首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A present-day aminoacyl-tRNA synthetase with ancestral editing properties   总被引:1,自引:0,他引:1  
Leucyl-, isoleucyl-, and valyl-tRNA synthetases form a subgroup of related aminoacyl-tRNA synthetases that attach similar amino acids to their cognate tRNAs. To prevent amino acid misincorporation during translation, these enzymes also hydrolyze mischarged tRNAs through a post-transfer editing mechanism. Here we show that LeuRS from the deep-branching bacterium Aquifex aeolicus edits the complete set of aminoacylated tRNAs generated by the three enzymes: Ile-tRNA(Ile), Val-tRNA(Ile), Val-tRNA(Val), Thr-tRNA(Val), and Ile-tRNA(Leu). This unusual enlarged editing property was studied in a model of a primitive editing system containing a composite minihelix carrying the triple leucine, isoleucine, and valine identity mimicking the primitive tRNA precursor. We found that the freestanding LeuRS editing domain can edit this precursor in contrast to IleRS and ValRS editing domains. These results suggest that A. aeolicus LeuRS carries editing properties that seem more primitive than those of IleRS and ValRS. They suggest that the A. aeolicus editing domain has preserved the ambiguous editing property from the ancestral common editing domain or, alternatively, that this plasticity results from a specific metabolic adaptation.  相似文献   

2.
Lue SW  Kelley SO 《Biochemistry》2005,44(8):3010-3016
Many aminoacyl-tRNA synthetases (aaRSs) contain two active sites, a synthetic site catalyzing aminoacyl-adenylate formation and tRNA aminoacylation and a second editing or proofreading site that hydrolyzes misactivated adenylates or mischarged tRNAs. The combined activities of these two sites lead to rigorous accuracy in tRNA aminoacylation, and both activities are essential to LeuRS and other aaRSs. Here, we describe studies of the human mitochondrial (hs mt) LeuRS indicating that the two active sites of this enzyme have undergone functional changes that impact how accurate aminoacylation is achieved. The sequence of the hs mt LeuRS closely resembles a bacterial LeuRS overall but displays significant variability in regions of the editing site. Studies comparing Escherichia coli and hs mt LeuRS reveal that the proofreading activity of the mt enzyme is disrupted by these sequence changes, as significant levels of Ile-tRNA(Leu) are formed in the presence of high concentrations of the noncognate amino acid. Experiments monitoring deacylation of Ile-tRNA(Leu) and misactivated adenylate turnover revealed that the editing active site is not operational. However, hs mt LeuRS has weaker binding affinities for both cognate and noncognate amino acids relative to the E. coli enzyme and an elevated discrimination ratio. Therefore, the enzyme achieves fidelity using a more specific synthetic active site that is not prone to errors under physiological conditions. This enhanced specificity must compensate for the presence of a defunct editing site and ensures translational accuracy.  相似文献   

3.
Certain aminoacyl-tRNA synthetases prevent potential errors in protein synthesis through deacylation of mischarged tRNAs. For example, the close homologs isoleucyl-tRNA synthetase (IleRS) and valyl-tRNA synthetase (ValRS) deacylate Val-tRNA(Ile) and Thr-tRNA(Val), respectively. Here we examined the chemical requirements at the 3'-end of the tRNA for these hydrolysis reactions. Single atom substitutions at the 2'- and 3'-hydroxyls of a variety of mischarged RNAs revealed that, while acylation is at the 2'-OH for both enzymes, IleRS catalyzes deacylation specifically from the 3'-OH and not from the 2'-OH. In contrast, ValRS can deacylate non-cognate amino acids from the 2'-OH. Moreover, for IleRS the specificity for a 3'-O location of the scissile ester bond could be forced to the 2'-position by introduction of a 3'-O-methyl moiety. Cumulatively, these and other results suggest that the editing sites of these class I aminoacyl-tRNA synthetases have a degree of inherent plasticity for substrate recognition. The ability to adapt to subtle differences in mischarged RNAs may be important for the high accuracy of aminoacylation.  相似文献   

4.
Leucyl-tRNA synthetase (LeuRS) performs dual essential roles in group I intron RNA splicing as well as protein synthesis within the yeast mitochondria. Deletions of the C terminus differentially impact the two functions of the enzyme in splicing and aminoacylation in vivo. Herein, we determined that a fiveamino acid C-terminal deletion of LeuRS, which does not complement a null strain, can form a ternary complex with the bI4 intron and its maturase splicing partner. However, the complex fails to stimulate splicing activity. The x-ray co-crystal structure of LeuRS showed that a C-terminal extension of about 60 amino acids forms a discrete domain, which is unique among the LeuRSs and interacts with the corner of the L-shaped tRNALeu. Interestingly, deletion of the entire yeast mitochondrial LeuRS C-terminal domain enhanced its aminoacylation and amino acid editing activities. In striking contrast, deletion of the corresponding C-terminal domain of Escherichia coli LeuRS abolished aminoacylation of tRNALeu and also amino acid editing of mischarged tRNA molecules. These results suggest that the role of the leucine-specific C-terminal domain in tRNA recognition for aminoacylation and amino acid editing has adapted differentially and with surprisingly opposite effects. We propose that the secondary role of yeast mitochondrial LeuRS in RNA splicing has impacted the functional evolution of this critical C-terminal domain.  相似文献   

5.
Leucyl-tRNA synthetase (LeuRS) has a specific post-transfer editing activity directed against mischarged isoleucine and similar noncognate amino acids. We describe the post-transfer-editing and product complexes of Thermus thermophilus LeuRS (LeuRSTT) with tRNA(Leu) at 2.9- to 3.3-A resolution. In the post-transfer-editing configuration, A76 binds in the editing active site exactly as previously found for the adenosine moiety of a small-molecule editing-substrate analog. The 60 C-terminal residues of LeuRSTT, unseen in previous structures, fold into a compact domain flexibly linked to the rest of the molecule and interacting with the G19-C56 tertiary base pair of tRNA(Leu). LeuRS recognition of tRNA(Leu) depends essentially on tRNA shape rather than base-specific interactions. The structures show that considerable domain rotations, notably of the editing domain, accompany the tRNA-3' end dynamics associated successively with aminoacylation, post-transfer editing and product release.  相似文献   

6.
A unique C-terminal domain extension is required by most leucyl-tRNA synthetases (LeuRS) for aminoacylation. In one exception, the enzymatic activity of yeast mitochondrial LeuRS is actually impeded by its own C-terminal domain. It was proposed that the yeast mitochondrial LeuRS has compromised its aminoacylation activity to some extent and adapted its C terminus for a second role in RNA splicing, which is also essential. X-ray crystal structures of the LeuRS-tRNA complex show that the 60 residue C-terminal domain is tethered to the main body of the enzyme via a flexible peptide linker and allows interactions with the tRNALeu elbow. We hypothesized that this short peptide linker would facilitate rigid body movement of the C-terminal domain as LeuRS transitions between an aminoacylation and editing complex or, in the case of yeast mitochondrial LeuRS, an RNA splicing complex. The roles of the C-terminal linker peptide for Escherichia coli and yeast mitochondrial LeuRS were investigated via deletion mutagenesis as well as by introducing chimeric swaps. Deletions within the C-terminal linker of E. coli LeuRS determined that its length, rather than its sequence, was critical to aminoacylation and editing activities. Although deletions in the yeast mitochondrial LeuRS peptide linker destabilized the protein in general, more stable chimeric enzymes that contained an E. coli LeuRS C-terminal domain showed that shortening its tether stimulated aminoacylation activity. This suggested that limiting C-terminal domain accessibility to tRNALeu facilitates its role in protein synthesis and may be a unique adaptation of yeast mitochondrial LeuRS that accommodates its second function in RNA splicing.  相似文献   

7.
Leucyl-tRNA synthetase (LeuRS) specifically recognizes the characteristic long variable arm and the discriminator base, A73, of tRNA(Leu) in archaea and eukarya. The LeuRS 'editing domain' hydrolyzes misformed noncognate aminoacyl-tRNA. Here we report the crystal structure of the archaeal Pyrococcus horikoshii LeuRS-tRNA(Leu) complex. The protruding C-terminal domain of LeuRS specifically recognizes the bases at the tip of the long variable arm. The editing domain swings from its tRNA-free position to avoid clashing with the tRNA. Consequently the tRNA CCA end can bend and reach the aminoacylation active site. The tRNA 3' region assumes two distinct conformations that allow A73 to be specifically recognized in different ways. One conformation is the canonical 'aminoacylation state.' The other conformation seems to be the 'intermediate state,' where the misaminoacylated 3' end has partially relocated to the editing domain.  相似文献   

8.
Fukai S  Nureki O  Sekine S  Shimada A  Tao J  Vassylyev DG  Yokoyama S 《Cell》2000,103(5):793-803
Valyl-tRNA synthetase (ValRS) strictly discriminates the cognate L-valine from the larger L-isoleucine and the isosteric L-threonine by the tRNA-dependent "double sieve" mechanism. In this study, we determined the 2.9 A crystal structure of a complex of Thermus thermophilus ValRS, tRNA(Val), and an analog of the Val-adenylate intermediate. The analog is bound in a pocket, where Pro(41) allows accommodation of the Val and Thr moieties but precludes the Ile moiety (the first sieve), on the aminoacylation domain. The editing domain, which hydrolyzes incorrectly synthesized Thr-tRNA(Val), is bound to the 3' adenosine of tRNA(Val). A contiguous pocket was found to accommodate the Thr moiety, but not the Val moiety (the second sieve). Furthermore, another Thr binding pocket for Thr-adenylate hydrolysis was suggested on the editing domain.  相似文献   

9.
Faithful translation of the genetic code depends on accurate coupling of amino acids with cognate transfer RNAs (tRNAs) catalyzed by aminoacyl-tRNA synthetases. The fidelity of leucyl-tRNA synthetase (LeuRS) depends mainly on proofreading at the pre- and post-transfer levels. During the catalytic cycle, the tRNA CCA-tail shuttles between the synthetic and editing domains to accomplish the aminoacylation and editing reactions. Previously, we showed that the Y330D mutation of Escherichia coli LeuRS, which blocks the entry of the tRNA CCA-tail into the connective polypeptide 1domain, abolishes both tRNA-dependent pre- and post-transfer editing. In this study, we identified the counterpart substitutions, which constrain the tRNA acceptor stem binding within the synthetic active site. These mutations negatively impact the tRNA charging activity while retaining the capacity to activate the amino acid. Interestingly, the mutated LeuRSs exhibit increased global editing activity in the presence of a non-cognate amino acid. We used a reaction mimicking post-transfer editing to show that these mutations decrease post-transfer editing owing to reduced tRNA aminoacylation activity. This implied that the increased editing activity originates from tRNA-dependent pre-transfer editing. These results, together with our previous work, provide a comprehensive assessment of how intra-molecular translocation of the tRNA CCA-tail balances the aminoacylation and editing activities of LeuRS.  相似文献   

10.
The editing domains of the closely homologous leucyl, isoleucyl, and valyl-tRNA synthetases (LeuRS, IleRS, and ValRS, respectively) contribute to accurate aminoacylation, by hydrolyzing misformed non-cognate aminoacyl-tRNAs. The editing domain is inserted at the same point of the sequence in IleRS, ValRS, and the archaeal/eukaryal LeuRS, but at a distinct point in the bacterial LeuRS. Here, we showed that LeuRS from the archaeon Pyrococcus horikoshii has editing activity against the nearly cognate isoleucine. The conserved Asp332 in the editing domain is crucial for this activity. A deletion mutant lacking the C-terminal region has only negligible aminoacylation activity, but retains the full activity of adenylate synthesis and editing. We determined the crystal structure of this editing-active, truncated form of P.horikoshii LeuRS at 2.1 A resolution. The structure revealed that it has a novel editing domain orientation. The editing domain of P.horikoshii LeuRS is rotated by approximately 180 degrees (rotational state II), with the two-beta-stranded linker untwisted by a half-turn, as compared to those in IleRS and ValRS (rotational state I). This editing domain rotational state in the archaeal LeuRS is similar to that in the bacterial LeuRS. However, because of the insertion point difference, the orientation of the editing domain relative to the enzyme core in the archaeal LeuRS differs completely from that in the bacterial LeuRS. An insertion region specific to the archaeal/eukaryal LeuRS editing domains interacts with the enzyme core and stabilizes the unique orientation. Thus, we established that there are three types of editing domain orientations relative to the enzyme core, depending on the combination of the editing domain insertion point (i or ii) and the rotational state (I or II): [i, I] for IleRS and ValRS, [ii, II] for the bacterial LeuRS, and now [i, II] for the archaeal/eukaryal LeuRS.  相似文献   

11.
Aminoacylation and editing by leucyl-tRNA synthetases (LeuRS) require migration of the tRNA acceptor stem end between the canonical aminoacylation core and a separate domain called CP1 that is responsible for amino acid editing. The LeuRS CP1 domain can also support group I intron RNA splicing in the yeast mitochondria, although splicing-sensitive sites have been identified on the main body. The RDW peptide, a highly conserved peptide within an RDW-containing motif, resides near one of the beta-strand linkers that connects the main body to the CP1 domain. We hypothesized that the RDW peptide was important for interactions of one or more of the LeuRS-RNA complexes. An assortment of X-ray crystallography structures suggests that the RDW peptide is dynamic and forms unique sets of interactions with the aminoacylation and editing complexes. Mutational analysis identified specific sites within the RDW peptide that failed to support protein synthesis activity in complementation experiments. In vitro enzymatic investigations of mutations at Trp445, Arg449, and Arg451 in yeast mitochondrial LeuRS suggested that these sites within the RDW peptide are critical to the aminoacylation complex, but impacted amino acid editing activity to a much less extent. We propose that these highly conserved sites primarily influence productive tRNA interactions in the aminoacylation complex.  相似文献   

12.
Betha AK  Williams AM  Martinis SA 《Biochemistry》2007,46(21):6258-6267
Protein synthesis and its fidelity rely upon the aminoacyl-tRNA synthetases. Leucyl-tRNA synthetase (LeuRS), isoleucyl-tRNA synthetase (IleRS), and valyl-tRNA synthetase (ValRS) have evolved a discrete editing domain called CP1 that hydrolyzes the respective incorrectly misaminoacylated noncognate amino acids. Although active CP1 domain fragments have been isolated for IleRS and ValRS, previous reports suggested that the LeuRS CP1 domain required idiosyncratic adaptations to confer editing activity independent of the full-length enzyme. Herein, characterization of a series of rationally designed Escherichia coli LeuRS fragments showed that the beta-strands, which link the CP1 domain to the aminoacylation core of LeuRS, are required for editing of mischarged tRNALeu. Hydrolytic activity was also enhanced by inclusion of short flexible peptides that have been called "hinges" at the end of both LeuRS beta-strands. We propose that these long beta-strand extensions of the LeuRS CP1 domain interact specifically with the tRNA for post-transfer editing of misaminoacylated amino acids.  相似文献   

13.
14.
A conserved structural module following the KMSKS catalytic loop exhibits α-α-β-α topology in class Ia and Ib aminoacyl-tRNA synthetases. However, the function of this domain has received little attention. Here, we describe the effect this module has on the aminoacylation and editing capacities of leucyl-tRNA synthetases (LeuRSs) by characterizing the key residues from various species. Mutation of highly conserved basic residues on the third α-helix of this domain impairs the affinity of LeuRS for the anticodon stem of tRNALeu, which decreases both aminoacylation and editing activities. Two glycine residues on this α-helix contribute to flexibility, leucine activation, and editing of LeuRS from Escherichia coli (EcLeuRS). Acidic residues on the β-strand enhance the editing activity of EcLeuRS and sense the size of the tRNALeu D-loop. Incorporation of these residues stimulates the tRNA-dependent editing activity of the chimeric minimalist enzyme Mycoplasma mobile LeuRS fused to the connective polypeptide 1 editing domain and leucine-specific domain from EcLeuRS. Together, these results reveal the stem contact-fold to be a functional as well as a structural linker between the catalytic site and the tRNA binding domain. Sequence comparison of the EcLeuRS stem contact-fold domain with editing-deficient enzymes suggests that key residues of this module have evolved an adaptive strategy to follow the editing functions of LeuRS.  相似文献   

15.
Aminoacyl-tRNA synthetases often rely on a proofreading mechanism to clear mischarging errors before they can be incorporated into newly synthesized proteins. Leucyl-tRNA synthetase (LeuRS) houses a hydrolytic editing pocket in a domain that is distinct from its aminoacylation domain. Mischarged amino acids are transiently translocated ∼30 Å between active sites for editing by an unknown tRNA-dependent mechanism. A glycine within a flexible β-strand that links the aminoacylation and editing domains of LeuRS was determined to be important to tRNA translocation. The translocation-defective mutation also demonstrated that the editing site screens both correctly and incorrectly charged tRNAs prior to product release.  相似文献   

16.
Vu MT  Martinis SA 《Biochemistry》2007,46(17):5170-5176
Leucyl-tRNA synthetase (LeuRS) is a class I enzyme, which houses its aminoacylation active site in a canonical core that is defined by a Rossmann nucleotide binding fold. In addition, many LeuRSs bear a unique polypeptide insert comprised of about 50 amino acids located just upstream of the conserved KMSKS sequence. The role of this leucine-specific domain (LS-domain) remains undefined. We hypothesized that this domain may be important for substrate recognition in aminoacylation and/or amino acid editing. We carried out a series of deletion mutations and chimeric swaps within the leucine-specific domain of Escherichia coli. Our results support that the leucine-specific domain is critical for aminoacylation but not required for editing activity. Kinetic analysis determined that deletion of the LS-domain primarily impacts kcat. Because of its proximity to the aminoacylation active site, we propose that this domain interacts with the tRNA during amino acid activation and/or tRNA aminoacylation. Although the leucine-specific domain does not appear to be important to the editing complex, it remains possible that it aids the dynamic translocation process that moves tRNA from the aminoacylation to the editing complex.  相似文献   

17.
The yeast mitochondrial leucyl-tRNA synthetase (ymLeuRS) performs dual essential roles in group I intron splicing and protein synthesis. A specific LeuRS domain called CP1 is responsible for clearing noncognate amino acids that are misactivated during aminoacylation. The ymLeuRS CP1 domain also plays a critical role in splicing. Herein, the ymLeuRS CP1 domain was isolated from the full-length enzyme and was active in RNA splicing in vitro. Unlike its Escherichia coli LeuRS CP1 domain counterpart, it failed to significantly hydrolyze misaminoacylated tRNA(Leu). In addition and in stark contrast to the yeast domain, the editing-active E. coli LeuRS CP1 domain failed to recapitulate the splicing activity of the full-length E. coli enzyme. Although LeuRS-dependent splicing activity is rooted in an ancient adaptation for its aminoacylation activity, these results suggest that the ymLeuRS has functionally diverged to confer a robust splicing activity. This adaptation could have come at some expense to the protein's housekeeping role in aminoacylation and editing.  相似文献   

18.
Nordin BE  Schimmel P 《Biochemistry》2003,42(44):12989-12997
The genetic code depends on amino acid fine structure discrimination by aminoacyl-tRNA synthetases. For isoleucyl- (IleRS) and valyl-tRNA synthetases (ValRS), reactions that hydrolyze misactivated noncognate amino acids help to achieve high accuracy in aminoacylation. Two editing pathways contribute to aminoacylation fidelity: pretransfer and post-transfer. In pretransfer editing, the misactivated amino acid is hydrolyzed as an aminoacyl adenylate, while in post-transfer editing a misacylated tRNA is deacylated. Both reactions are dependent on a tRNA cofactor and require translocation to a site located approximately 30 A from the site of amino acid activation. Using a series of 3'-end modified tRNAs that are deficient in either aminoacylation, deacylation, or both, total editing (the sum of pre- and post-transfer editing) was shown to require both aminoacylation and deacylation activities. These and additional results with IleRS are consistent with a post-transfer deacylation event initiating formation of an editing-active enzyme/tRNA complex. In this state, the primed complex processively edits misactivated valyl-adenylate via the pretransfer route. Thus, misacylated tRNA is an obligatory intermediate for editing by either pathway.  相似文献   

19.
Leucyl-tRNA synthetases (LeuRSs) catalyze the linkage of leucine with tRNALeu. LeuRS contains a catalysis domain (aminoacylation) and a CP1 domain (editing). CP1 is inserted 35 Å from the aminoacylation domain. Aminoacylation and editing require CP1 to swing to the coordinated conformation. The neck between the CP1 domain and the aminoacylation domain is defined as the CP1 hairpin. The location of the CP1 hairpin suggests a crucial role in the CP1 swing and domain–domain interaction. Here, the CP1 hairpin of Homo sapiens cytoplasmic LeuRS (hcLeuRS) was deleted or substituted by those from other representative species. Lack of a CP1 hairpin led to complete loss of aminoacylation, amino acid activation, and tRNA binding; however, the mutants retained post-transfer editing. Only the CP1 hairpin from Saccharomyces cerevisiae LeuRS (ScLeuRS) could partly rescue the hcLeuRS functions. Further site-directed mutagenesis indicated that the flexibility of small residues and the charge of polar residues in the CP1 hairpin are crucial for the function of LeuRS.  相似文献   

20.
Isoleucyl-tRNA synthetase (IleRS) links tRNA(Ile) with not only its cognate isoleucine but also the nearly cognate valine. The CP1 domain of IleRS deacylates, or edits, the mischarged Val-tRNA(Ile). We determined the crystal structures of the Thermus thermophilus IleRS CP1 domain alone, and in its complex with valine at 1.8- and 2.0-A resolutions, respectively. In the complex structure, the Asp(328) residue, which was shown to be critical for the editing reaction against Val-tRNA(Ile) by a previous mutational analysis, recognizes the valine NH(3)(+) group. The valine side chain binding pocket is only large enough to accommodate valine, and the placement of an isoleucine model in this location revealed that the additional methylene group of isoleucine would clash with His(319). The H319A mutant of Escherichia coli IleRS reportedly deacylates the cognate Ile-tRNA(Ile) in addition to Val-tRNA(Ile), indicating that the valine-binding mode found in this study represents that in the Val-tRNA(Ile) editing reaction. Analyses of the Val-tRNA(Ile) editing activities of T. thermophilus IleRS mutants revealed the importance of Thr(228), Thr(229), Thr(230), and Asp(328), which are coordinated with water molecules in the present structure. The structural model for the Val-adenosine moiety of Val-tRNA(Ile) bound in the IleRS editing site revealed some interesting differences in the substrate binding and recognizing mechanisms between IleRS and T. thermophilus leucyl-tRNA synthetase. For example, the carbonyl oxygens of the amino acids are located opposite to each other, relative to the adenosine ribose ring, and are differently recognized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号