首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Quinto G 《Applied microbiology》1966,14(6):1022-1026
Nutritional studies were performed on nine Bacteroides strains, by use of the methodology and media of anaerobic rumen microbiology. Ristella perfoetens CCI required l-arginine hydrochloride, l-tryptophan, l-leucine, l-histidine hydrochloride, l-cysteine hydrochloride, dl-valine, dl-tyrosine, and the vitamin calcium-d-pantothenate, since scant turbidity developed in media without these nutrients. R. perfoetens was stimulated by glycine, dl-lysine hydrochloride, dl-isoleucine, l-proline, l-glutamic acid, dl-alanine, dl-phenylalanine, dl-methionine, and the vitamins nicotinamide and p-aminobenzoic acid, since maximal turbidity developed more slowly in media without these nutrients than in complete medium. Medium A-23, which was devised for R. perfoetens, contained salts, 0.0002% nicotinamide and calcium d-pantothenate, 0.00001% p-aminobenzoic acid, 0.044% l-tryptophan, 0.09% l-glutamic acid, and 0.1% of the other 13 amino acids listed above. Zuberella clostridiformis and seven strains of R. pseudoinsolita did not require vitamins, and showed no absolute requirement for any one amino acid. Various strains produced maximal turbidity more slowly in media deficient in l-proline, glycine, l-glutamic acid, dl-serine, l-histidine hydrochloride, dl-alanine, or l-cysteine hydrochloride, than in complete medium. These eight strains grew optimally in medium A-23 plus 0.1% dl-serine but without vitamins.  相似文献   

2.
Chisholm MD  Wetter LR 《Plant physiology》1967,42(12):1726-1730
The incorporation of the radioactivity from acetate-1-14C, acetate-2-14C, dl-methionine-1-14C, dl-methionine-2-14C, dl-methionine-3,4-14C, dl-homomethionine-2-14C, dl-allyl-glycine-2-14C, and dl-2-amino-5-hydroxyvalerate-2-14C into the aglycones of progoitrin, gluconapin, and glucobrassicanapin of maturing rape plants (Brassica campestris L.) was investigated. Radioactivity from dl-methionine-2-14C, dl-methionine-3,4-14C, dl-homomethionine-2-14C, and acetate-2-14C were incorporated into the 3 major thioglucosides. The other organic compounds were poorly incorporated except for dl-allylglycine-2-14C into glucobrassicanapin. The results obtained suggest that the rape plant can synthesize amino acids by the condensation of acetate (as acetyl CoA) to α-keto acids to yield a homologue of the original amino acid. These newly formed amino acids are then employed to synthesize the 3 major thioglucosides.  相似文献   

3.
To establish an advantageous method for the production of l-amino acids, microbial isomerization of d- and dl-amino acids to l-amino acids was studied. Screening experiments on a number of microorganisms showed that cell suspensions of Pseudomonas fluorescens and P. miyamizu were capable of isomerizing d- and dl-phenylalanines to l-phenylalanine. Various conditions suitable for isomerization by these organisms were investigated. Cells grown in a medium containing d-phenylalanine showed highest isomerization activity, and almost completely converted d- or dl-phenylalanine into l-phenylalanine within 24 to 48 hr of incubation. Enzymatic studies on this isomerizing system suggested that the isomerization of d- or dl-phenylalanine is not catalyzed by a single enzyme, “amino acid isomerase,” but the conversion proceeds by a two step system as follows: d-pheylalanine is oxidized to phenylpyruvic acid by d-amino acid oxidase, and the acid is converted to l-phenylalanine by transamination or reductive amination.  相似文献   

4.
The serP1 and serP2 genes found adjacently on the chromosome of Lactococcus lactis strains encode two members of the amino acid-polyamine-organocation (APC) superfamily of secondary transporters that share 61% sequence identity. SerP1 transports l-serine, l-threonine, and l-cysteine with high affinity. Affinity constants (Km) are in the 20 to 40 μM range. SerP2 is a dl-alanine/dl-serine/glycine transporter. The preferred substrate appears to be dl-alanine for which the affinities were found to be 38 and 20 μM for the d and l isomers, respectively. The common substrate l-serine is a high-affinity substrate of SerP1 and a low-affinity substrate of SerP2 with affinity constants of 18 and 356 μM, respectively. Growth experiments demonstrate that SerP1 is the main l-serine transporter responsible for optimal growth in media containing free amino acids as the sole source of amino acids. SerP2 is able to replace SerP1 in this role only in medium lacking the high-affinity substrates l-alanine and glycine. SerP2 plays an adverse role for the cell by being solely responsible for the uptake of toxic d-serine. The main function of SerP2 is in cell wall biosynthesis through the uptake of d-alanine, an essential precursor in peptidoglycan synthesis. SerP2 has overlapping substrate specificity and shares 42% sequence identity with CycA of Escherichia coli, a transporter whose involvement in peptidoglycan synthesis is well established. No evidence was obtained for a role of SerP1 and SerP2 in the excretion of excess amino acids during growth of L. lactis on protein/peptide-rich media.  相似文献   

5.
By the use of the proteolytic substrates benzoyl-dl-arginine-p-nitroanilide and benzoyl-l-arginine ethyl ester the enzyme arachain has been purified 325-fold from acetone powders of ungerminated peanuts. The pH optimum for the hydrolysis of benzoyl-dl-arginine-p-nitroanilide was 8.1 in tris buffer, and for benzoyl-l-arginine ethyl ester was 7.5 using N - 2 - hydroxyethylpiperazine - N′ - 2 - ethanesulfonic acid buffer. The purest fraction showed one main band with one to three minor bands on disc gel electrophoresis. The major protein component had an S20,w of 6.20. The energy of activation for the hydrolysis of benzoyl-dl-arginine-p-nitroanilide was calculated to be 16 kilocalories. The Michaelis constant for benzoyl-dl-arginine-p-nitroanilide was 10 micromolar and for benzoyl-l-arginine ethyl ester was 110 micromolar. The enzyme showed essentially no activity with casein, dimethyl casein, or bovine serum albumin as substrates. A large number of peptides were hydrolyzed by the enzyme, only l-leucyl-l-tyrosine being resistant of the peptides tested. The results suggest that arachain is not a “trypsin-like” protease but is a peptide hydrolase.  相似文献   

6.
1. Human uterine cervical stroma was found to contain a Ca2+-independent neutral proteinase against casein and N-benzoyl-dl-arginine p-nitroanilide (Bz-dl-Arg-Nan). This enzyme was tightly bound to an insoluble material (20000g pellet) and was solubilized by high concentrations of NaCl or KCl. High concentrations of them in the reaction system, however, inhibited reversibly the activity of this enzyme. 2. The neutral proteinase was partially purified by extraction with NaCl, gel filtration on Sephadex G-200 and affinity chromatography on casein–Sepharose. 3. The optimal pH of this partially purified enzyme was 7.4–8.0 against casein and Bz-dl-Arg-Nan. The molecular weight of the enzyme was found to be about 1.4×105 by gel filtration on Sephadex G-200. 4. The enzyme was significantly inhibited by di-isopropyl phosphorofluoridate (0.1mm). High concentration of phenylmethanesulphonyl fluoride (5mm), 7-amino-1-chloro-3-l-tosylamidoheptan-2-one (0.5mm), antipain (10μm) or leupeptin (10μm) was also found to be inhibitory, but chymostatin (40μg/ml), soya-bean trypsin inhibitor (2.5mg/ml), human plasma (10%, v/v), p-chloromercuribenzoate (1mm), EDTA (10mm) and 1-chloro-4-phenyl-3-l-tosylamidobutan-2-one (1mm) had no effect on the enzyme. 5. The neutral proteinase hydrolysed casein, Bz-dl-Arg-Nan and heat-denatured collagen, but was inactive towards native collagen and several synthetic substrates, such as 4-phenylazobenzyloxycarbonyl-Pro-Leu-Gly-Pro-d-Arg, 3-carboxypropionyl-Ala-Ala-Ala p-nitroanilide and 2,4-dinitrophenyl-Pro-Gln-Gly-Ile-Ala-Gly-Gln-d-Arg, and also proteoglycan. The enzyme did not act as a plasminogen activator. 6. These properties suggested that a neutral proteinase in the human uterine cervix was different from enzymes previously reported.  相似文献   

7.
1. Rat tissue homogenates convert dl-1-aminopropan-2-ol into aminoacetone. Liver homogenates have relatively high aminopropanol-dehydrogenase activity compared with kidney, heart, spleen and muscle preparations. 2. Maximum activity of liver homogenates is exhibited at pH9·8. The Km for aminopropanol is approx. 15mm, calculated for a single enantiomorph, and the maximum activity is approx. 9mμmoles of aminoacetone formed/mg. wet wt. of liver/hr.at 37°. Aminoacetone is also formed from l-threonine, but less rapidly. An unidentified amino ketone is formed from dl-4-amino-3-hydroxybutyrate, the Km for which is approx. 200mm at pH9·8. 3. Aminopropanol-dehydrogenase activity in homogenates is inhibited non-competitively by dl-3-hydroxybutyrate, the Ki being approx. 200mm. EDTA and other chelating agents are weakly inhibitory, and whereas potassium chloride activates slightly at low concentrations, inhibition occurs at 50–100mm. 4. It is concluded that aminopropanol-dehydrogenase is located in mitochondria, and in contrast with l-threonine dehydrogenase can be readily solubilized from mitochondrial preparations by ultrasonic treatment. 5. Soluble extracts of disintegrated mitochondria exhibit maximum aminopropanol-dehydrogenase activity at pH9·1 At this pH, Km values for the amino alcohol and NAD+ are approx. 200 and 1·3mm respectively. Under optimum conditions the maximum velocity is approx. 70mμmoles of aminoacetone formed/mg. of protein/hr. at 37°. Chelating agents and thiol reagents appear to have little effect on enzyme activity, but potassium chloride inhibits at all concentrations tested up to 80mm. dl-3-Hydroxybutyrate is only slightly inhibitory. 6. Dehydrogenase activities for l-threonine and dl-4-amino-3-hydroxybutyrate appear to be distinct from that for aminopropanol. 7. Intraperitoneal injection of aminopropanol into rats leads to excretion of aminoacetone in the urine. Aminoacetone excretion proportional to the amount of the amino alcohol administered, is complete within 24hr., but represents less than 0·1% of the dose given. 8. The possible metabolic role of amino alcohol dehydrogenases is discussed.  相似文献   

8.
Hart JW  Filner P 《Plant physiology》1969,44(9):1253-1259
The sulfur requirements of tobacco (Nicotiana tabacum L. var. Xanthi) XD cells grown in chemically defined liquid media can be satisfied by sulfate, thiosulfate, l-cyst(e)ine, l-methionine or glutathione, and somewhat less effectively by d-cyst (e) ine, d-methionine or dl-homocyst (e)ine. Sulfate uptake is inhibited after a 2 hr lag by l-cyst (e)ine, l-methionine, l-homocyst(e)ine or l-isoleucine, but not by any of the other protein amino acids, nor by d-cyst(e)ine. l-cyst(e)ine is neither a competitive nor a non-competitive inhibitor of sulfate uptake. Its action most closely resembles apparent uncompetitive inhibition. Inhibition of sulfate uptake by l-cyst(e)ine can be partially prevented by equimolar l-arginine, l-lysine, l-leucine, l-phenylalanine, l-tyrosine or l-tryptophan, but is little affected by any of the other protein amino acids. The effective amino acids are apparent competitive inhibitors of l-cyst(e)ine uptake after a 2 hr lag. Inhibition of sulfate uptake by l-methionine cannot be prevented, nor can uptake of l-methionine be inhibited by any single protein amino acid. The results suggest the occurrence of negative feedback control of sulfate assimilation by the end products, the sulfur amino acids, in cultured tobacco cells.  相似文献   

9.
The superiority of d-methionine over l-methionine for stimulation of cephalosporin C synthesis in a crude medium was confirmed. The optimal level of dl-methionine was 0.5%. Methionine stimulates growth slightly but this is not thought to be the cause of the marked stimulation of antibiotic synthesis. Of a large number of sulfur compounds tested, only dl-methionine-dl-sulfoxide and S-methyl-l-cysteine showed considerable methionine-replacing activity. Lysine and α-aminoadipic acid were inactive.  相似文献   

10.
1. Three bacterial isolates capable of growth on l-threonine medium only when supplemented with branched-chain amino acids, and possessing high l-threonine dehydratase activity, were examined to elucidate the catabolic route for the amino acid. 2. Growth, manometric, radiotracer and enzymic experiments indicated that l-threonine was catabolized by initial deamination to 2-oxobutyrate and thence to propionate. No evidence was obtained for the involvement of l-threonine 3-dehydrogenase or l-threonine aldolase in threonine catabolism. 3. l-Threonine dehydratase of Corynebacterium sp. F5 (N.C.I.B. 11102) was partially purified and its kinetic properties were examined. The enzyme exhibited a sigmoid kinetic response to substrate concentration. The concentration of substrate giving half the maximum velocity, [S0.5], was 40mm and the Hill coefficient (h) was 2.0. l-Isoleucine inhibited enzyme activity markedly, causing 50% inhibition at 60μm, but did not affect the Hill constant. At the fixed l-threonine concentration of 10mm, the effect of l-valine was biphasic, progressive activation occurring at concentrations up to 2mm-l-valine, but was abolished by higher concentrations. Substrate-saturation plots for the l-valine-activated enzyme exhibited normal Michaelis–Menten kinetics with a Hill coefficient (h) of 1.0. The kinetic properties of the enzyme were thus similar to those of the `biosynthetic' isoenzyme from Rhodopseudomonas spheroides rather than those of the enteric bacteria. 4. The synthesis of l-threonine dehydratase was constitutive and was not subject to multivalent repression by l-isoleucine or other branched-chain amino acids either singly or in combination. 5. The catabolism of l-threonine, apparently initiated by a `biosynthetic' l-threonine dehydratase in the isolates studied, depended on the concomitant catabolism of branched-chain amino acids. The biochemical basis of this dependence appeared to lie in the further catabolism of 2-oxobutyrate by enzymes which required branched-chain 2-oxo acids for their induction.  相似文献   

11.
The oxidation of d- and l-glycerate by rat liver   总被引:1,自引:1,他引:0  
1. The interconversion of hydroxypyruvate and l-glycerate in the presence of NAD and rat-liver l-lactate dehydrogenase has been demonstrated. Michaelis constants for these substrates together with an equilibrium constant have been determined and compared with those for pyruvate and l-lactate. 2. The presence of d-glycerate dehydrogenase in rat liver has been confirmed and the enzyme has been purified 16–20-fold from the supernatant fraction of a homogenate, when it is free of l-lactate dehydrogenase, with a 23–29% recovery. The enzyme catalyses the interconversion of hydroxypyruvate and d-glycerate in the presence of either NAD or NADP with almost equal efficiency. d-Glycerate dehydrogenase also catalyses the reduction of glyoxylate, but is distinct from l-lactate dehydrogenase in that it fails to act on pyruvate, d-lactate or l-lactate. The enzyme is strongly dependent on free thiol groups, as shown by inhibition with p-chloromercuribenzoate, and in the presence of sodium chloride the reduction of hydroxypyruvate is activated. Michaelis constants for these substrates of d-glycerate dehydrogenase and an equilibrium constant for the NAD-catalysed reaction have been calculated. 3. An explanation for the lowered Vmax. with d-glycerate as compared with dl-glycerate for the rabbit-kidney d-α-hydroxy acid dehydrogenase has been proposed.  相似文献   

12.
Ammonia exchange and photorespiration in chlamydomonas   总被引:2,自引:2,他引:0  
Two hours after the addition of l-methionine-dl-sulfoximine to the cell suspension, glutamine synthetase activity was inhibited by more than 90% in air-grown Chlamydomonas reinhardii. Cells continued to take up NH3 from the medium provided that the concentration of dissolved CO2 was high (equilibrated with 4% CO2 in air). This NH3 uptake, about 30% of the control, is discussed in terms of glutamate dehydrogenase activity. Without CO2, or with a low CO2 level, a NH3 excretion was observed, the rate of which depended on the actual concentration of the dissolved CO2. Experiments with 15NH3 demonstrated that no NH3 uptake was masked by this excretion and inversely that no excretion occurred during the uptake in the conditions where it took place. Furthermore, the NH3 excretion observed in the absence of CO2 increased when O2 concentration rose to 15% and was inhibited when 10 millimolar isonicotinic acid hydrazide was supplied to the algal suspension. Thus, NH3 excretion in the presence of l-methionine-dl-sulfoximine seems to be related to a photorespiratory process inasmuch as it presents the same properties with regard to the O2 and the isonicotinic acid hydrazide effects. These results favor the hypothesis that NH3 produced in the medium originates from the glycine to serine reaction. On the other hand, partial inhibition (50%) of photosynthesis by l-methionine-dl-sulfoximine was attributed to uncoupling between electron transfer and photophosphorylation due to NH3 accumulation into the cell.  相似文献   

13.
Chloroplasts were prepared from peas (Pisum sativum) in glucose-phosphate medium. In the presence of dl-glyceraldehyde, they catalyzed nitrite-dependent O2 evolution (mean of 13 preparations, 17.5 μmole per mg chlorophyll per hour, sd 3.64). The optimum concentration of nitrite was 0.5 mm; 0.12 mm nitrite supported Vmax/2. The reaction was accompanied by the consumption of nitrite; 55 to 80% of the nitrite-N consumed was recovered as ammonia. In short experiments (less than 10 minutes) the O2 to nitrite ratio approached 1.5, but thereafter decreased. There was no nitrite-dependent O2 evolution with chloroplasts from plants grown without added nitrate but such chloroplasts could assimilate ammonia at about the usual rate. The results are consistent with the reduction of nitrite to ammonia involving nitrate-induced nitrite reductase and a reductant generated by the chloroplast electron transport chain.  相似文献   

14.
Organisms that overproduced l-cysteine and l-cystine from glucose were constructed by using Escherichia coli K-12 strains. cysE genes coding for altered serine acetyltransferase, which was genetically desensitized to feedback inhibition by l-cysteine, were constructed by replacing the methionine residue at position 256 of the serine acetyltransferase protein with 19 other amino acid residues or the termination codon to truncate the carboxy terminus from amino acid residues 256 to 273 through site-directed mutagenesis by using PCR. A cysteine auxotroph, strain JM39, was transformed with plasmids having these altered cysE genes. The serine acetyltransferase activities of most of the transformants, which were selected based on restored cysteine requirements and ampicillin resistance, were less sensitive than the serine acetyltransferase activity of the wild type to feedback inhibition by l-cysteine. At the same time, these transformants produced approximately 200 mg of l-cysteine plus l-cystine per liter, whereas these amino acids were not detected in the recombinant strain carrying the wild-type serine acetyltransferase gene. However, the production of l-cysteine and l-cystine by the transformants was very unstable, presumably due to a cysteine-degrading enzyme of the host, such as cysteine desulfhydrase. Therefore, mutants that did not utilize cysteine were derived from host strain JM39 by mutagenesis with N-methyl-N′-nitro-N-nitrosoguanidine. When a newly derived host was transformed with plasmids having the altered cysE genes, we found that the production of l-cysteine plus l-cystine was markedly increased compared to production in JM39.l-Cysteine, one of the important amino acids used in the pharmaceutical, food, and cosmetics industries, has been obtained by extracting it from acid hydrolysates of the keratinous proteins in human hair and feathers. The first successful microbial process used for industrial production of l-cysteine involved the asymmetric conversion of dl-2-aminothiazoline-4-carboxylic acid, an intermediate compound in the chemical synthesis of dl-cysteine, to l-cysteine by enzymes from a newly isolated bacterium, Pseudomonas thiazoliniphilum (11). Yamada and Kumagai (13) also described enzymatic synthesis of l-cysteine from beta-chloroalanine and sodium sulfide in which Enterobacter cloacae cysteine desulfhydrase (CD) was used. However, high level production of l-cysteine from glucose with microorganisms has not been studied.Biosynthesis of l-cysteine in wild-type strains of Escherichia coli and Salmonella typhimurium is regulated through feedback inhibition by l-cysteine of serine acetyltransferase (SAT), a key enzyme in l-cysteine biosynthesis, and repression of expression of a series of enzymes used for sulfide reduction from sulfate by l-cysteine (4), as shown in Fig. Fig.1.1. Denk and Böck reported that a small amount of l-cysteine was excreted by a revertant of a cysteine auxotroph of E. coli. In this revertant, SAT encoded by the cysE gene was desensitized to feedback inhibition by l-cysteine, and the methionine residue at position 256 in SAT was replaced by isoleucine (2). These results indicate that it may be possible to construct organisms that produce high levels of l-cysteine by amplifying an altered cysE gene. Although the residue at position 256 is supposedly part of the allosteric site for cysteine binding, no attention has been given to the effect of an amino acid substitution at position 256 in SAT on feedback inhibition by l-cysteine and production of l-cysteine. It is also not known whether isoleucine is the best residue for desensitization to feedback inhibition. Open in a separate windowFIG. 1Biosynthesis and regulation of l-cysteine in E. coli. Abbreviations: APS, adenosine 5′-phosphosulfate; PAPS, phosphoadenosine 5′-phosphosulfate; Acetyl CoA, acetyl coenzyme A. The open arrow indicates feedback inhibition, and the dotted arrows indicate repression.On the other hand, l-cysteine appears to be degraded by E. coli cells. Therefore, in order to obtain l-cysteine producers, a host strain with a lower level of l-cysteine degradation activity must be isolated. In this paper we describe high-level production of l-cysteine plus l-cystine from glucose by E. coli resulting from construction of altered cysE genes. The methionine residue at position 256 in SAT was replaced by other amino acids or the termination codon in order to truncate the carboxy terminus from amino acid residues 256 to 273 by site-directed mutagenesis. A newly derived cysteine-nondegrading E. coli strain with plasmids having the altered cysE genes was used to investigate production of l-cysteine plus l-cystine.  相似文献   

15.
The tremendous social and economic impact of thrombotic disorders, together with the considerable risks associated to the currently available therapies, prompt for the development of more efficient and safer anticoagulants. Novel peptide-based thrombin inhibitors were identified using in silico structure-based design and further validated in vitro. The best candidate compounds contained both l- and d-amino acids, with the general sequence d-Phe(P3)-Pro(P2)-d-Arg(P1)-P1′-CONH2. The P1′ position was scanned with l- and d-isomers of natural or unnatural amino acids, covering the major chemical classes. The most potent non-covalent and proteolysis-resistant inhibitors contain small hydrophobic or polar amino acids (Gly, Ala, Ser, Cys, Thr) at the P1′ position. The lead tetrapeptide, d-Phe-Pro-d-Arg-d-Thr-CONH2, competitively inhibits α-thrombin''s cleavage of the S2238 chromogenic substrate with a Ki of 0.92 µM. In order to understand the molecular details of their inhibitory action, the three-dimensional structure of three peptides (with P1′ l-isoleucine (fPrI), l-cysteine (fPrC) or d-threonine (fPrt)) in complex with human α-thrombin were determined by X-ray crystallography. All the inhibitors bind in a substrate-like orientation to the active site of the enzyme. The contacts established between the d-Arg residue in position P1 and thrombin are similar to those observed for the l-isomer in other substrates and inhibitors. However, fPrC and fPrt disrupt the active site His57-Ser195 hydrogen bond, while the combination of a P1 d-Arg and a bulkier P1′ residue in fPrI induce an unfavorable geometry for the nucleophilic attack of the scissile bond by the catalytic serine. The experimental models explain the observed relative potency of the inhibitors, as well as their stability to proteolysis. Moreover, the newly identified direct thrombin inhibitors provide a novel pharmacophore platform for developing antithrombotic agents by exploring the conformational constrains imposed by the d-stereochemistry of the residues at positions P1 and P1′.  相似文献   

16.
The soil bacterium Bacillus subtilis forms biofilms on surfaces and at air-liquid interfaces. It was previously reported that these biofilms disassemble late in their life cycle and that conditioned medium from late-stage biofilms inhibits biofilm formation. Such medium contained a mixture of d-leucine, d-methionine, d-tryptophan, and d-tyrosine and was reported to inhibit biofilm formation via the incorporation of these d-amino acids into the cell wall. Here, we show that l-amino acids were able to specifically reverse the inhibitory effects of their cognate d-amino acids. We also show that d-amino acids inhibited growth and the expression of biofilm matrix genes at concentrations that inhibit biofilm formation. Finally, we report that the strain routinely used to study biofilm formation has a mutation in the gene (dtd) encoding d-tyrosyl-tRNA deacylase, an enzyme that prevents the misincorporation of d-amino acids into protein in B. subtilis. When we repaired the dtd gene, B. subtilis became resistant to the biofilm-inhibitory effects of d-amino acids without losing the ability to incorporate at least one noncanonical d-amino acid, d-tryptophan, into the peptidoglycan peptide side chain. We conclude that the susceptibility of B. subtilis to the biofilm-inhibitory effects of d-amino acids is largely, if not entirely, due to their toxic effects on protein synthesis.  相似文献   

17.
d-Amino acids have been shown to play an increasingly diverse role in bacterial physiology, yet much remains to be learned about their synthesis and catabolism. Here we used the model soil- and rhizosphere-dwelling organism Pseudomonas putida KT2440 to elaborate on the genomics and enzymology of d-amino acid metabolism. P. putida KT2440 catabolized the d-stereoisomers of lysine, phenylalanine, arginine, alanine, and hydroxyproline as the sole carbon and nitrogen sources. With the exception of phenylalanine, each of these amino acids was racemized by P. putida KT2440 enzymes. Three amino acid racemases were identified from a genomic screen, and the enzymes were further characterized in vitro. The putative biosynthetic alanine racemase Alr showed broad substrate specificity, exhibiting measurable racemase activity with 9 of the 19 chiral amino acids. Among these amino acids, activity was the highest with lysine, and the kcat/Km values with l- and d-lysine were 3 orders of magnitude greater than the kcat/Km values with l- and d-alanine. Conversely, the putative catabolic alanine racemase DadX showed narrow substrate specificity, clearly preferring only the alanine stereoisomers as the substrates. However, DadX did show 6- and 9-fold higher kcat/Km values than Alr with l- and d-alanine, respectively. The annotated proline racemase ProR of P. putida KT2440 showed negligible activity with either stereoisomer of the 19 chiral amino acids but exhibited strong epimerization activity with hydroxyproline as the substrate. Comparative genomic analysis revealed differences among pseudomonads with respect to alanine racemase genes that may point to different roles for these genes among closely related species.  相似文献   

18.
This study presents evidence for a new enzyme, d-ribose-5-P reductase, which catalyzes the reaction: d-ribose-5-P + NADPH + H+d-ribitol-5-P + NADP+. The enzyme was isolated from Adonis vernalis L. leaves in 38% yield and was purified 71-fold. The reductase was NADPH specific and had a pH optimum in the range of 5.5 to 6.0. The Michaelis constant value for d-ribose-5-P reduction was 1.35 millimolar. The enzyme also reduced d-erythrose-4-P, d-erythrose, dl-glyceraldehyde, and the aromatic aldehyde 3-pyridinecarboxaldehyde. Hexoses, hexose phosphates, pentoses, and dihydroxyacetone did not serve as substrates. d-Ribose-5-P reductase is distinct from the other known ribitol synthesizing enzymes detected in bacteria and yeast, and may be responsible for ribitol synthesis in Adonis vernalis.  相似文献   

19.
1. Aminoacyl-transfer-RNA synthetase activity in extracts prepared from tobacco leaf was increased 3–5-fold when sodium thioglycollate (30mm) and magnesium chloride (16mm) were included in the extraction medium. Omitting sucrose (0·45m) from the extraction medium did not alter the activity. 2. Activity was a linear function of enzyme concentration up to 1 disk (30mg. fresh wt.)/ml. and was not affected by dialysis at any concentration. 3. Activity increased about 13-fold above control values when a mixture of 21 amino acids and amides (1mm) was added to the reaction mixture. 4. Under the conditions used in the standard assay for aminoacyl-transfer-RNA synthetase activity Km (ATP) was 0·65mm and Km (l-amino acids) was 70μm. 5. Activity above the control value was found with all amino acids and amides tested except alanine, arginine, glutamic acid, glutamine and hydroxyproline. Activity was highest with leucine, isoleucine, valine, cysteine and histidine. Total activity with a mixture of 21 amino acids and amides was 20% lower than the total activity of the enzymes assayed separately.  相似文献   

20.
Proteus mirabilis, a leading cause of catheter-associated urinary tract infection (CaUTI), differentiates into swarm cells that migrate across catheter surfaces and medium solidified with 1.5% agar. While many genes and nutrient requirements involved in the swarming process have been identified, few studies have addressed the signals that promote initiation of swarming following initial contact with a surface. In this study, we show that P. mirabilis CaUTI isolates initiate swarming in response to specific nutrients and environmental cues. Thirty-three compounds, including amino acids, polyamines, fatty acids, and tricarboxylic acid (TCA) cycle intermediates, were tested for the ability to promote swarming when added to normally nonpermissive media. l-Arginine, l-glutamine, dl-histidine, malate, and dl-ornithine promoted swarming on several types of media without enhancing swimming motility or growth rate. Testing of isogenic mutants revealed that swarming in response to the cues required putrescine biosynthesis and pathways involved in amino acid metabolism. Furthermore, excess glutamine was found to be a strict requirement for swarming on normal swarm agar in addition to being a swarming cue under normally nonpermissive conditions. We thus conclude that initiation of swarming occurs in response to specific cues and that manipulating concentrations of key nutrient cues can signal whether or not a particular environment is permissive for swarming.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号