is separated from shorter N-terminal (alpha1; 11 residues) and C-terminal (alpha3; 10 residues) alpha-helices by two loops (L1 and L2; both 6 residues). Within L1 and L2, three adjacent residues are in extended (beta) conformation. rHMfA and rHMfB assemble into homodimers, with the alpha2 helices anti-parallel aligned and crossing at an angle of close to 35 degrees, and with hydrogen bonds formed between the extended, parallel regions of L1 and L2 resulting in short beta-ladders. Dimerization creates a novel N-terminal structure that contains four proline residues, two from each monomer. As prolines are present at these positions in all archaeal histone sequences, this proline-tetrad structure is likely to be a common feature of all archaeal histone dimers. Almost all residues that participate in monomer-monomer interactions are conserved in HMfA and HMfB, consistent with the ability of these monomers to form both homodimers and (HMfA+HMfB) heterodimers. Differences in side-chain interactions that result from non-conservative residue differences in HMfA and HMfB are identified, and the structure of a (rHMfA)(2)-DNA complex is presented based on the structures documented here and modeled by homology to histone-DNA interactions in the eukaryal nucleosome.  相似文献   

15.
The lipocalin β‐lactoglobulin (β‐LG) exists in different natural genetic variants—of which β‐LG A and B are predominant in bovine milk. At physiological conditions the protein dimerizes—building homodimers of β‐LG A and β‐LG B and heterodimers of β‐LG AB. Although β‐LG is one of the most intensely characterized lipocalins, the interaction behavior of ligands with hetero‐ and homodimers of β‐LG is largely unknown. The present findings revealed significant differences for hetero‐ and homodimers regarding ligand binding capacity as tested with a model ligand (i.e. surface binding (?)‐epigallocatechin gallate (EGCG)). These findings were confirmed using FT‐IR, where the addition of EGCG influenced the β‐sheet backbone of homodimer A and B with significantly higher intensity compared to heterodimer AB. Further, shape analysis by SAXS revealed oligomerization of both types of dimers upon addition of EGCG; however, homodimer A and B produced significantly larger aggregates compared to the heterodimer AB. In summary, the present study revealed that EGCG showed significantly different interaction reactivity (binding sites, aggregation size and conformational changes) to the hetero and homodimers of β‐LG in the order β‐LG A > B > AB. The results suggest that conformational differences between homodimers and heterodimers strongly influence the EGCG binding ability. This may also occur with other polyphenols and ligands of β‐LG and gives not only important information for β‐LG binding studies, but may also apply for polymorphisms of other self‐aggregating lipocalins. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
Nucleotide residues in E. coli tRNA(Phe) interacting directly with proteins in pre- and posttranslocated ribosomal complexes have been identified by UV-induced cross-linking. In the tRNA(Phe) molecule located in the Ab-site (pretranslocated complex) residues A9, G18, A26 and U59 are cross-linked with proteins S10, L27, S7 and L2, respectively. In tRNA(Phe) located in the Pt-site (posttranslocated complex) residues C17, G44, C56 and U60 are cross-linked with proteins L2, L5, L27 and S9, respectively. The same cross-links (except for G44-L5) have been found for tRNA in the Pb-site of the pretranslocated ribosomal complex. None of the tRNA(Phe) residues cross-linked with proteins in the complexes examined by us are involved in the stabilization of the secondary structure, but residues A9, G18, A26, G44 and C56 participate in stabilization of tRNA tertiary structure. Since translocation of tRNA(Phe) from Ab- to P-site is accompanied by changes of tRNA contacts with proteins L2 and L27, we postulate that this translocation is coupled with tRNA turn around the axis joining the anticodon loop with the CCA-end of the molecule. This is in agreement with the idea about the presence of a kink in mRNA between codons located in the ribosomal A- and P-sites. In all E. coli tRNAs with known primary structure positions 18 and 56, interacting with L27 protein, when tRNA is located either in A- or P-site, are invariant, whereas positions 17 and 60, interacting with proteins only when tRNA is in the P-site, are strongly conserved. In positions 9, 26 and 59 purines are the preferred residues. In most E. coli tRNAs deviations from the consensus in these three positions is strongly correlated.  相似文献   

17.
L27 domain, initially identified in the Caenorhabditis elegans Lin-2 and Lin-7 proteins, is a protein interaction module that exists in a large family of scaffold proteins. The domain can function as an organization center of large protein assemblies required for establishment and maintenance of cell polarity. We have solved the high-resolution NMR structure of a tetrameric complex of L27 domains containing two SAP97-mLin-2 L27 domain heterodimers. Each L27 domain contains three a-helices. The first two helices of each domain are packed together to form a four-helical bundle in the heterodimer. The third helix of each L27 domain forms another four-helical bundle that assembles the two heterodimers into a tetramer. The structure of the complex provides a mechanistic explanation for L27 domain-mediated polymerization of scaffold proteins, a process that is crucial for the assembly of supramolecular complexes in asymmetric cells.  相似文献   

18.
Reinhart BJ  Ruvkun G 《Genetics》2001,157(1):199-209
The Caenorhabditis elegans heterochronic gene lin-14 specifies the temporal sequence of postembryonic developmental events. lin-14, which encodes differentially spliced LIN-14A and LIN-14B1/B2 protein isoforms, acts at distinct times during the first larval stage to specify first and second larval stage-specific cell lineages. Proposed models for the molecular basis of these two lin-14 gene activities have included the production of functionally distinct isoforms and the generation of a temporal gradient of LIN-14 protein. We report here that loss of the LIN-14B1/B2 isoforms alone affects one of the two lin-14 temporal patterning functions, the specification of second larval stage lineages. A temporal expression difference between LIN-14A and LIN-14B1/B2 is not responsible for the stage-specific phenotype: protein levels of all LIN-14 isoforms are high in early first larval stage animals and decrease during the first larval stage. However, LIN-14A can partially substitute for LIN-14B1/B2 when expressed at a higher-than-normal level in the late L1 stage. These data indicate that LIN-14B1/B2 isoforms do not provide a distinct function of the lin-14 locus in developmental timing but rather may contribute to an overall level of LIN-14 protein that is the critical determinant of temporal cell fate.  相似文献   

19.
Dimerization of leucine zippers analyzed by random selection.   总被引:7,自引:1,他引:6       下载免费PDF全文
W T Pu  K Struhl 《Nucleic acids research》1993,21(18):4348-4355
The leucine zipper is a coiled coil that mediates specific dimerization of bZIP DNA-binding domains. A hydrophobic spine involving the conserved leucines runs down the coiled-coil and is thought to stabilize the dimer. We used the method of random selection to further define the primary sequence requirements for homodimer formation and heterodimer formation with Fos. When positions on either side of the hydrophobic spine of GCN4 are diversified to include the corresponding residues of Jun, a large percentage of the resulting sequences form homodimers, and a large percentage form heterodimers with Fos. Basic residues were preferred, but not essential, at position e of zippers which heterodimerize with Fos. When random sequences containing 5 heptad repeat of leucines are subject to a selection for homodimer formation, a diverse set of sequences is isolated. Certain residues are preferred at each position in the heptad repeat, although no essential primary sequence determinants could be identified. No pair of residues not involving the conserved leucines could be identified which strongly promotes homodimerization. These results suggest that factors determining leucine zipper dimerization are complex, with numerous interactions contributing to the association.  相似文献   

20.
Cutalo JM  Darden TA  Kunkel TA  Tomer KB 《Biochemistry》2006,45(51):15458-15467
Yeast MutLalpha is a heterodimer of MLH1 and PMS1 that participates in a variety of DNA transactions, including DNA mismatch repair. Formation of the MutLalpha heterodimer requires that the C-terminal domains of MLH1 and PMS1 interact in a manner that is not yet fully understood. Here we investigate the interactions involved in heterodimerization. Using protein surface modification and mass spectrometry, we identify numerous lysine residues that are exposed to solvent in monomeric MLH1. A corresponding analysis of the MLH1-PMS1 heterodimer reveals that three of these exposed residues, K665, K675, and K704, are no longer solvent accessible in the heterodimer, suggesting that they are within the dimer interface. We refine secondary structure predictions and sequence alignments of C-terminal residues of seven eukaryotic MutL homologues and then develop homology models for the N- and C-terminal domains of MLH1. On the basis of this information, we present a model for interaction of the C-terminal domains of MLH1 and PMS1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号