首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Pulsed field gradient NMR was used to measure the hydrodynamic behavior of unfolded variants of bovine pancreatic trypsin inhibitor (BPTI). The unfolded BPTI species studied were [R]Abu, at pH 4.5 and pH 2.5, and unfolded [14-38]Abu, at pH 2.5. These were prepared by chemical synthesis. [R]Abu is a model for reduced BPTI; all cysteine residues are replaced by alpha-amino-n-butyric acid (Abu). [14-38]Abu retains cysteines 14 and 38, which form a disulfide bond, while the other cysteine residues are replaced by Abu. In the PFG experiments, the diffusion coefficient is measured as a function of protein concentration, and the value of D degree -the diffusion coefficient extrapolated to infinite dilution-is determined. From D degree, a value of the hydrodynamic radius. Rh, is computed from the Stokes-Einstein relationship. At pH 4.5, [R]Abu has an Rh value significantly less than the value calculated for a random coil, while at pH 2.5 the experimental Rh value is the same as for a random coil. In view of the changes in NMR detected structure of [R]Abu at pH 4.5 versus pH 2.5 (Pan H, Barbar E, Barany G, Woodward C. 1995. Extensive non-random structure in reduced and unfolded bovine pancreatic trypsin inhibitor. Biochemistry 34:13974-13981), the collapse of reduced BPTI at pH 4.5 may be associated with the formation of non-native hydrophobic clusters of pairs of side chains one to three amino acids apart in sequence. The diffusion constant of [14-38]Abu was also measured at pH 4.5, where the protein is partially folded. An increase in hydrodynamic radius of partially folded [14-38]Abu, relative to native BPTI, is similar to the increase in radius of gyration measured for other proteins under "molten globule" conditions.  相似文献   

3.
Partially folded conformational ensembles of bovine pancreatic trypsin inhibitor (BPTI) are accessed by replacing Cys 5, 30, 51, and 55 by alpha-amino-n-butyric acid (Abu) while retaining the disulfide between Cys 14 and 38; the resultant variant is termed [14-38](Abu). Two new analogues with modifications in the beta-turn, P26D27[14-38](Abu) and N26G27K28[14-38](Abu), are compared to partially folded [14-38](Abu), as well as to [R](Abu), the unfolded protein with all six Cys residues replaced by Abu. Structural features of the new analogues of [14-38](Abu) have been determined by circular dichroism (CD), one-dimensional (1)H NMR, and 8-anilino-1-naphthalenesulfonic acid (ANS) fluorescence experiments. Both analogues are more disordered than the parent [14-38](Abu), but while P26D27[14-38](Abu) has a small population of native-like conformations observed by NMR, no ordered structure is detected for N26G27K28[14-38](Abu). Trypsin inhibition assays were carried out using a modified rat trypsin, C191A/C220A, that minimizes cleavage of unfolded peptides. Both [14-38](Abu) and P26D27[14-38](Abu) significantly inhibit modified trypsin. N26G27K28[14-38](Abu) has low but measurable inhibitor activity, while [R](Abu) has no activity even when in very high molar excess relative to trypsin. ANS fluorescence is enhanced by [14-38](Abu) and by both variants but not by [R](Abu). We conclude that partially folded ensembles of BPTI, even those with little or no CD- or NMR-detectable structure, contain minor populations of native-like conformations. Partially folded [14-38](Abu) and both variants, as well as [R](Abu), have enhanced negative ellipticity in CD spectra acquired in the presence of the osmolyte trimethylamine N-oxide (TMAO). TMAO-induced structure is formed cooperatively, as indicated by thermal unfolding curves. Inhibitor activity as a function of TMAO concentration implies that the osmolyte-induced structure is native-like for [14-38](Abu) and P26D27[14-38](Abu) and is probably native-like for N26G27K28[14-38](Abu). [R](Abu) also shows increased CD-detected structure in the presence of TMAO, but such structure is likely to be collapsed and non-native.  相似文献   

4.
In the folding of bovine pancreatic trypsin inhibitor (BPTI), the single-disulfide intermediate [30-51] plays a key role. We have investigated a recombinant analog of [30-51] using a 2-dimensional nuclear magnetic resonance (2D-NMR). This recombinant analog, named [30-51]Ala, contains a disulfide bond between Cys-30 and Cys-51, but contains alanine in place of the other cysteines in BPTI to prevent the formation of other intermediates. By 2D-NMR, [30-51]Ala consists of 2 regions-one folded and one predominantly unfolded. The folded region resembles a previously characterized peptide model of [30-51], named P alpha P beta, that contains a native-like subdomain with tertiary packing. The unfolded region includes the first 14 N-terminal residues of [30-51] and is as unfolded as an isolated peptide containing these residues. Using protein dissection, we demonstrate that the folded and unfolded regions of [30-51]Ala are structurally independent. The partially folded structure of [30-51]Ala explains many of the properties of authentic [30-51] in the folding pathway of BPTI. Moreover, direct structural characterization of [30-51]Ala has revealed that a crucial step in the folding pathway of BPTI coincides with the formation of a native-like subdomain, supporting models for protein folding that emphasize the formation of cooperatively folded subdomains.  相似文献   

5.
An analogue of the bovine pancreatic trypsin inhibitor (BPTI) folding intermediate that contains only the disulphide bond between Cys5 and Cys55 has been prepared in Escherichia coli by protein engineering methods, with the other four Cys residues replaced by Ser. Two-dimensional 1H nuclear magnetic resonance studies of the analogue have resulted in essentially complete resonance assignments of the folded form of the protein. The folded protein has a compact conformation that is structurally very similar to that of native BPTI, although there are subtle differences and the folded conformation is not very stable. Approximately half of the protein molecules are unfolded at 3 degrees C, and this proportion increases at higher temperatures. The folded and unfolded conformations are in slow exchange. The conformational properties of the analogue can explain many aspects of the kinetic role that the normal (5-55) intermediate plays in the folding of BPTI.  相似文献   

6.
Crystal structures, at 1.7 Å resolution, were solved for complexes between each of two chemically synthesized partially folded analogues of bovine pancreatic trypsin inhibitor (BPTI) with the proteolytically inactive rat trypsin mutant S195A. The BPTI analogue termed [14-38]Abu retains only the disulfide bond between Cys14 and Cys38, while Cys5, Cys30, Cys51, and Cys55 are replaced by isosteric α-amino-n-butyric acid residues. The analogue K26P,A27D[14-38]Abu contains two further replacements, by statistically favored residues, in the type I β-turn that has been suggested to be a main site for initiation of BPTI folding. As a control, the structure of the complex between S195A trypsin and wild-type BPTI was also solved. Despite significant differences in the degree of structure detected among these three BPTIs in solution by several biophysical techniques, their tertiary folds once bound to S195A trypsin in a crystalline lattice are essentially superimposable.  相似文献   

7.
Bovine pancreatic trypsin inhibitor (BPTI) is stabilized by 3 disulfide bonds, between cysteines 30-51, 5-55, and 14-38. To better understand the influence of disulfide bonds on local protein structure and dynamics, we have measured amide proton exchange rates in 2 folded variants of BPTI, [5-55]Ala and [30-51; 14-38]V5A55, which share no common disulfide bonds. These proteins resemble disulfide-bonded intermediates that accumulate in the BPTI folding pathway. Essentially the same amide hydrogens are protected from exchange in both of the BPTI variants studied here as in native BPTI, demonstrating that the variants adopt fully folded, native-like structures in solution. However, the most highly protected amide protons in each variant differ, and are contained within the sequences of previously studied peptide models of related BPTI folding intermediates containing either the 5-55 or the 30-51 disulfide bond.  相似文献   

8.
The equilibrium and kinetic behavior of the guanidine hydrochloride (Gdn-HCl) induced unfolding/refolding of four bovine pancreatic trypsin inhibitor (BPTI) mutants was examined by using ultraviolet difference spectroscopy. In three of the mutants, we replaced the buried 30-51 disulfide bond with alanine at position 51 and valine (Val30/Ala51), alanine (Ala30/Ala51), or threonine (Thr30/Ala51) at position 30. For the fourth mutant, the solvent-exposed 14-38 disulfide was substituted by a pair of alanines (Ala14/Ala38). All mutants retained the 5-55 disulfide. Experiments were performed under oxidizing conditions; thus, both the unfolded and folded forms retained two native disulfide bonds. Equilibrium experiments demonstrated that all four mutants were destabilized relative to wild-type BPTI. However, the stability of the 30-51 mutants increased with the hydrophobicity of the residue substituted at position 30. Kinetic experiments showed that all four mutants contained two minor slow refolding phases with characteristics of proline isomerization. The specific behavior of the phases depended on the location of the disulfide bonds. The major unfolding/refolding phase for each of the 30-51 mutants was more than an order of magnitude slower than for Ala14/Ala38 or for BPTI in which the 14-38 disulfide bond was specifically reduced and blocked with iodoacetamide [Jullien, M., & Baldwin, R. L. (1981) J. Mol. Biol. 145, 265-280]. Since this effect is independent of the stability of the protein, it is consistent with a model in which the proper docking of the interior residues of the protein is the rate-limiting step in the folding of these mutants.  相似文献   

9.
The thermodynamics of binding of unfolded polypeptides to the chaperone SecB was investigated in vitro by isothermal titration calorimetry and fluorescence spectroscopy. The substrates were reduced and carboxamidomethylated forms of RNase A, BPTI, and alpha-lactalbumin. SecB binds both fully unfolded RNase A and BPTI as well as compact, partially folded disulfide intermediates of alpha-lactalbumin, which have 40-60% of native secondary structure. The heat capacity changes observed on binding the reduced and carboxamidomethylated forms of alpha-lactalbumin, BPTI, and RNase A were found to be -0.10, -0.29, and -0.41 kcal mol(-1) K(-1), respectively, and suggest that between 7 and 29 residues are buried upon substrate binding to SecB. In all cases, binding occurs with a stoichiometry of one polypeptide chain per monomer of SecB. There is no evidence for two separate types of binding sites for positively charged and hydrophobic ligands. Spectroscopic and proteolysis protection studies of the binding of SecB to poly-L-Lys show that binding of highly positively charged peptide ligands to negatively charged SecB leads to charge neutralization and subsequent aggregation of SecB. The data are consistent with a model where SecB binds substrate molecules at an exposed hydrophobic cleft. SecB aggregation in the absence of substrate is prevented by electrostatic repulsion between negatively charged SecB tetramers.  相似文献   

10.
Recent studies of the refolding of reduced bovine pancreatic trypsin inhibitor (BPTI) have shown that a previously unidentified intermediate with a single disulfide is formed much more rapidly than any other one-disulfide species. This intermediate contains a disulfide that is present in the native protein (between Cys14 and 38), but it is thermodynamically less stable than the other two intermediates with single native disulfides. To characterize the role of the [14-38] intermediate and the factors that favor its formation, detailed kinetic and mutational analyses of the early disulfide-formation steps were carried out. The results of these studies indicate that the formation of [14-38] from the fully reduced protein is favored by both local electrostatic effects, which enhance the reactivities of the Cys14 and 38 thiols, and conformational tendencies that are diminished by the addition of urea and are enhanced at lower temperatures. At 25 degrees C and pH 7.3, approximately 35% of the reduced molecules were found to initially form the 14-38 disulfide, but the majority of these molecules then undergo intramolecular rearrangements to generate non-native disulfides, and subsequently the more stable intermediates with native disulfides. Amino acid replacements, other than those involving Cys residues, were generally found to have only small effects on either the rate of forming [14-38] or its thermodynamic stability, even though many of the same substitutions greatly destabilized the native protein and other disulfide-bonded intermediates. In addition, those replacements that did decrease the steady-state concentration of [14-38] did not adversely affect further folding and disulfide formation. These results suggest that the weak and transient interactions that are often detected in unfolded proteins and early folding intermediates may, in some cases, not persist or promote subsequent folding steps.  相似文献   

11.
On the basis of sequence-specific resonance assignments for the complete polypeptide backbone and most of the amino acid side chains by heteronuclear nuclear magnetic resonance (NMR) spectroscopy, the urea-unfolded form of the outer membrane protein X (OmpX) from Escherichia coli has been structurally characterized. (1)H-(1)H nuclear Overhauser effects (NOEs), dispersion of the chemical shifts, amide proton chemical shift temperature coefficients, amide proton exchange rates, and (15)N[(1)H]-NOEs show that OmpX in 8 M urea at pH 6.5 is globally unfolded, but adopts local nonrandom conformations in the polypeptide segments of residues 73-82 and 137-145. For these two regions, numerous medium-range and longer-range NOEs were observed, which were used as the input for structure calculations of these polypeptide segments with the program DYANA. The segment 73-82 forms a quite regular helical structure, with only loosely constrained amino acid side chains. In the segment 137-145, the tryptophan residue 140 forms the core of a small hydrophobic cluster. Both nonrandom structures are present with an abundance of about 25% of the protein molecules. The sequence-specific NMR assignment and the physicochemical characterization of urea-denatured OmpX presented in this paper are currently used as a platform for investigations of the folding mechanism of this integral membrane protein.  相似文献   

12.
A growing class of proteins in biological processes has been found to be unfolded on isolation under normal solution conditions. We have used NMR spectroscopy to characterize the structural and dynamic properties of the unfolded and partially folded states of a 52-residue alanine-rich protein (Ala-14) at temperatures from -5 degrees C to 40 degrees C. At 40 degrees C, alanine residues in Ala-14 adopt phi and psi angles, consistent with a significant ensemble population of polyproline II conformation. Analysis of relaxation rates in the protein reveals that a series of residues, Gln 35-Ala 36-Ala 37-Lys 38-Asp 39-Asp 40-Ala 41-Ala 42, displays slow motional dynamics at both -5 degrees C and 40 degrees C. Temperature-dependent chemical shift changes indicate that this region is the site of helix initiation. The remaining N-terminal residues become increasingly dynamic as they extend from the nucleation site. The C terminus remains dynamic and changes less with temperature, indicating it is relatively unstructured. Ala-14 provides a high-resolution portrait of the unfolded state and the process of helix nucleation and propagation in the absence of tertiary contacts, information that bears on early events in protein folding.  相似文献   

13.
Two synthetic analogues of murine epidermal growth factor, [Abu6, 20] mEGF4-48 (where Abu denotes amino-butyric acid) and [G1, M3, K21, H40] mEGF1-48, have been investigated by NMR spectroscopy. [Abu6, 20] mEGF4-48 was designed to determine the contribution of the 6-20 disulfide bridge to the structure and function of mEGF. The overall structure of this analogue was similar to that of native mEGF, indicating that the loss of the 6-20 disulfide bridge did not affect the global fold of the molecule. Significant structural differences were observed near the N-terminus, however, with the direction of the polypeptide chain between residues four and nine being altered such that these residues were now located on the opposite face of the main beta-sheet from their position in native mEGF. Thermal denaturation experiments also showed that the structure of [Abu6, 20] mEGF4-48 was less stable than that of mEGF. Removal of this disulfide bridge resulted in a significant loss of both mitogenic activity in Balb/c 3T3 cells and receptor binding on A431 cells compared with native mEGF and mEGF4-48, implying that the structural changes in [Abu6, 20] mEGF4-48, although limited to the N-terminus, were sufficient to interfere with receptor binding. The loss of binding affinity probably arose mainly from steric interactions of the dislocated N-terminal region with part of the receptor binding surface of EGF. [G1, M3, K21, H40] mEGF1-48 was also synthesized in order to compare the synthetic polypeptide with the corresponding product of recombinant expression. Its mitogenic activity in Balb/c 3T3 cells was similar to that of native mEGF and analysis of its 1H chemical shifts suggested that its structure was also very similar to native.  相似文献   

14.
An analogue of the BPTI folding intermediate that contains only the disulphide bonds between Cys14 and Cys38 and between Cys30 and Cys51 has been prepared in Escherichia coli by protein engineering methods. The other two Cys residues of native BPTI (at positions 5 and 55) have been replaced by Ser. Essentially complete proton resonance assignments of the analogue were obtained by employing two-dimensional 1H nuclear magnetic resonance techniques. The intermediate has a more extended conformation in the N-terminal (residues 1 to 7) region and there are other differences in the C-terminal (residues 55 to 58) region. The remainder of the protein is substantially identical to native BPTI. The conformational properties of the analogue can explain several aspects of the kinetic role that the normal (14-38, 30-51) intermediate plays in the folding of BPTI.  相似文献   

15.
Takei J  Pei W  Vu D  Bai Y 《Biochemistry》2002,41(41):12308-12312
The native-state hydrogen exchange of a redesigned apocytochrome b(562) suggests that at least two partially unfolded forms (PUFs) exist for this four-helix bundle protein under native conditions. The more stable PUF has the N-terminal helix unfolded. To verify the conclusion further and obtain more detailed structural information about this PUF, five hydrophobic core residues in the N-terminal helix were mutated to Gly and Asp to destabilize the native state selectively and populate the PUF for structural studies. The secondary structure and the backbone dynamics of this mutant were characterized using multidimensional NMR. Consistent with the prediction, the N-terminal region of the mutant was found to be unfolded while other parts of the proteins remained folded. These results suggest that native-state hydrogen exchange-directed protein engineering can be a useful approach to populating partially unfolded forms for detailed structural studies.  相似文献   

16.
The N-terminal large fragments of staphylococcal nuclease (SNase), SNase110 (1-110 residues), SNase121 (1-121 residues), and SNase135 (1-135 residues), and the fragment mutants G88W110, G88W121, V66W110 and V66W121 were studied by heteronuclear multidimensional NMR spectroscopy. Ensembles of co-existent native-like partially folded and unfolded states were observed for fragments. The persistent native-like tertiary interaction drives fragments to be in partially folded states, which reveal native-like beta-barrel conformations. G88W and V66W mutations modulate the extent of inherent native-like tertiary interaction in fragment molecules, and in consequence, fragment mutants fold into native-like beta-subdomain conformations. In cooperation with the inherent tertiary interaction, 2 M TMAO (trimethylamine N-oxide) can promote the folding reaction of fragments through the changes of unfolding free energy, and a native-like beta-subdomain conformation is observed when the chain length contains 135 residues. Heterogeneous partially folded conformations of 1-121 and 1-135 fragments due to cis and trans X-prolyl bond of Lys116-Pro117 make a non-unique folding pathway of fragments. The folding reaction of fragments can be characterized as a hierarchical process.  相似文献   

17.
NMR relaxation dispersion techniques were used to investigate conformational exchange of the three-helix bundle protein KIX under native conditions. These experiments provide site-resolved kinetic information about microsecond-to-millisecond time scale motions along with structural (chemical shift) information without requiring a perturbation of the equilibrium. All kinetic data are consistent with an apparent two-state transition between natively folded KIX and a partially unfolded high-energy state that is populated to 3.0 +/- 0.2% at 27 degrees C. By combining (13)C- and (15)N-based experiments that probe specific structural aspects, we show that the sparsely populated high-energy state displays a strong conformational preference. An isolated secondary structural element, C-terminal helix alpha3, is highly populated, while the hydrophobic core of the domain and the remainder of the protein backbone, including helices alpha1 and alpha2, are disordered and devoid of specific interactions. This high-energy state presumably represents the equilibrium analogue of a folding intermediate that is transiently populated in stopped-flow kinetic experiments [Horng, J. C., Tracz, S. M., Lumb, K. J., and Raleigh, D. P. (2002) Biochemistry 44, 627-634].  相似文献   

18.
Pig (pCSD1) and human (hCSD1) calpastatin domain 1 proteins were studied to characterize common features of the denatured state of proteins. These proteins were chosen for the present investigation, because pCSD1 was suggested previously to be unstructured in water even at 25 degrees C (1) [T. Konno et al., Biochim. Biophys. Acta 1342 (1997) 73-82]. hCSD1 could be expected to exhibit similar features on the basis of preliminary spectroscopic studies. In the present study, the experimental grounds for the estimate of residual structure in the unfolded state were differential scanning calorimetry heat capacity and circular dichroism (CD) measurements over the temperature range 10-80 degrees C. At selected temperatures, we studied also the effect of guanidinium hydrochloride (GdnHCl) which is known to promote further unfolding of the polypeptide chain. All other measurements were performed at pH 6 in pure water. The present results support the conclusion that the comparison of the experimentally obtained heat capacity data with theoretical heat capacity values calculated on the basis of a newly established increment system gives insight into the degree of hydration of the unfolded polypeptide chain. The percentage by which the experimental heat capacity of the unfolded polypeptide chain differs from the calculated heat capacity permits a quantitative estimate of the residual structure. This estimate is in good agreement with that based on CD absorption. The heat capacity approach has the advantage of comparing fully hydrated and partially hydrated residues in the same aqueous environment, whereas for example spectroscopic measurements, such as CD, are generally referred to the fully unfolded chain in concentrated urea or GdnHCl solutions. As the unfolded chains of pCSD1 and hCSD1 exhibit a smaller heat capacity than that calculated on the new peptide-based increment system [M. H?ckel et al., J. Mol. Biol. 291 (1999) 197-213], we conclude that the residues in the unfolded polypeptide chain are less hydrated than the same residues in oligopeptides. This suboptimal hydration is the result of residual structure in the chain as observed in both CD and heat capacity measurements.  相似文献   

19.
Summary The backbone 1H and 15N resonances of the N-terminal SH3 domain of the Drosophila signaling adapter protein, drk, have been assigned. This domain is in slow exchange on the NMR timescale between folded and predominantly unfolded states. Data were collected on both states simultaneously, on samples of the SH3 in near physiological buffer exhibiting an approximately 1:1 ratio of the two states. NMR methods which exploit the chemical shift dispersion of the 15N resonances of unfolded states and pulsed field gradient water suppression approaches for avoiding saturation and dephasing of amide protons which rapidly exchange with solvent were utilized for the assignment.Abbreviations 2D, 3D two-, three-dimensional - drkN SH3 N-terminal SH3 domain of Drosophila drk - HSQC heteronuclear single-quantum spectroscopy - NOE nuclear Overhauser enhancement - SH3 Src homology domain 3 - TOCSY total correlation spectroscopy  相似文献   

20.
We present a detailed investigation of unfolded and partially folded states of a mutant apomyoglobin (apoMb) where the distal histidine has been replaced by phenylalanine (H64F). Previous studies have shown that substitution of His64, located in the E helix of the native protein, stabilizes the equilibrium molten globule and native states and leads to an increase in folding rate and a change in the folding pathway. Analysis of changes in chemical shift and in backbone flexibility, detected via [1H]-15N heteronuclear nuclear Overhauser effect measurements, indicates that the phenylalanine substitution has only minor effects on the conformational ensemble in the acid- and urea-unfolded states, but has a substantial effect on the structure, dynamics, and stability of the equilibrium molten globule intermediate formed near pH 4. In H64F apomyoglobin, additional regions of the polypeptide chain are recruited into the compact core of the molten globule. Since the phenylalanine substitution has negligible effect on the unfolded ensemble, its influence on folding rate and stability comes entirely from interactions within the compact folded or partly folded states. Replacement of His64 with Phe leads to favorable hydrophobic packing between the helix E region and the molten globule core and leads to stabilization of helix E secondary structure and overall thermodynamic stabilization of the molten globule. The secondary structure of the equilibrium molten globule parallels that of the burst phase kinetic intermediate; both intermediates contain significant helical structure in regions of the polypeptide that comprise the A, B, E, G, and H helices of the fully folded protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号