首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Optimizing thermal and radiation effects for bacterial inactivation   总被引:2,自引:0,他引:2  
The temperatures required for dry-heat spacecraft sterilization have been known to degrade heat-sensitive components. Thermoradiation, the simultaneous application of dry heat and gamma radiation, can provide the same degree of microbial inactivation as dry heat alone while substantially reducing component degradation. This is made possible by the synergistic effects produced when relatively low levels of these agents (e.g., 90 to 350 krads and 60° to 105°C) are applied simultaneously, thus permitting the use of lower temperatures and a reduced duration of heat exposure. The effects of temperature, radiation dose rate, and relative humidity on microbial inactivation during thermoradiation exposure have been established.This experimentation was supported by NASA Contract No. W-12853.  相似文献   

2.
Samples of soil collected from the Kennedy Space Center near the spacecraft assembly facilities were found to contain microorganisms very resistant to conventional sterilzation techniques. The inactivation kinetics of the naturally occurring spores in soil were investigated by using dry heat and ionizing radiation, first separately and then simultaneously. Dry-heat inactivation kinetics of spores was determined at 105 and 125 C; radiation inactivation kinetics was determined for dose rates of 660 and 76 krads/h at 25 C. Simultaneous combinations of heat and radiation were then investigated at 105, 110, 115, 120, and 125 C, with a dose rate of 76 krads/h. Combined treatment was found to be highly synergistic, requiring greatly reduced radiation doses to accomplish sterilization of the population.  相似文献   

3.
4.
Spores of Clostridium perfringens, type A, were given separate or sequential treatments of gamma radiation (0 to 0.7 Mrad) and/or high temperature (93 to 103 degrees C). Prior heating, sufficient to inactivate 40 to 99% of the viable spores, had no effect on the subsequent radiation inactivation rate. Prior irradiation had a sensitizing effect on subsequently heated spores. The degree of sensitization to heat, as measured by thermal inactivation rate, increased with increased radiation pretreatment dose.  相似文献   

5.
Spores of Clostridium perfringens, type A, were given separate or sequential treatments of gamma radiation (0 to 0.7 Mrad) and/or high temperature (93 to 103 degrees C). Prior heating, sufficient to inactivate 40 to 99% of the viable spores, had no effect on the subsequent radiation inactivation rate. Prior irradiation had a sensitizing effect on subsequently heated spores. The degree of sensitization to heat, as measured by thermal inactivation rate, increased with increased radiation pretreatment dose.  相似文献   

6.
Effective killing of Bacillus anthracis spores is of paramount importance to antibioterrorism, food safety, environmental protection, and the medical device industry. Thus, a deeper understanding of the mechanisms of spore resistance and inactivation is highly desired for developing new strategies or improving the known methods for spore destruction. Previous studies have shown that spore inactivation mechanisms differ considerably depending upon the killing agents, such as heat (wet heat, dry heat), UV, ionizing radiation, and chemicals. It is believed that wet heat kills spores by inactivating critical enzymes, while dry heat kills spores by damaging their DNA. Many studies have focused on the biochemical aspects of spore inactivation by dry heat; few have investigated structural damages and changes in spore mechanical properties. In this study, we have inactivated Bacillus anthracis spores with rapid dry heating and performed nanoscale topographical and mechanical analysis of inactivated spores using atomic force microscopy (AFM). Our results revealed significant changes in spore morphology and nanomechanical properties after heat inactivation. In addition, we also found that these changes were different under different heating conditions that produced similar inactivation probabilities (high temperature for short exposure time versus low temperature for long exposure time). We attributed the differences to the differential thermal and mechanical stresses in the spore. The buildup of internal thermal and mechanical stresses may become prominent only in ultrafast, high-temperature heat inactivation when the experimental timescale is too short for heat-generated vapor to efficiently escape from the spore. Our results thus provide direct, visual evidences of the importance of thermal stresses and heat and mass transfer to spore inactivation by very rapid dry heating.  相似文献   

7.
The experimental procedure described is designed to allow calculation of the radiation sterilization dose for medical devices to any desired standard of sterility assurance. The procedure makes use of the results of a series of sterility tests on device samples exposed to doses of radiation from 0.2 to 1.8 Mrad in 0.2 Mrad increments. From the sterility test data a 10-2 sterility level dose is determined. A formula is described that allows a value called DS Mrad to be calculated. This is an estimate of the effective radiation resistance of the heterogeneous microbial population remaining in the tail portion of the inactivation curve at the 10-2 dose and above. DS Mrad is used as a D 10 value and is applied, in conjunction with the 10-2 sterility level dose, to an extrapolation factor to estimate a sufficient radiation sterilization dose. A computer simulation of the substerilization process has been carried out. This has allowed an extensive evaluation of the procedure, and the sterilization dose obtained from calculation to be compared with the actual dose required. Good agreement was obtained with most microbial populations examined, but examples of both overdosing and underdosing were found with microbial populations containing a proportion of organisms displaying pronounced shoulder inactivation kinetics. The method allows the radiation sterilization dose to be derived from the natural resistance of the microbial population to gamma sterilization.  相似文献   

8.
A series of experiments at several levels of relative humidity and radiation dose rates was carried out using spores of Bacillus subtilis var. niger to evaluate the effect of heat alone, radiation alone, and a combination of heat and radiation. Combined heat and radiation treatment of microorganisms yields a destruction rate greater than the additive rates of the independence agents. The synergistic mechanism shows a proportional dependency on radiation dose rate an Arrhenius dependency on temperature, and a dependency on relative humidity. Maximum synergism occurs under conditions where heat and radiation individually destroy microorganisms at approximately equal rates. Larger synergistic advantage is possible at low relative humidities rather than at high relative humidities.  相似文献   

9.
Effect of combined heat and radiation on microbial destruction.   总被引:1,自引:1,他引:0       下载免费PDF全文
A series of experiments at several levels of relative humidity and radiation dose rates was carried out using spores of Bacillus subtilis var. niger to evaluate the effect of heat alone, radiation alone, and a combination of heat and radiation. Combined heat and radiation treatment of microorganisms yields a destruction rate greater than the additive rates of the independence agents. The synergistic mechanism shows a proportional dependency on radiation dose rate an Arrhenius dependency on temperature, and a dependency on relative humidity. Maximum synergism occurs under conditions where heat and radiation individually destroy microorganisms at approximately equal rates. Larger synergistic advantage is possible at low relative humidities rather than at high relative humidities.  相似文献   

10.
11.
Cell inactivation and cell injury by irradiation and freezing of the potentially enteropathogenic, food-borne gram-negative rod Yersinia enterocolitica strain WA was investigated. The radiation dose necessary to kill 90% of the initial population, i.e., one D-value, was 10.0, 14,3, and 24.0 krad when irradiation was carried out at 2 to 0, -18, and -75 degrees C, respectively. On the other hand, cell injury, i.e., inability to form colonies in agar containing 2.5% NaCl, was 32, 42 and 54% when cells were irradiated to one D-value at 2 to 0, -18, and -75 degrees C, respectively. Freezing alone (without irradiation) at -18 and -75 degrees C for 1 h resulted in 7 and 42% cell inactivation and 55 and 83% cell injury, respectively. These data show that given the same extent of cell inactivation, freezing caused substantially greater cell injury than radiation. For purposes of radiation sterilization, doses of 100 and 150 krad would be sufficient to inactivate 10 log cycles of Y. enterocolitica strain WA if irradiated at 2 to 0 and -18 degrees C, respectively. Presence of 2.5% NaCl may result in a further 50% reduction of the dose required to achieve sterility.  相似文献   

12.
The radiation inactivation method is widely used to estimate the molecular size of membrane-bound enzymes, receptors, and transport systems in situ. The method is based on the principle that exposure of frozen solutions or lyophilized protein preparations to increasing doses of ionizing radiations results in a first-order decay of biological activity proportional to radiation inactivation size of the protein. This parameter is believed to reflect the "functional unit" of the protein defined as the minimal assembly of structure (protomers) required for expression of a given biological activity. We tested the functional unit as a concept to interpret radiation inactivation data of proteins with Escherichia coli beta-galactosidase, where the protomers are active only when associated in a tetramer. Gamma-Irradiation of beta-galactosidase at both -78 and 38 degrees C followed by quantitation of the residual unfragmented promoter band by SDS-polyacrylamide gel electrophoresis yielded the protomer size, indicating that only one protomer is fragmented by each radiation hit. By following the enzyme activity as a function of dose it was found that only the protomer that has been directly hit and fragmented at -78 degrees C was effectively inactivated. In contrast, at 38 degrees C, it was the whole tetramer that was inactivated. beta-Galactosidase cannot have two different functional units depending on temperature. The inactivation of the whole beta-galactosidase tetramer at 38 degrees C is in fact related to protomer fragmentation but also to the production of stable denatured protomers (detected by gel-filtration HPLC and differential UV spectroscopy) due to energy transfer from fragmented protomers toward unhit protomers.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
The effect of hydrostatic pressures as high as 1,700 atm at 25 C on the heat and radiation resistance of Bacillus pumilus spores was studied. Phosphate-buffered spores were more sensitive to compression than spores suspended in distilled water. Measurements of the turbidity of suspensions, the viability, refractility, stainability, dry weight, and respiratory activity of spores, and calcium and dipicolinic acid release were made for different pressures and times. Initiation of germination occurred at pressures exceeding 500 atm and was the prerequisite for inactivation by compression. The rate of initiation increased with increasing pressure at constant temperature. This result is interpreted as a net decrease in the volume of the system during initiation as a result of increased solvation of the spore components.  相似文献   

14.
 三温模型是近年提出的测算蒸散量和评价环境质量的一种方法,因为该模型的核心是表面温度、参考表面温度、气温,所以被称为“三温模型”。该文通过理论分析结合实验的方法, 讨论了用三温模型测算土壤蒸发量的方法及其验证。通过引入没有蒸发的参考土壤的概念, 三温模型中用下式计算土壤蒸发量:LE=Rn-G-(Rnd-Gd)(Ts-Ta)/Tsd-Ta 式中,E为土壤蒸发量,L为水汽的汽化潜热,Rn和Rnd为蒸发土壤面和参考土壤面的净辐射, G和Gd为蒸发土壤和参考土壤热通量,Ts、Tsd、Ta分别为蒸发土壤的表面温度、参考土壤表面温度、气温。试验结果表明,在参考土壤和蒸发土壤中,能量通量存在明显差异,参考土壤中的土壤热通量和净辐射通量均小于蒸发土壤,而显热通量则大于蒸发土壤;在一般情况下,参考土壤的表面温度最高,蒸发土壤表面温度次之,大气温度最低,在土壤湿润时,这些差异更为显著。 经过与大型称重式蒸渗仪的实测值比较,三温模型能较好地计算土壤蒸发量,在22 d的实验期间内,绝对平均误差仅为0.17 mm•d-1,相关系数达r2=0.88。与热电偶测温结果相比较 ,采用红外温度计测温的结果更为精确,和实测值的绝对平均误差仅为每天0.15 mm•d -1,相关系数达r2=0.94,表明三温模型有较好的精度。另外,三温模型在计算土壤蒸发量时, 所需要的参数种类少(净辐射、土壤热通量、温度),不含经验系数,不需要空气动力学阻抗和表面阻抗等参数,因此简便实用,具有较好的应用前景。  相似文献   

15.
Effects of thermoradiation on bacteria.   总被引:2,自引:2,他引:0       下载免费PDF全文
A 60Co source was used to determine the effects of thermoradiation on Achromobacter aquamarinus, Staphylococcus aureus, and vegetative and spore cells of Bacillus subtilis var. globigii. The rate of inactivation of these cultures, except vegetative-cell populations of B. subtilis, was exponential and in direct proportion to temperature. The D10 (dose that inactivates 90% of the microbial population) value for A. aquamarinus was 8.0 Krad at 25 degrees C and 4.9 Krad at 35 degrees C. For S. aureus, D10 was 9.8 and 5.3 Krad at 35 and 45 degrees C, respectively. Vegetative cells of B. subtilis demonstrated a rapid initial inactivation followed by a steady but decreased exponential rate. The D10 at 25 degrees C was 10.3 Krad, but at 35 and 45 degrees C this value was 6.2 and 3.8 Krad, respectively. Between 0 and 95 Krad, survival curves for B. subtilis spores at 75 degrees C showed slight inactivation, increasing in rat at and above 85 degrees C. The D10 values for spores at 85 and 90 degrees C were 129 and 92 Krad, respectively. Significant synergism between heat and irradiation was noted at 35 degrees C for A. aquamarinus and 45 degrees C for S. aureus. The presence of 0.1 mM cysteine in suspending media afforded protection to both cultures at these critical temperatures. On the other hand, cysteine sensitized B. subtilis spores at radiation doses greater than 100 Krad. The combined effect of heat and irradiation was more destructive to bacteria than either method alone.  相似文献   

16.
A model to predict the population density of verotoxigenic Escherichia coli (VTEC) throughout the elaboration and storage of fermented raw-meat sausages (FRMS) was developed. Probabilistic and kinetic measurement data sets collected from publicly available resources were completed with new measurements when required and used to quantify the dependence of VTEC growth and inactivation on the temperature, pH, water activity (aw), and concentration of lactic acid. Predictions were compared with observations in VTEC-contaminated FRMS manufactured in a pilot plant. Slight differences in the reduction of VTEC were predicted according to the fermentation temperature, 24 or 34°C, with greater inactivation at the highest temperature. The greatest reduction was observed during storage at high temperatures. A population decrease greater than 6 decimal logarithmic units was observed after 66 days of storage at 25°C, while a reduction of only ca. 1 logarithmic unit was detected at 12°C. The performance of our model and other modeling approaches was evaluated throughout the processing of dry and semidry FRMS. The greatest inactivation of VTEC was predicted in dry FRMS with long drying periods, while the smallest reduction was predicted in semidry FMRS with short drying periods. The model is implemented in a computing tool, E. coli SafeFerment (EcSF), freely available from http://www.ifr.ac.uk/safety/EcoliSafeFerment. EcSF integrates growth, probability of growth, and thermal and nonthermal inactivation models to predict the VTEC concentration throughout FRMS manufacturing and storage under constant or fluctuating environmental conditions.  相似文献   

17.
We studied the effects of radiation (electrons of 6.2 MeV) at different temperatures with respect to the inactivation of the human immunodeficiency virus to determine the radiosensitivity of the virus. Using a mathematical model describing the dependence on radiation dose of the proportion of sterile items in a population of bone allografts contaminated by HIV, and subjected to irradiation, we have commented on and explained the calculation of the sterility assurance level in bone transplantation according to different doses of irradiation at different temperatures. Simultaneous application of heat and radiation increases inactivation of HIV. Given the relative imprecision of viral sensitivity curves and the impossibility of knowing the number of viral particles in a patient at a given moment of the disease, irradiation does not authorize bone transplantation without screening. However, irradiation can be considered as a serious adjuvent to decrease the risk of contamination after screening.  相似文献   

18.
Inactivation of caliciviruses   总被引:2,自引:0,他引:2  
The viruses most commonly associated with food- and waterborne outbreaks of gastroenteritis are the noroviruses. The lack of a culture method for noroviruses warrants the use of cultivable model viruses to gain more insight on their transmission routes and inactivation methods. We studied the inactivation of the reported enteric canine calicivirus no. 48 (CaCV) and the respiratory feline calicivirus F9 (FeCV) and correlated inactivation to reduction in PCR units of FeCV, CaCV, and a norovirus. Inactivation of suspended viruses was temperature and time dependent in the range from 0 to 100 degrees C. UV-B radiation from 0 to 150 mJ/cm(2) caused dose-dependent inactivation, with a 3 D (D = 1 log(10)) reduction in infectivity at 34 mJ/cm(2) for both viruses. Inactivation by 70% ethanol was inefficient, with only 3 D reduction after 30 min. Sodium hypochlorite solutions were only effective at >300 ppm. FeCV showed a higher stability at pH <3 and pH >7 than CaCV. For all treatments, detection of viral RNA underestimated the reduction in viral infectivity. Norovirus was never more sensitive than the animal caliciviruses and profoundly more resistant to low and high pH. Overall, both animal viruses showed similar inactivation profiles when exposed to heat or UV-B radiation or when incubated in ethanol or hypochlorite. The low stability of CaCV at low pH suggests that this is not a typical enteric (calici-) virus. The incomplete inactivation by ethanol and the high hypochlorite concentration needed for sufficient virus inactivation point to a concern for decontamination of fomites and surfaces contaminated with noroviruses and virus-safe water.  相似文献   

19.
Little information regarding the effectiveness of UV radiation on the inactivation of caliciviruses and enteric adenoviruses is available. Analysis of human calicivirus resistance to disinfectants is hampered by the lack of animal or cell culture methods that can determine the viruses' infectivity. The inactivation kinetics of enteric adenovirus type 40 (AD40), coliphage MS-2, and feline calicivirus (FCV), closely related to the human caliciviruses based on nucleic acid organization and capsid architecture, were determined after exposure to low-pressure UV radiation in buffered demand-free (BDF) water at room temperature. In addition, UV disinfection experiments were also carried out in treated groundwater with FCV and AD40. AD40 was more resistant than either FCV or coliphage MS-2 in both BDF water and groundwater. The doses of UV required to achieve 99% inactivation of AD40, coliphage MS-2, and FCV in BDF water were 109, 55, and 16 mJ/cm(2), respectively. The doses of UV required to achieve 99% inactivation of AD40, coliphage MS-2, and FCV in groundwater were slightly lower than those in BDF water. FCV was inactivated by 99% by 13 mJ/cm(2) in treated groundwater. A dose of 103 mJ/cm(2) was required for 99% inactivation of AD40 in treated groundwater. The results of this study indicate that if FCV is an adequate surrogate for human caliciviruses, then their inactivation by UV radiation is similar to those of other single-stranded RNA enteric viruses, such as poliovirus. In addition, AD40 appears to be more resistant to UV disinfection than previously reported.  相似文献   

20.
Summary Thermal inactivation of microorganisms has traditionally been described as log-linear in nature, that is the reduction in log numbers of survivors decreases in a linear manner with time. This is despite a plethora of data that shows consistent deviations from such kinetics for a wide range of organisms and conditions and that cannot be accounted for by experimental artifacts. Existing thermal death models fail to take such deviations into account and also fail to quantify the effects of heating menstruum on heat sensitivity. The thermal inactivation ofListeria monocytogenes ATCC 19115 has been investigated using a factorially-designed experiment comparing 45 conditions of salt concentration, pH value and temperature. Heating was carried out using a Submerged Coil heating apparatus that minimized experimental artifacts. Low pH values increased, whilst high salt concentrations decreased heat sensitivity. Results showed a significant and consistent deviation from log-linear kinetics, particularly at low temperatures. A number of distributions were tested for suitability to describe the variability of heat sensitivity within the population of heated cells (vitalistic approach). The use of the logistic function and log dose (log time) allowed the development of an accurate unifying predictive model across the whole range of heating conditions. It is proposed that this approach should be tested as a generalized modeling technique for death kinetics of vegetative bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号