首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Type III secretion-dependent translocation of Yop (Yersinia outer proteins) effector proteins into host cells is an essential virulence mechanism common to the pathogenic Yersinia species. One unique feature of this mechanism is the polarized secretion of Yops, i.e. Yops are only secreted at the site of contact with the host cell and not to the surrounding medium. In vitro, secretion occurs in Ca2+-depleted media, a condition believed to somehow mimic cell contact. Three proteins, YopN, LcrG and TyeA have been suggested to control secretion and mutating any of these genes results in constitutive secretion. In addition, in Y. enterocolitica TyeA has been implied to be specifically required for delivery of a subset of Yop effectors into infected cells. In this work we have investigated the role of TyeA in secretion and translocation of Yop effectors by Y. pseudotuberculosis. An in frame deletion mutant of tyeA was found to be temperature-sensitive for growth and this phenotype correlated to a lowered expression of the negative regulatory element LcrQ. In medium containing Ca2+, Yop expression was somewhat elevated compared to the wild-type strain and low levels of Yop secretion was also seen. Somewhat surprisingly, expression and secretion of Yops was lower than for the wild-type strain when the tyeA mutant was grown in Ca2+-depleted medium. Translocation of YopE, YopH, YopJ and YopM into infected HeLa cells was significantly lower in comparison with the isogenic wild-type strain and Yop proteins could also be recovered in the tissue culture medium. This indicated that the tyeA mutant had lost the ability to translocate Yop proteins by a polarized mechanism. In order to exclude that the defect in translocation seen in the tyeA mutant was a result of lowered expression/secretion of Yops, a double lcrQ/tyeA mutant was constructed. This strain was de-repressed for Yop expression and secretion but was still impaired for translocation of both YopE and YopM. In addition, the low level of YopE translocation in the tyeA mutant was independent of the YopE chaperone YerA/SycE. TyeA was found to localize to the cytoplasm of the bacterium and we were unable to find any evidence that TyeA was secreted or surface located. From our studies in Y. pseudotuberculosis we conclude that TyeA is involved in regulation of Yop expression and required for polarized delivery of Yop effectors in general and is not as suggested in Y. enterocolitica directly required for translocation of a subset of Yop effectors.  相似文献   

3.
Yersinia pestis produces a set of virulence proteins (Yops and LcrV) that are expressed at high levels and secreted by a type III secretion system (Ysc) upon bacterium-host cell contact, and four of the Yops are vectorially translocated into eukaryotic cells. YopD, YopB, and YopK are required for the translocation process. In vitro, induction and secretion occur at 37°C in the absence of calcium. LcrH (also called SycD), a protein required for the stability and secretion of YopD, had initially been identified as a negative regulator of Yop expression. In this study, we constructed a yopD mutation in both wild-type and secretion-defective (ysc) Y. pestis to determine if the lcrH phenotype could be attributed to the decreased stability of YopD. These mutants were constitutively induced for expression of Yops and LcrV, despite the presence of the secreted negative regulator LcrQ, demonstrating that YopD is involved in negative regulation, regardless of a functioning Ysc system. Normally, secretion of Yops and LcrV is blocked in the presence of calcium. The single yopD mutant was not completely effective in blocking secretion: LcrV was secreted equally well in the presence and absence of calcium, while there was partial secretion of Yops in the presence of calcium. YopD is probably not rate limiting for negative regulation, as increasing levels of YopD did not result in decreased Yop expression. Overexpression of LcrQ in the yopD mutant had no significant effect on Yop expression, whereas increased levels of LcrQ in the parent resulted in decreased levels of Yops. These results indicate that LcrQ requires YopD to function as a negative regulator.  相似文献   

4.
5.
6.
Pathogenic yersiniae secrete the Yop anti-host proteins using a type-III secretion pathway. The components of the secretion machinery are encoded by three loci on the pYV plasmid: virA, virB, and virC . In this paper we describe the characterization of eight non-polar mutants of the virC locus, constructed by allelic exchange. The yscE, FG, I, J and K mutants were defective in Yop secretion and independent of Ca2+ (Cl) for their growth at 37°C. Substitution of the 12 N-terminal amino-acid residues of YscF impaired secretion of YopB and YopD only and led also to a Cl phenotype. The culture supernatant of the yscH mutant contained all the Yops except the 18 kDa YopR. Complementation experiments and an immunoblot analysis confirmed that YopR is encoded by the yscH gene. The LD50 for the mouse of the yscH mutant was 10-fold higher than that of the parental strain indicating that YopR is involved in pathogenesis. The phenotype of the yscM mutant was similar to that of the wild-type strain. However, overproduction of YscM from a multicopy plasmid in wild-type Yersinia enterocolitica prevented Yop secretion and synthesis. A hybrid YopH—LacZ' protein, encoded by a gene transcribed from the lac promoter, was secreted by a strain overexpressing YscM, showing that the secretion machinery was still functional. These results indicate that YscM plays a role in the feedback inhibition of Yop synthesis when secretion is compromised by acting as a negative regulator of Yop synthesis.  相似文献   

7.
During infection, Yersinia enterocolitica exports Yop proteins via a type III secretion pathway. Secretion is activated when the environmental concentration of calcium ions is below 100 microM (low-calcium response). Yersiniae lacking yopN (lcrE), yscB, sycN, or tyeA do not inactivate the type III pathway even when the concentration of calcium is above 100 microM (calcium-blind phenotype). Purified YscB and SycN proteins form cytoplasmic complexes that bind a region including amino acids 16 to 100 of YopN, whereas TyeA binds YopN residues 101 to 294. Translational fusion of yopN gene sequences to the 5' end of the npt reporter generates hybrid proteins that are transported by the type III pathway. The signal necessary and sufficient for the type III secretion of hybrid proteins is located within the first 15 codons of yopN. Expression of plasmid-borne yopN, but not of yopN(1-294)-npt, complements the calcium-blind phenotype of yopN mutants. Surprisingly, yopN mutants respond to environmental changes in calcium concentration and secrete YopN(1-294)-Npt in the absence but not in the presence of calcium. tyeA is required for the low-calcium regulation of YopN(1-294)-Npt secretion, whereas sycN and yscB mutants fail to secrete YopN(1-294)-Npt in the presence of calcium. Experiments with yopN-npt fusions identified two other signals that regulate the secretion of YopN. yopN codons 16 to 100 prevent the entry of YopN into the type III pathway, a negative regulatory effect that is overcome by expression of yscB and sycN. The portion of YopN encoded by codons 101 to 294 prevents transport of the polypeptide across the bacterial double membrane envelope in the presence of functional tyeA. These data support a model whereby YopN transport may serve as a regulatory mechanism for the activity of the type III pathway. YscB/SycN binding facilitates the initiation of YopN into the type III pathway, whereas TyeA binding prevents transport of the polypeptide across the bacterial envelope. Changes in the environmental calcium concentration relieve the TyeA-mediated regulation, triggering YopN transport and activating the type III pathway.  相似文献   

8.
LcrQ is a regulatory protein unique to Yersinia. Previous study in Yersinia pseudotuberculosis and Yersinia enterocolitica prompted the model in which LcrQ negatively regulates the expression of a set of virulence proteins called Yops, and its secretion upon activation of the Yop secretion (Ysc) type III secretion system permits full induction of Yops expression. In this study, we tested the hypothesis that LcrQ's effects on Yops expression might be indirect. Excess LcrQ was found to exert an inhibitory effect specifically at the level of Yops secretion, independent of production, and a normal inner Ysc gate protein LcrG was required for this activity. However, overexpression of LcrQ did not prevent YopH secretion, suggesting that LcrQ's effects at the Ysc discriminate among the Yops. We tested this idea by determining the effects of deletion or overexpression of LcrQ, YopH and their common chaperone SycH on early Yop secretion through the Ysc. Together, our findings indicated that LcrQ is not a negative regulator directly, but it acts in partnership with SycH at the Ysc gate to control the entry of a set of Ysc secretion substrates. A hierarchy of YopH secretion before YopE appears to be imposed by SycH in conjunction with both LcrQ and YopH. LcrQ and SycH in addition influenced the deployment of LcrV, a component of the Yops delivery mechanism. Accordingly, LcrQ appears to be a central player in determining the substrate specificity of the Ysc.  相似文献   

9.
Extracellular Yersinia spp. disarm the immune system by injecting the effector Yersinia outer proteins (Yops) into the target cell. Yop secretion is triggered by contact with eukaryotic cells or by Ca2+ chelation. Two proteins, YopN and LcrG, are known to be involved in Yop-secretion control. Here we describe TyeA, a third protein involved in the control of Yop release. Like YopN, TyeA is localized at the bacterial surface. A tyeA knock-out mutant secreted Yops in the presence of Ca2+ and in the absence of eukaryotic cells. Unlike a yopN null mutant, the tyeA mutant was defective for translocation of YopE and YopH, but not YopM, YopO and YopP, into eukaryotic cells. This is the first observation suggesting that Yop effectors can be divided into two sets for delivery into eukaryotic cells. TyeA was found to interact with the translocator YopD and with residues 242-293 of YopN. In contrast with a yopN null mutant, a yopNDelta248-272 mutant was also unable to translocate YopE and YopH. Our results suggest that TyeA forms part of the translocation-control apparatus together with YopD and YopN, and that the interaction of these proteins is required for selective translocation of Yops inside eukaryotic cells.  相似文献   

10.
Virulent bacteria of the genus Yersinia secrete a number of virulence determinants called Yops. These proteins lack typical signal sequences and are not posttranslationally processed. Two gene loci have been identified as being involved in the specific Yop secretion system (G. Cornelis, p. 231-265, In C. E. Hormache, C. W. Penn, and C. J. Smythe, ed., Molecular Biology of Bacterial Infection, 1992; S. C. Straley, G. V. Plano, E. Skrzypek, P. L. Haddix, and K. A. Fields, Mol. Microbiol. 8:1005-1010, 1993). Here, we have shown that the lcrB/virB locus (yscN to yscU) encodes gene products essential for Yop secretion. As in previously described secretion apparatus mutants, expression of the Yop proteins was decreased in the yscN/U mutants. An lcrH yscR double mutant expressed the Yops at an increased level but did not secrete Yops into the culture supernatant. The block in Yop expression of the ysc mutants was also circumvented by overexpression of the activator LcrF in trans. Although the Yops were expressed in elevated amounts, the Yops were still not exported. This analysis showed that the ysc mutants were unable to secrete Yops and that they were also affected in the negative Ca(2+)-regulated loop. The yscN/U genes showed remarkably high homology to the spa genes of Shigella flexneri and Salmonella typhimurium with respect to both individual genes and gene organization. These findings indicate that the genes originated from a common ancestor.  相似文献   

11.
Human pathogenic Yersinia species share a virulence plasmid encoding the Ysc‐Yop type III secretion system (T3SS). A plasmid‐encoded anti‐activator, LcrQ, negatively regulates the expression of this secretion system. Under inducible conditions, LcrQ is secreted outside of bacterial cells and this activates the T3SS, but the mechanism of targeting LcrQ for type III secretion remains largely unknown. In this study, we characterized the regulatory role of the export apparatus component YscV. Depletion or overexpression of YscV compromised Yop synthesis and this primarily prevented secretion of LcrQ. It followed that a lcrQ deletion reversed the repressive effects of excessive YscV. Further characterization demonstrated that the YscV residues 493–511 located within the C‐terminal soluble cytoplasmic domain directly bound with LcrQ. Critically, YscV‐LcrQ complex formation was a requirement for LcrQ secretion, since YscVΔ493–511 failed to secrete LcrQ. This forced a cytoplasmic accumulation of LcrQ, which predictably caused the feedback inhibition of Yops synthesis. Based on these observations, we proposed a model for the YscV‐dependent secretion of LcrQ and its role in regulating Yop synthesis in Yersinia.  相似文献   

12.
Pathogenic Yersinia species use a virulence-plasmid encoded type III secretion pathway to escape the innate immune response and to establish infections in lymphoid tissues. At least 22 secretion machinery components are required for type III transport of 14 different Yop proteins, and 10 regulatory factors are responsible for activating this pathway in response to environmental signals. Although the genes for these products are located on the 70-kb virulence plasmid of Yersinia, this extrachromosomal element does not appear to harbor genes that provide for the sensing of environmental signals, such as calcium-, glutamate-, or serum-sensing proteins. To identify such genes, we screened transposon insertion mutants of Y. enterocolitica W22703 for defects in type III secretion and identified ttsA, a chromosomal gene encoding a polytopic membrane protein. ttsA mutant yersiniae synthesize reduced amounts of Yops and display a defect in low-calcium-induced type III secretion of Yop proteins. ttsA mutants are also severely impaired in bacterial motility, a phenotype which is likely due to the reduced expression of flagellar genes. All of these defects were restored by complementation with plasmid-encoded wild-type ttsA. LcrG is a repressor of the Yersinia type III pathway that is activated by an environmental calcium signal. Mutation of the lcrG gene in a ttsA mutant strain restored the type III secretion of Yop proteins, although the double mutant strain secreted Yops in the presence and absence of calcium, similar to the case for mutants that are defective in lcrG gene function alone. To examine the role of ttsA in the establishment of infection, we measured the bacterial dose required to produce an acute lethal disease following intraperitoneal infection of mice. The ttsA insertion caused a greater-than-3-log-unit reduction in virulence compared to that of the parental strain.  相似文献   

13.
Successful establishment of Yersinia infections requires the type III machinery, a protein transporter that injects virulence factors (Yops) into macrophages. It is reported here that the Yersinia type III pathway responds to environmental signals by transporting proteins to distinct locations. Yersinia enterocolitica cells sense an increase in extracellular amino acids (glutamate, glutamine, aspartate, and asparagine) that results in the activation of the type III pathway. Another signal, provided by serum proteins such as albumin, triggers the secretion of YopD into the extracellular medium. The third signal, a decrease in calcium concentration, appears to be provided by host cells and causes Y. enterocolitica to transport YopE and presumably other virulence factors across the eukaryotic plasma membrane. Mutations in several genes encoding regulatory molecules (lcrG, lcrH, tyeA, yopD, yopN, yscM1, and yscM2) bypass the signal requirement of the type III pathway. Together these results suggest that yersiniae may have evolved distinct secretion reactions in response to environmental signals.  相似文献   

14.
The Yersinia pestis low-Ca2+ response stimulon is responsible for the temperature- and Ca(2+)-regulated expression and secretion of plasmid pCD1-encoded antihost proteins (V antigen and Yops). We have previously shown that lcrD and yscR encode proteins that are essential for high-level expression and secretion of V antigen and Yops at 37 degrees C in the absence of Ca2+. In this study, we constructed and characterized mutants with in-frame deletions in yscC, yscD, and yscG of the ysc operon that contains yscA through yscM. All three mutants lost the Ca2+ requirement for growth at 37 degrees c, expressed only basal levels of V antigen and YopM in the presence or absence of Ca2+, and failed to secrete these proteins to the culture supernatant. Overproduction of YopM in these mutants failed to restore YopM export, showing that the mutations had a direct effect on secretion. The protein products of yscC, yscD, and yscG were identified and localized by immunoblot analysis. YscC was localized to the outer membrane of Y. pestis, while YscD was found in the inner membrane. YscG was distributed equally between the soluble and total membrane fractions. Double mutants were characterized to assess where YscC and YscD act in low-Ca2+ response (LCR) regulation. lcrH::cat-yscC and lcrH::cat-yscD double mutants were constitutively induced for expression of V antigen and YopM; however, these proteins were not exported. This finding showed that the ysc mutations did not directly decrease induction of LCR stimulon genes. In contrast, lcrE-yscC, lcrG-yscC, lcrE-yscD, and lcrG-yscD double mutants as well as an lcrE-lcrD double mutant expressed only basal levels of V antigen and YopM and also failed to secrete these proteins to the culture supernatant. These results indicated that a functional LCR secretion system was necessary for high-level expression of LCR stimulon proteins in the lcrE and lcrG mutants but not in an lcrH::cat mutant. Possible models of regulation which incorporate these results are discussed.  相似文献   

15.
16.
During infection of cultured epithelial cells, surface-located Yersinia pseudotuberculosis deliver Yop (Yersinia outer protein) virulence factors into the cytoplasm of the target cell. A non-polar yopB mutant strain displays a wild-type phenotype with respect to in vitro Yop regulation and secretion but fails to elicit a cytotoxic response in cultured HeLa cells and is unable to inhibit phagocytosis by macrophage-like J774 cells. Additionally, the yopB mutant strain was avirulent in the mouse model. No YopE or YopH protein were observed within HeLa cells infected with the yopB mutant strain, suggesting that the loss of virulence of the mutant strain was due to its inability to translocate Yop effector proteins through the target cell plasma membrane. Expression of YopB is necessary for Yersinia-induced lysis of sheep erythrocytes. Purified YopB was shown to have membrane disruptive activity in vitro. YopB-dependent haemolytic activity required cell contact between the bacteria and the erythrocytes and could be inhibited by high, but not low, molecular weight carbohydrates. Similarly, expression of YopE reduced haemolytic activity. Therefore, we propose that YopB is essential for the formation of a pore in the target cell membrane that is required for the cell-to-cell transfer of Yop effector proteins.  相似文献   

17.
18.
Various environmental signals control the expression of the virulence factors in pathogenic Yersinia enterocolitica strains. The role of the osmotic regulator OmpR protein in controlling the production of Yop proteins, virulence determinants in Y. enterocolitica O:9 (European type) has been studied. An ompR deletion mutant was constructed via allelic exchange with an ompR gene of Y. enterocolitica mutagenized in vitro by a reverse genetic polymerase chain reaction (PCR)-based strategy. The ompR mutant showed a reduced ability to survive under conditions of various environmental stresses in vitro. In particular, low pH stress resulted in increased cell mortality levels. Under conditions of high osmolarity, the wild strain's Yop protein production was reduced, whereas protein levels from the mutant strain remained constant regardless of osmolarity variance. In J774A.1 macrophage cell culture survival of the ompR mutant was decidedly lower than that of the wild-type strain, suggesting that the OmpR protein may play a significant role in protecting cells against intracellular conditions associated with macrophage phagocytosis.  相似文献   

19.
20.
Pathogenic Yersinia species employ type III machines to transport virulence factors across the bacterial envelope. Some substrates for the type III machinery are secreted into the extracellular medium, whereas others are targeted into the cytosol of host cells. We found that during infection of tissue culture cells, yersiniae secrete small amounts of LcrV into the extracellular medium. Knockout mutations of lcrV abolish Yersinia targeting and reduce expression of the lcrGVHyopBD operon. In contrast, a block in LcrV secretion does not affect targeting, but results in premature expression and secretion of Yop proteins into the extracellular medium. LcrV-mediated activation of the type III pathway is thought to occur by sequestration of the regulatory factor LcrG, presumably via the formation of LcrV.LcrG complexes. These results suggest that intrabacterial LcrV regulates the expression and targeting of Yop proteins during Yersinia infection, whereas secreted LcrV is required to ensure specificity of Yop injection into eukaryotic cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号