首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We assessed the functional expression of the norepinephrine (NE) transporter (NET) in cultured rat cortical astrocytes. Specific [3H]NE uptake increased in a time-dependent manner, and this uptake involves temperature- and Na+-sensitive mechanisms. The Na+-dependent [3H]NE uptake was saturable, and the Km for the process was 539.3 +/- 55.4 nm and the Vmax was 1.41 +/- 0.03 pmol/mg protein/min. Ouabain, a Na+-K+ ATPase inhibitor, significantly inhibited Na+-dependent [3H]NE uptake. The selective NE uptake inhibitor nisoxetine, the tricyclic antidepressants desipramine and imipramine, and the serotonin and NE reuptake inhibitor (SNRI) milnacipran very potently inhibited Na+-dependent [3H]NE uptake. On the other hand, GBR-12935 (a selective dopamine uptake inhibitor), fluvoxamine (a selective serotonin reuptake inhibitor), venlafaxine (a SNRI) and cocaine had weaker inhibitory activities. RT-PCR demonstrated that astrocytes expressed mRNA for the cloned NET protein, which was characterized as neuronal NET. Western blots indicated that anti-NET polyclonal antibody recognized a major band of 80 kDa in astrocytes. These data indicate that the neuronal NET is functionally expressed in cultured rat astrocytes. Glial cells may exert significant control of noradrenergic activity by inactivating NE that escapes neuronal re-uptake in sites distant from terminals, and are thus cellular targets for antidepressant drugs that inhibit NE uptake.  相似文献   

2.
P D Thut  N R Myslinski 《Life sciences》1976,19(10):1569-1578
L-DOPA (320 mg/kg, i.p.) increased the duration of the clonic phase of post-decapitation convulsions (PDC) by 60% in mice pretreated with the peripheral decarboxylase inhibitor, Ro 4-4602 (50 mg/kg, i.p.). Assays of brains at the time of decapitation showed a 300% increase in dopamine (DM), an 80% reduction in serotonin (5-HT) and no change in norepinephrine (NE) levels. The effect of L-DOPA on PDC was not blocked by haloperidol (0.5 – 5.0 mg/kg), a blocker of DM receptors, nor by diethyldithiocarbamate (400 mg/kg) an inhibitor of NE synthesis. Parachlorophenylalanine (300 mg/kg × 3 days) produced an 80% reduction in 5-HT and a prolongation of PDC similar to that observed after L-DOPA. Prolongation of PDC was also seen after the 5-HT antagonists methysergide (5 mg/kg) and cinanserin (10 mg/kg), but not after cyproheptadine (10 mg/kg). The 5-HT precursor, 5-hydroxytryptophan (100 mg/kg), produced no change in PDC when used alone but inhibited L-DOPA's prolongation of PDC. The results suggest that L-DOPA acts by depleting 5-HT in bulbospinal pathways and thus enhancing reflex activity in the spinal cord.  相似文献   

3.
Abstract: To investigate the regulation of norepinephrine transporters (NETs) in vitro, we measured the binding of the NET-selective ligand [3H]nisoxetine in homogenates of PC12 cells after exposure of intact cells to the NET inhibitor desipramine (DMI). A 3-day exposure of PC12 cells to DMI robustly reduced the B max, but not the K D, of [3H]nisoxetine binding to NETs. Reduction of the binding of [3H]nisoxetine was dependent on both the concentration of DMI and the time of exposure to DMI. Reduction of [3H]nisoxetine binding to NETs produced by a 1-day exposure to DMI reverted to preexposure levels 48 h after cessation of DMI exposure. Similar down-regulation of NETs was found when PC12 cells were exposed to another NET-selective drug, nisoxetine, which is structurally unrelated to DMI. In contrast, exposure of cells to the serotonin transporter-selective drug citalopram, or the NET substrate norepinephrine, had no effects on the binding of [3H]nisoxetine to NETs. The down-regulation of NETs was paralleled by a DMI-induced reduction in the uptake of [3H]norepinephrine in intact PC12 cells. It can be inferred from these data that inhibitors of the NET can down-regulate NETs directly, and do so in the absence of changes in the synaptic concentration of norepinephrine.  相似文献   

4.
Attempting to clarify the mechanism by which intracerabral injection of 6-hydroxydopamine (60HDA) reduces catecholamines in the caudate nucleus (CN), we have tested two hypotheses: (1) 60HDA specifically attacks catecholaminergic neurons; (2) 60HDA liberates hydrogen peroxide (H2O2) which destroys neurons indiscriminately. To this end, we have injected high or low doses of 60HDA or equimolar amounts of H2O2 stereotaxically into the substantia nigra (SN) or the lateral ventricle of cats and have placed electrocoagulative lesions in the SN. We determined the CN levels of dopamine (DA), norepinephrine (NE) and serotonin (5HT) 7-10 days later. Nigral injections of high doses (8 μ mol) of either agent or low doses (80 nmol) of 60HDA decreased both DA and NE and induced similar histologic damage in the SN with neuronal drop-out at the periphery of the lesions. Injection of 80 nmol of H2O2 into the SN did not decrease CN amine levels and did not produce histologic damage in the SN. Electrocoagulation of the SN decreased CN DA and NE, but the histologic lesions failed to show any peripheral neuronal drop-out. Ventricular injections of high doses (16 μmol) of 60HDA or H2O2 reduced not only DA and NE but also 5HT levels in the ipsilateral CN. Low intraventricular doses (0-16 μmol) of 60HDA decreased only DA and NE without affecting 5HT levels in the CN whereas 0.16 μmol of H2O2 had no effect on any of the CN amines. The catecholamine-depleting effects of low doses (80 nmol) of 60HDA were significantly potentiated by inhibiting brain monoamine oxidase by 90 percent or more at the time and site of injection of 60HDA. These results suggest that the extracellular liberation of H2O2 from 60HDA could explain some possibly nonspecific effects of high doses of 60HDA; at lower doses, however, 60HDA may act via selective uptake into catecholaminergic neurons with subsequent intracellular release of H2O2.  相似文献   

5.
Abstract: ( R )-[3H]Tomoxetine is a radioligand that binds to the norepinephrine (NE) uptake site with high affinity but also binds to a second, lower-affinity site. The goal of the present study was to identify the nature of this low-affinity site by comparing the binding properties of ( R )-[3H]tomoxetine with those of ( R/S )-[3H]nisoxetine, a highly selective ligand for the NE uptake site. In homogenate binding studies, both radioligands bound to the NE uptake site with high affinity, whereas ( R )-[3H]tomoxetine also bound to a second, lower-affinity site. The autoradiographic distribution of binding sites for both radioligands is consistent with the known distribution of NE-containing neurons. However, low levels of ( R )-[3H]-tomoxetine binding were seen in the caudate-putamen, globus pallidus, olfactory tubercle, and zona reticulata of the substantia nigra, where ( R/S )-[3H]nisoxetine binding was almost absent. In homogenates of the caudate-putamen, the NE uptake inhibitors desipramine and ( R )-nisoxetine and the serotonin (5-HT) uptake inhibitor citalopram produced biphasic displacement curves. Autoradiographic studies using 10 n M ( R )-nisoxetine to mask the binding of ( R )-[3H]tomoxetine to the NE uptake site produced autoradiograms that were similar to those produced by [3H]citalopram. Therefore, ( R )-[3H]tomoxetine binds to the NE uptake site with high affinity and the 5-HT uptake site with somewhat lower affinity.  相似文献   

6.
Monoamine neurotransmitter transporters for norepinephrine (NE), dopamine and serotonin are important targets for antidepressants and analgesics. The conopeptide chi-MrIA is a noncompetitive and highly selective inhibitor of the NE transporter (NET) and is being developed as a novel intrathecal analgesic. We used site-directed mutagenesis to generate a suite of mutated transporters to identify two amino acids (Leu(469) and Glu(382)) that affected the affinity of chi-MrIA to inhibit [(3)H]NE uptake through human NET. Residues that increased the K(d) of a tricyclic antidepressant (nisoxetine) were also identified (Phe(207), Ser(225), His(296), Thr(381), and Asp(473)). Phe(207), Ser(225), His(296), and Thr(381) also affected the rate of NE transport without affecting NE K(m). In a new model of NET constructed from the bLeuT crystal structure, chi-MrIA-interacting residues were located at the mouth of the transporter near residues affecting the binding of small molecule inhibitors.  相似文献   

7.
8.
The effects of GBR-12909 (selective DA uptake inhibitor), zimelidine (selective 5-HT uptake inhibitor) and nisoxetine (selective NE uptake inhibitor) on the uptake of 30 nM [3H]DA into cultured rat astrocytes were examined. [3H]DA uptake was inhibited by approximately 50% by GBR-12909 or zimelidine in a concentration-dependent manner (100 nM to approximately 10 microM). Furthermore, the inhibition curves of GBR-12909 were biphasic, and uptake was completely inhibited by a high concentration of GBR-12909 (100 microM). [3H]DA uptake was also inhibited by approximately 50% by nisoxetine in a concentration-dependent manner (0.1 to approximately 100 nM), and nisoxetine was more potent than GBR-12909 or zimelidine. The inhibitory potencies were in the order nisoxetine > GBR-12909 > zimelidine. The uptake of [3H]DA under Na+-free conditions was approximately 50% of that under normal conditions. Thus, DA was taken up by both Na+-dependent and Na+-independent mechanisms. Nisoxetine (100 nM), zimelidine (100 microM) and GBR-12909 (10 microM) inhibited [3H]DA uptake into astrocytes only in the presence of Na+. On the other hand, this uptake was completely inhibited by a high concentration of GBR-12909 (100 microM) in the absence of Na+. The present data suggest that the Na+-dependent uptake of [3H]DA in cultured rat astrocytes may occur in the NE uptake system. Furthermore, astrocytes express the extraneuronal monoamine transporter (uptake2), which is an Na+-independent system, and this transporter is involved in the inactivation of centrally released DA.  相似文献   

9.
The effects of gamma-aminobutyric acid (GABA) on the spontaneous efflux of [3H]norepinephrine ([3H]NE) were studied in synaptosomes prepared from rat hippocampus and prelabelled with [3H]NE. It had been observed previously that, when synaptosomes were exposed in superfusion to GABA, the basal release of the tritiated catecholamine was enhanced, apparently with no involvement of the known GABA receptors. The mechanisms underlying this effect have now been investigated. The potency of GABA as a releaser of [3H]NE was decreased by lowering the Na+ content of the superfusion medium, and its effect disappeared at 23 mM Na+. The GABA-induced [3H]NE release was counteracted by the GABA uptake inhibitor N-(4,4-diphenyl-3-butenyl)nipecotic acid (SKF 89976A), but it was unaffected by the NE uptake blockers desmethylimipramine and nisoxetine. The GABA-induced release of [3H]NE was Ca2+-dependent and tetrodotoxin-sensitive. The data support the hypothesis that GABA provoked [3H]NE release by a novel mechanism which involves penetration into the noradrenergic nerve terminals through a GABA carrier located on the NE terminals themselves. This uptake process might be electrogenic and provoke depolarization of the nerve terminals, causing an exocytotic release of [3H]NE.  相似文献   

10.
Inhibition of vesicular uptake of monoamines by hyperforin   总被引:5,自引:0,他引:5  
Roz N  Mazur Y  Hirshfeld A  Rehavi M 《Life sciences》2002,71(19):2227-2237
Hyperforin is the major active ingredient of Hypericum perforatum (St John's Wort), a traditional antidepressant medication. This study evaluated its inhibitory effects on the synaptic uptake of monoamines in rat forebrain homogenates, comparing the nature of the inhibition at synaptic and vesicular monoamine transporters. A hyperforin-rich extract inhibited with equal potencies the sodium-dependent uptake of the monoamine neurotransmitters serotonin [5-HT], dopamine [DA] and norepinephrine [NE] into rat brain synaptosomes. Hyperforin inhibited the uptake of all three monoamines noncompetitively, in marked contrast with the competitive inhibition exerted by fluoxetine, GBR12909 or desipramine on the uptake of these monoamines. Hyperforin had no inhibitory effect on the binding of [3H]paroxetine, [3H]GBR12935 and [3H]nisoxetine to membrane presynaptic transporters for 5-HT, DA and NE, respectively. The apparent presynaptic inhibition of monoamine uptake could reflect a "reserpine-like mechanism" by which hyperforin induced release of neurotransmitters from synaptic vesicles into the cytoplasm. Thus, we assessed the effects of hyperforin on the vesicular monoamine transporter. Hyperforin inhibited with equal potencies the uptake of the three tritiated monoamines to rat brain synaptic vesicles. Similarly to the synaptosomal uptake, the vesicular uptake was also noncompetitively inhibited by hyperforin. Notably, hyperforin did not affect the direct binding on [3H]dihydrotetrabenazine, a selective vesicular monoamine transporter ligand, to rat forebrain membranes. Our results support the notion that hyperforin interferes with the storage of monoamines in synaptic vesicles, rather than being a selective inhibitor of either synaptic membrane or vesicular monoamine transporters.  相似文献   

11.
Abstract: Monoamine-uptake blockers were applied focally (0.1–1,000 µ M ) through a dialysis probe in the nucleus accumbens of freely moving rats, and the extracellular concentrations of dopamine, norepinephrine, and serotonin were measured. The selective dopamine-uptake blocker GBR 12935 increased dopamine preferentially with only a small effect on norepinephrine, whereas the selective serotonin-uptake blocker fluoxetine increased serotonin output preferentially. In contrast, the selective norepinephrine-uptake blockers desipramine and nisoxetine enhanced not only norepinephrine, but also serotonin and dopamine appreciably. Cocaine increased all three amines with the greatest effects on dopamine and serotonin. As in our previous study on the ventral tegmental area, there was a positive association between dopamine and norepinephrine output when all blocker data were taken together. The present results suggest a contribution of the increase in norepinephrine, but not serotonin, to the enhancement of dopamine after cocaine applied focally in the nucleus accumbens.  相似文献   

12.
1. The molecular and behavioral pharmacology of DOV 102,677 is characterized. 2. This characterization was performed using radioligand binding and neurotransmitter uptake assays targeting the monoamine neurotransmitter receptors. In addition, the effects of DOV 102,677 on extracellular neurotransmitter levels were investigated using in vivo microdialysis. Finally, the effects of DOV 102,677 in the forced swim test, locomotor function, and response to prepulse inhibition was investigated.3. DOV 102,677 is a novel, "triple" uptake inhibitor that suppresses [(3)H]dopamine (DA), [(3)H]norepinephrine (NE) and [(3)H]serotonin (5-HT) uptake by recombinant human transporters with IC(50) values of 129, 103 and 133 nM, respectively. Radioligand binding to the dopamine (DAT), norepinephrine (NET), and serotonin (SERT) transporters is inhibited with k (i) values of 222, 1030, and 740 nM, respectively. DOV 102,677 (20 mg/kg IP) increased extracellular levels of DA and 5-HT in the prefrontal cortex to 320 and 280% above baseline 100 min after administration. DA levels were stably increased for the duration (240 min) of the study, but serotonin levels declined to baseline by 200 min after administration. NE levels increased linearly to a maximum of 348% at 240 min post-dosing. Consistent with these increases in NE levels, the density of beta-adrenoceptors was selectively decreased in the cortex of rats treated with DOV 102,677 (20 mg/kg per day, PO, 35 days). 4. DOV 102,677 dose-dependently reduced the amount of time spent immobile by rats in the forced swim test, a model predictive of antidepressant activity, with a minimum effective dose (MED) of 20 mg/kg and a maximal efficacy comparable to imipramine. This decrease in immobility time did not appear to result from increased motor activity. Further, DOV 102,677 was as effective as methylphenidate in reducing the amplitude of the startle response in juvenile mice, without notably altering motor activity. 5. In summary, DOV 102,677 is an orally active, "balanced" inhibitor of DAT, NET and SERT with therapeutic versatility in treating neuropsychiatric disorders beyond depression.  相似文献   

13.
Right heart failure (RHF) is characterized by chamber-specific reductions of myocardial norepinephrine (NE) reuptake, beta-receptor density, and profiles of cardiac sympathetic nerve ending neurotransmitters. To study the functional linkage between NE uptake and the pre- and postsynaptic changes, we administered desipramine (225 mg/day), a NE uptake inhibitor, to dogs with RHF produced by tricuspid avulsion and progressive pulmonary constriction or sham-operated dogs for 6 wk. Animals receiving no desipramine were studied as controls. We measured myocardial NE uptake activity using [(3)H]NE, beta-receptor density by [(125)I]iodocyanopindolol, inotropic responses to dobutamine, and noradrenergic terminal neurotransmitter profiles by glyoxylic acid-induced histofluorescence for catecholamines, and immunocytochemical staining for tyrosine hydroxylase and neuropeptide Y. Desipramine decreased myocardial NE uptake activity and had no effect on the resting hemodynamics in both RHF and sham animals but decreased myocardial beta-adrenoceptor density and beta-adrenergic inotropic responses in both ventricles of the RHF animals. However, desipramine treatment prevented the reduction of sympathetic neurotransmitter profiles in the failing heart. Our results indicate that NE uptake inhibition facilitates the reduction of myocardial beta-adrenoceptor density and beta-adrenergic subsensitivity in RHF, probably by increasing interstitial NE concentrations, but protects the cardiac noradrenergic nerve endings from damage, probably via blockade of NE-derived neurotoxic metabolites into the nerve endings.  相似文献   

14.
M W Dudley 《Life sciences》1988,43(23):1871-1877
Inhibition of monoamine oxidase A through pretreatment of rats with clorgyline (10 mg/kg ip) or the pro-drug MDL 72,394 (0.5 mg/kg ip) did not block the amine-depleting action of xylamine (25 mg/kg ip). Xylamine treatment resulted in a loss of approximately 60% of the control level of norepinephrine in the cerebral cortex. A 1-hr pretreatment, but not a 24-hr pretreatment, with the monoamine oxidase B inhibitor, L-deprenyl (10 mg/kg ip), prevented the depletion of norepinephrine by xylamine. In addition, pretreatment with MDL 72,974 (1.25 mg/kg ip), a monoamine oxidase B inhibitor without amine-releasing or uptake - inhibiting effects, did not protect cortical norepinephrine levels. Inhibition of monoamine oxidase by either MDL 72,974 or MDL 72,394 did not prevent the inhibition of [3H]norepinephrine uptake into rat cortical synaptosomes by xylamine. These data indicate that monoamine oxidase does not mediate the amine-releasing or uptake inhibiting properties of xylamine. The protection afforded by L-deprenyl following a 1-hr pretreatment most probably was due to accumulation of its metabolite, L-amphetamine, which would inhibit the uptake carrier. A functional carrier is required for depletion since desipramine (20 mg/kg ip) administered 1 hr prior to xylamine, was also able to prevent depletion of norepinephrine.  相似文献   

15.
Abstract: In the current study we examined the effects of coadministration of a serotonin 5-HT1A antagonist, (±)-1-(1 H -indol-4-yloxy)-3-(cyclohexylamino)-2-propanol maleate (LY 206130), and a dual 5-HT and norepinephrine (NE) uptake inhibitor, duloxetine, on extracellular levels of NE, 5-HT, dopamine (DA), 5-hydroxyindoleacetic acid, and 3,4-dihydroxyphenylacetic acid in rat hypothalamus microdialysates. LY 206130 (3.0 mg/kg, s.c.) alone significantly increased NE and DA levels by 60 and 34%, respectively, without affecting 5-HT levels. Duloxetine administration at 4.0 mg/kg, i.p. alone produced no significant changes in levels of 5-HT, NE, or DA. In contrast, when LY 206130 and duloxetine were coadministered at 3.0 mg/kg, s.c. and 4.0 mg/kg, i.p., respectively, 5-HT, NE, and DA levels increased to 5.7-, 4.8-, and threefold over their respective basal levels. These data demonstrate that antagonism of somatodendritic 5-HT1A autoreceptors and concomitant inhibition of 5-HT and NE uptake with duloxetine may promote synergistic increases in levels of extracellular 5-HT, NE, and DA in hypothalamus of conscious, freely moving rats.  相似文献   

16.
The present study examined the potential membrane retention of desipramine (DMI) following exposures of 293-hNET cells to DMI, and its effect on [3H]NE uptake. Incubation of cells with 500 nM DMI for 1 h or 1 day persistently inhibited the uptake of [3H]NE up to 7 days, despite daily repeated washing of cells with drug-free medium. Uptake inhibition was paralleled by persistent retention of DMI associated with cells, as determined by HPLC and by radiotracer experiments using [3H]DMI. [3H]DMI trapped in membranes was displaceable by the structurally unrelated NET inhibitor, nisoxetine, in a concentration-dependent manner, implying interaction of retained [3H]DMI with the NET. A similar cellular retention was observed following incubation of cells with nisoxetine. The results demonstrate that DMI and nisoxetine are persistently retained in cell membranes, at least partly in association with the NET. The retention and slow diffusion of DMI and nisoxetine from membranes may contribute to their pharmacological and modulatory action on NET.  相似文献   

17.
J A Creighton  P K Rudeen 《Life sciences》1988,43(24):2007-2014
The effect of acute ethanol administration on pineal serotonin N-acetyltransferase (NAT) activity, norepinephrine and indoleamine content was examined in male rats. When ethanol was administered in two equal doses (2 g/kg body weight) over a 4 hour period during the light phase, the nocturnal rise in NAT activity was delayed by seven hours. The nocturnal pineal norepinephrine content was not altered by ethanol except for a delay in the reduction of NE with the onset of the following light phase. Although ethanol treatment led to a significant reduction in nocturnal levels of pineal serotonin content, there was no significant effect upon pineal content of 5-hydroxyindoleacetic acid (5-HIAA). The data indicate that ethanol delays the onset of the rise of nocturnal pineal NAT activity.  相似文献   

18.
A fraction containing neurotransmitter storage vesicles was isolated from rat whole brain and brain regions, and the uptakes of [3H]norepinephrine and [3H]serotonin were determined in vitro. Norepinephrine uptake in vesicle preparations from corpus striatum was higher than in prep arations from cerebral cortex, and uptake in vesicles from the remainder (midbrain + brainstem + cerebellum) was intermediate. The Km for norepinephrine uptake was the same in the three brain regions, but the regions differed in maximal uptake capacity by factors which paralleled total catecholamine concentration rather than content of norepinephrine alone. Intracisternal administration of 6-hydroxydopamine, but not of 5,6-dihydroxytryptamine, reduced vesicular norepinephrine uptake, and pretreat-ment with desmethylimipramine (which protects specifically norepinephrine neurons but not dopamine neurons from the 6-hydroxydopamine) only partially prevented the loss of vesicular norepinephrine uptake. These studies indicate that uptake of norepinephrine by rat brain vesicle preparations occurs in vesicles from norepinephrine and dopamine neurons, but probably not in vesicles from serotonin neurons. Uptake of serotonin by brain vesicle preparations exhibited time, temperature and ATP-Mg2+ requirements nearly identical to those of norepinephrine uptake. The affinity of serotonin uptake matched that of serotonin for inhibition of norepinephrine uptake, and the maximal capacity was the same for serotonin as for norepinephrine. Norepinephrine, dopamine and reserpine inhibited serotonin uptake in a purely competitive fashion, with Kis similar to those for inhibition of norepinephrine uptake. Whereas 5,6-dihydroxytryptamine treatment reduced synaptosomal serotonin uptake but not vesicular serotonin uptake, 6-hydroxydopamine reduced vesicular serotonin uptake in the absence of reductions in synaptosomal serotonin uptake. Thus, in this preparation, serotonin appears to be taken up in vitro into catecholamine vesicles, rather than into serotonin vesicles.  相似文献   

19.
Interaction of xylamine with peripheral sympathetic neurons   总被引:1,自引:0,他引:1  
R W Ransom  L A Waggaman  A K Cho 《Life sciences》1985,37(13):1177-1182
Xylamine (XYL) administered to intact rats caused a 70-80% reduction in norepinephrine (NE) uptake by the vas deferens but had little or no effect on NE content in that tissue. The vas deferens accumulates 3H-XYL in vitro by a desmethylimipramine (DMI)-sensitive mechanism. Vasa deferentia from 6-hydroxydopamine (6OHDA) pretreated animals exhibited a 80% reduction in both NE content and XYL uptake activity. These results indicate that XYL is taken up by sympathetic nerve terminals and can reduce NE uptake activity without depleting terminals of neurotransmitter.  相似文献   

20.
LY227942, (+/-)-N-methyl-3-(1-naphthalenyloxy)-3-(2-thiophene)propanamine ethanedioate, is a new, competitive inhibitor of monoamine uptake in synaptosomal preparations of rat brain. LY227942 inhibits uptake of serotonin (5-hydroxytryptamine, 5HT) and norepinephrine (NE) in cortical synaptosomes and uptake of dopamine (DA) in striatal synaptosomes with inhibitor constants (Ki values) of 8.5, 45 and 300 nM, respectively. Upon administration in vivo, LY227942 lowers 5HT and NE uptake in hypothalamus homogenates to half their respective control activities (ED50) at 0.74 and 1.2 mg/kg s.c., 7 and 12 mg/kg i.p., and 12 and 22 mg/kg p.o., but LY227942 at doses up to 30 mg/kg p.o. does not change DA uptake in striatal homogenates. Lowering of 5HT and NE uptake is demonstrated after 15 min and 6 hr, but has dissipated by 16 hr after oral administration. According to radioligand binding determinations, LY227942 possesses only weak affinity for muscarinic receptors, histamine-1 receptors, adrenergic receptors, dopamine receptors and serotonin receptors. These findings suggest that LY227942 has the pharmacological profile of an antidepressant drug and is useful to study the pharmacological responses of concerted enhancement of serotonergic and noradrenergic neurotransmission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号