首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two experiments were done in Saxcil growth cabinets in order to investigate the effects of climatic factors and nitrogen nutrition on the growth, reproductive development and seed yield of soyabean cv. TK5. In the first, plants were grown to maturity in eight environments comprising all combinations of two short daylengths (11 h 40 min and 13 h 20 min), two day (27 and 33oC) and two night (19 and 24oC) temperatures. In the second, day temperature was kept at 33oC but the night temperature was varied (19 and 24oC) as was the mineral nitrogen supply (20 and 197 ppm N) to plants which were either inoculated or not with an effective single strain of Rhizobium. Taller, more branched, later flowering plants were produced in the longer daylength but seed yield was hardly affected because the components of yield did not all respond similarly. In the higher day temperature treatments seed yield per plant was reduced by half because all yield components were adversely affected - pods per plant by 34 %, mean seed dry weight by 24 % and seeds per pod just slightly. There was a marked effect of the higher night temperature which promoted early vegetative growth, induced early flowering and although the number of pods per plant was, overall, reduced by 48 %, seed yield per plant was little affected as mean seed dry weight was increased by 37 % and the number of seeds per pod was also increased slightly. Prior to flowering, nodulated plants obtained about two thirds of their total nitrogen requirement via direct uptake and one third through the symbiotic system. Vegetative dry weight and plant nitrogen content were increased by the higher mineral nitrogen level and, although height was slightly diminished, more branches were produced. Seed yield, however, was only slightly increased. These experiments have shown that night temperature is an environmental factor of major importance for the growth of this soyabean cultivar. They have provided, also, a more rational basis for interpreting seasonal variations in growth and seed yield of soyabean in the tropics where, clearly, day and night temperature effects can override those of daylength and nitrogen nutrition.  相似文献   

2.
Chickpeas were grown with or without nitrate nitrogen feeding, or nodulated with Rhizobium leguminosarum. High [40°C day, 25°C night (HT)] and moderate [25°C day, 177°C night (LT)] temperature regimes were employed during growth. Growth rates, photosynthetic capacity and enzymes of carbon and nitrogen metabolism were monitored to assess the acclimatory capacity of the chickpea. Initial growth rates were stimulated by high temperatures, particularly in nitrate-fed and nodulated plants. Older HT plants had fewer laterals, smaller leaves, and fewer flowers were produced than in LT plants. There was some indication of an acclimation of photosynthesis to high temperatures and this was independent of nitrogen supply. Rubisco activity was increased by high growth temperatures. However, HT plants also had higher transpiration rates and lower water use efficiency than LT plants both in respective growth conditions and when compared in a common condition. High temperatures reduced shoot nitrate reductase activity but had little effect on root activity, which was the same if not greater than activity in LT roots. The amino acid, asparagine, was found at high concentrations in all treatments. Concentrations were maintained throughout growth in HT plants but declined with age in LT plants.  相似文献   

3.
Two pea (Pisum sativum L.) cultivars and a kidney bean (Phaseolus vulgaris L.) cultivars were grown in water cultures at different diurnal temperatures (15, 20, 24, 27, 30°C) or at 10°C night temperature combined with various day temperatures (20, 24, 27, 33 or 35°C) in the root medium. The inoculated plants were, more sensitive to the extreme temperatures than the plants supplied with combined nitrogen (KNO3). The middle-European pea cv. Violetta was adapted to somewhat higher root temperatures than the northern one cv. Torsdag II, the latter showing better growth at lower temperatures, when the plants were inoculated with the same Finnish Rhizobinm strain (HA1). Especially at optimum day temperatures the nitrogen fixation and consequently the dry weights of the inoculated plants were greatly increased when the night temperature was lowered. The optimum temperature for the growth of free-living Rhizobium strains (HA1 and H43) for peus was found to be 25°C and that of a strain (P103) for beans somewhat higher. Effective nitrogen fixation by nodulated legumes without a supply of combined nitrogen is achieved only when the optimum temperature range for root function is very close to the optimum for the rhizobia.  相似文献   

4.
When grown in an environment known not to favour the productionof large seed yields (warm days-cool nights; 33–19 °C),non-nodulated plants of cowpea cv. K 2809 supplied with abundantinorganic nitrogen not only assimilated N more rapidly but alsoproduced larger total dry weights and seed yields than plantsdependent on Rhizobium CB 756. Remobilization of nitrogen fromvegetative organs started sooner in nitrate-dependent than innodulated plants and contributed 69 and 47%, respectively, tothe N content of mature fruits. Plants dependent on nodulesrelied more on current assimilation of nitrogen during the laterstages of fruit growth than those given inorganic N; they alsoutilized a larger proportion of shoot-derived photosynthatesin growth of organs below ground and in the respiratory activitiesof both nodules and supporting roots. Although nitrate-dependentplants developed larger shoot systems than those relying onnodules, the distribution of carbon and nitrogen to leaves decreasedmarkedly as branches extended during early reproductive growth.The respiration of roots on nodulated plants became more efficientduring the later stages of fruit growth whereas the populationof secondary nodules present at this stage of development respiredless efficiently (mg C consumed per mg N assimilated) than theprimary nodules present earlier during development.  相似文献   

5.
Plants of soyabean, cowpea, and white clover were grown singlyin pots in Saxcil growth cabinets at 23/18 °C, 30/24 °C,and 20/15 °C, respectively, until seed maturation or for85 d (white clover). Two populations were produced within eachspecies: one population effectively nodulated and wholly dependentfor nitrogen on fixation in the root nodules, and a second populationcompletely lacking nodules but receiving abundant nitrate nitrogen.In each species, the two populations were compared in termsof rate of gross photosynthesis, rate of shoot respiration,and rate of root respiration. Source of nitrogen had littleor no effect on rate of photosynthesis or shoot respiration.In contrast, the rate of respiration of the nodulated rootsof plants fixing their own nitrogen was greater, sometimes two-foldgreater, than that of equivalent plants lacking nodules andutilizing nitrate nitrogen. This superiority in terms of rateof root respiration was generally confined to the period ofintense nitrogen fixation. An analysis of the magnitude of thisrespiratory burden in terms of daily photosynthesis indicatesthat, in all three legumes, plants fixing their own nitrogenrespire 11–13% more of their fixed carbon each day thanequivalent plants lacking nodules and utilizing nitrate nitrogen.  相似文献   

6.
To study a possible adaptation of the symbiosis between white clover (Trifolium repens L.) and Rhizobium leguminosarum biovar trifolii with regard to light and temperature at northern latitudes, local seed populations of white clover and isolates of R. leguminosarum biovar trifolii from 3 different latitudes in Norway, 58°48'N, 67°20'N and 69°22'N, were used. The commercial cultivar Undrom was used as a reference plant. The experiments were done at 18 and 9°C under controlled conditions in a phytotron during the natural growing season at 69° 39'N. Growth of the plants was evaluated by number and size of leaves, dry matter production and total N-content. At 18°C the white clover plants were harvested twice while at 9°C there was only one growth period. The results from first harvest at 18°C and total growth at 9°C, showed that white clover populations from northern Norway had a lower growth potential than the population from the south and cv. Undrom. This difference was not apparent in the second growth period at 18°C. Growth of the plants from seeds to first harvest was enhanced by mineral nitrogen compared to plants dependent on Rhizobium only. However, after a second growth period dry weight and total nitrogen content of the plants with nitrogen fixation were comparable to the plants receiving mineral nitrogen. Statistical analysis showed that the most important factor for the variation in dry matter production was the plant population. Within the populations at 9°C and at first harvest at 18°C, there were no significant differences in dry matter production with different Rhizobium inoculum. In the second growth period at 18°C, different inoculum gave significantly different amount of dry matter within a population. The results showed a significant interaction between plant population and Rhizobium inoculum, and the results indicated that plants from the north gave higher yield when nodulated by Rhizobium from the north than from the south.  相似文献   

7.
U. Benecke 《Plant and Soil》1970,33(1-3):30-48
Summary InAlnus viridis nodule growth relative to plant growth was inversely related to the quantity of nitrate added to nutrient solutions. Nodulated plants showed maximum growth when grown independently of supplied nitrogen and made better growth in its absence than unnodulated plants at any level of added nitrogen. Low levels of nitrate caused a depression of growth of nodulated plants, apparently by suppressing both nitrogen fixation and nodule growth. Nodules in nitrogen-free sand culture fixed atmospheric nitrogen at a rate of 6.6 mg/day/g nodule. Phosphorus deficiency was induced by low levels of phosphate and resulted in small plants with dark-green foliage. Root and nodule growth as a percentage of total plant growth and the percentage of total accumulated plant nitrogen below ground were greater at a root temperature of 11°C than 21°C. Thus at low root temperature processes other than nitrogen fixation were limiting to plant growth. Excised nodules were exposed to an N 2 15 -enriched atmosphere. A positive correlation between rate of nitrogen fixation and temperature was obtained, with optimum fixation occurring at about 20°C. It was shown that in spite of decreasing mean temperatures with increase in altitude, rate of nitrogen fixation by nodules of plants growing in the field increased with increase in altitude. This latter trend was deduced to be a reflection of the extent to which the field sites were nitrogen deficient in relation to climatically possible growth.  相似文献   

8.
Factorial combinations of four photoperiods (10 h, 11 h 40 min,13 h 20 min and 15 h) and three night temperatures (14, 19 and24 °C) combined with a single day temperature (30 °C)were imposed on nodulated plants of 11 cowpea accessions [Vignaunguiculata (L) Walp.] grown in pots in growth cabinets. Thetimes to first appearance of flower buds, open flowers and maturepods were recorded. Linear relationships were established betweenthe reciprocal of the times taken to flower and both mean diurnaltemperature and photoperiod. When the equations describing thesetwo responses are solved, the time to flower in any given photothermalregime is predicted by whichever solution calls for the greaterdelay in flowering. Thus in different circumstances floweringis controlled exclusively by either mean temperature or photoperiod.The value of the critical photoperiod is temperature-dependentand a further equation, derived from the first two, predictsthis relationship. Considered together as a quantitative modelthese relationships suggest simple field methods for screeninggenotypes to determine photo-thermal response surfaces. Vigna unguiculata (L) Walp., cowpea, reproductive development, photoperiod, temperature, germplasm  相似文献   

9.
The growth of white clover (Trifolium repens L.) in conditionstypical of April in Southern England (8 °C day/4 °Cnight, 12 h photoperiod of 90 J m–2 s–1 visibleradiation) was extremely slow, whether the plants were dependentfor nitrogen on fixation by their root nodules or were suppliedwith abundant nitrate; although growth was slower in the nodulatedplants. The reasons for slow growth were a large root: shootratio and a small leaf area, particularly in the nodulated plants,and a low photosynthetic rate in all plants. The probable effectsof these characteristics on the growth of white clover withgrasses in mixed pastures are discussed. Trifolium repens L, white clover, low temperature, leaf area, photosynthetic rate, nitrogen supply, growth  相似文献   

10.
Elevated temperature and water deficit are the major abiotic factors restricting plant growth. While in nature these two stresses often occur at the same time; little is known about their combined effect on plants. Therefore, the main objective of the current study was to observe the effect of these two stresses on phenology, dry matter and seed yield in soybean. Two soybean genotypes JS 97-52 and EC 538828 were grown under green-house conditions which were maintained at different day/night temperatures of 30/22, 34/24, 38/26 and 42/28 °C with an average temperature of 26, 29, 32 and 35 °C, respectively. At each temperature, pots were divided into three sets, one set was unstressed while second and third set were subjected to water stress at vegetative and reproductive stage, respectively. As compared to 30/22 °C increase in temperature to 34/24 °C caused a marginal decline in leaf area, seed weight, total biomass, pods/pl, seeds/pl, harvest index, seeds/pod and 100 seed weight. The decline was of higher magnitude at 38/26 and 42/28 °C. Water stress imposed at two growth stages also significantly affected dry matter and yield. The highest average seed yield (10.9 g/pl) was observed at 30/22 °C, which was significantly reduced by 19, 42 and 64% at 34/24, 38/24 and 42/28 °C, respectively. Similarly, compared to unstressed plants (11.3 g/pl) there was 28 and 74% reduction in yield in plants stressed at vegetative and reproductive stage. Thus, both temperature and water stress affected the growth and yield but the effect was more severe when water stress was imposed at higher temperatures. JS 97-52 was more affected by temperature and water stress as compared to EC 538828. Though drought is the only abiotic factor that is known to affect the water status of plants, but the severity of the effect is highly dependent on prevailing temperature.  相似文献   

11.
The effect of nitrogen source (N(2) or nitrate) on carbon assimilation by photosynthesis and on carbon partitioning between shoots and roots was investigated in pea (Pisum sativum L. 'Baccara') plants at different growth stages using (13)C labelling. Plants were grown in the greenhouse on different occasions in 1999 and 2000. Atmospheric [CO(2)] and growth conditions were varied to alter the rate of photosynthesis. Carbon allocation to nodulated roots was unaffected by N source. At the beginning of the vegetative period, nodulated roots had priority for assimilates over shoots; this priority decreased during later stages and became identical to that of the shoot during seed filling. Carbon allocation to nodulated roots was always limited by competition with shoots, and could be predicted for each phenological stage: during vegetative and flowering stages a single, negative exponential relationship was established between sink intensity (percentage of C allocated to the nodulated root per unit biomass) and net photosynthesis. At seed filling, the amount of carbon allocated to the nodulated root was directly related to net photosynthesis. Respiration of nodulated roots accounted for more than 60 % of carbon allocated to them during growth. Only at flowering was respiration affected by N supply: it was significantly higher for strictly N(2)-fixing plants (83 %) than for plants fed with nitrate (71 %). At the vegetative stage, the increase in carbon in nodulated root biomass was probably limited by respiration losses.  相似文献   

12.
The production of Tsr factor by Rhizobium leguminosarum bv. viciae was influenced by low temperature (10°C) In the presence of seed exudate collected at 10°C and 25°C or naringenin (10fuM). Root exudate collected at 25°C and naringenin induced Tsr factor in R. leguminosarum causing thick and short root phenotype and root hair curling and deformation of host root. Root exudate collected at 10°C also induced root hair curling but Tsr activity was low. low temperature grown plants had poor nodulation, nitrogen fixation, nitrogen content and total blomass as compared to plants grown at 25°C. Rhizospheric application of naringenin partially alleviated the deleterious effect of low temperature on nodulation status and nodule efficiency.  相似文献   

13.
The effects of climatic factors on the growth, reproductive development and seed yield of cowpea (cv. K 2809) were investigated in controlled environment cabinets. Plants were grown to maturity in eight environments comprising all combinations of two day lengths (11 h 40 min and 13 h 20 min), two day (27 and 33 oC) and two night (19 and 24 oC) temperatures. The plants were nodulated (Rhizobium strain CB 756) and received 197 ppm N throughout growth. Treatments changed the time to the appearance of first flowers by a maximum of 6 days but the later-flowering plants more than doubled their dry weight during this period, so that effects on plant form and, ultimately, seed production were considerable. Warm nights (24 oC) not only hastened the onset of flowering but also enhanced dry matter production during the pre-flowering period; they did not extend the total growing period. Warm days (33 oC) did not enhance dry matter production but shortened the duration of the growing period by an average of 21 days (20%). Variation in final seed yield was mainly due to differences in the number of pods borne on branches. Warm days markedly decreased the number of pods per plant (an overall average reduction of 49%) as did warm nights in conjunction with the long (13 h 20) daylength. The number of seeds per pod was effected only by daylength (8.3 and 7.6 seeds in the long and short daylengths, respectively). Mean seed weight was decreased by 19% in warm as compared to cool nights but was increased by 18% in warm as compared to cool days. These responses are compared with those obtained with soyabean cv. TK5 in a previous experiment and are shown, in general, to be similar.  相似文献   

14.
Soyabean, cowpea, and white clover, inoculated with effectiverhizobia, were grown singly with a standard mineral nutritionand light regime in controlled environments until seed maturation(in soyabean and cowpea) or late vegetative growth (white clover).Day/night temperature regimes were 23/18, 30/24, and 20/15 °Cin soyabean, cowpea, and white clover, respectively. The respiratorylosses of CO2 from the nodulated root systems were studied inrelation to the concurrent rate of fixation of atmospheric nitrogen.Despite differences in development, the effectiveness of thesymbioses, and the temperature of growth, all three legumesexhibited similar respiratory losses from nodulated roots perunit of nitrogen fixed. During intense nitrogen fixation, theaverage respiratory losses for the three legumes varied between6·3 and 6·8 mg C mg–1 N; within each species,the losses varied more widely at different stages of development.These respiratory burdens reflect the total cost to the plantof the nodule/nitrogen fixation syndrome including the subtendingroots. The results are discussed in relation to the respiratoryeffluxes from nodules and roots, and to biochemical investigationsof the costs of nitrogen fixation.  相似文献   

15.
The temperate forage legume sainfoin (Onobrychis viciifolia) is readly nodulated by rhizobia isolated from arctic legumes (Astragalus and Oxytropis species). We have investigated the effects of low temperatures on nitrogenase activity in sainfoin nodulated by arctic and temperate (homologous) rhizobia. At low temperatures, nitrogenase activity of arctic rhizobia measured either with detached nodules or with whole plants, was higher than that of temperate rhizobia. At 5°C and 10°C, nitrogenase activity values of arctic rhizobia represented 12% and 33% of those measured at 20°C, while lower values of 3.7% and 22.4% were observed with temperate rhizobia. This cold adaptation was also reflected on bacterial growth where, at 5°C and 10°C, arctic rhizobia showed a shorter doubling time and synthesized more protein than temperate rhizobia.  相似文献   

16.
The effect of soybean mosaic virus (SMV) infection on symptom severity, yield, seed mottling and seed transmission in soybean in relation to the growth stage at infection and subsequent temperature was investigated using a susceptible (Harosoy), a moderately resistant (Evans) and a highly resistant (Merit) cultivar. Disease symptoms were more severe with early infection. A greater reduction in plant growth and seed yield, and higher percentages of mottled seeds and seed transmission of SMV also occurred with early infection. Virus titer was higher in younger plants than in older ones and also higher in plants infected at the ealier stage than at the later stage of growth. Merit (a highly resistant cultivar previously reported to be immune to seed mottling) inoculated at the early stage of plant growth resulted in infection and production of some mottled seeds. Temperature affected all parameters investigated. The effect of temperature was greater in the susceptible cultivar than in the resistant one. The optimal temperature for symptom severity, yield, seed mottling and seed transmission was 20 °C. Virus titer was highest at 30 °C in all three cultivars. Maturity of susceptible cultivar was delayed by infection.  相似文献   

17.
The reproductive phenology of Chondrus ocellatus and the effects of temperature and light on its growth were examined in Cheongsapo near Busan, Korea, from September 1994 to August 1995. The vegetative plants dominated over the year, with a peak occurrence in January. Gameto- and tetrasporophytes were most abundant in November and August. All vegetative and reproductive plants had a peak both in length and weight in October, when seawater temperature was highest (24°C). In laboratory culture, the maximum relative growth rate (RGR) of 2.94% day−1 was obtained at 20°C and 100 μmol photons m−2 s−1, whereas the lowest value was recorded at 25°C and 100 μmol photons m−2 s−1 in a 12: 12 h LD photoperiod regime. Among the three photoperiod regimes (8:16 h, 12:12 h, 16:8 h LD) tested, there was evidence of a higher RGR in the 12:12 h LD cycle. This result suggests that the growth and reproduction of C. ocellatus are correlated with the seawater temperature based on laboratory culture and field observations.  相似文献   

18.
The growth and development of carrot seeds cv. Chantenay Red-cored Royal Chantenay at day/night temperatures of 20/10°C, 25/15°C and 30/20°C and subsequent seed performance were examined in 1984 and 1985. An increase in temperature from 20/10°C to 30/20°C reduced mean weight per seed by 20% in 1984 and by 13% in 1985. There were no effects of temperature on endosperm + embryo weight, or on endosperm cell number but the weight of pericarp decreased with an increase in temperature. Seeds grown at the highest temperature had the largest embryos and the highest nitrogen, DNA and rRNA content; they germinated and emerged earlier, and gave higher percentage seedling emergence than those grown at the lowest temperature. There were no effects of temperature during seed growth on the rate of imbibition of water by seeds during the germination process.  相似文献   

19.
Cotton seed (Gossypium hirsutum L. cv. “Stoneville 825”), treated with 0, 0.2, 1.0, and 2.0 g active ingredient (a.i.) mepiquat chloride (MC) kg?1, was evaluated for the effect of MC on early plant growth. Emergence rate and total emergence of MC-treated seed and control were similar regardless of germination temperature. However, the number of leaves and squares and the dry weight of leaves, stems, and roots for hydroponically grown cotton plants were significantly lower at lower germination temperatures (15°C for 3 day/30°C for 1 day and 15°C for 4 days) than at higher germination temperatures (30°C for 4 days and 30°C for 3 days/15°C for 1 day). All MC treatments significantly decreased the number of nodes, leaves, and squares, as well as dry weight of leaves, stems, and roots, as compared to control plants at 28 days after emergence. MC seed treatments also significantly reduced plant height and total leaf area compared to controls. Water-use efficiency (WUE) was significantly lower for the 1.0 g a.i. MC treatment than for control plants. In general, the highest rate of MC seed treatment resulted in greater concentrations of calcium, phosphorus, and nitrogen in plant leaves and stems and also in greater concentrations of magnesium, phosphorus, and nitrogen in roots than in controls.  相似文献   

20.
Continuing increases in atmospheric carbon dioxide concentration (CO2) will likely be accompanied by global warming. Our research objectives were (a) to determine the effects of season‐long exposure to daytime maximum/nighttime minimum temperatures of 32/22, 36/26, 40/30 and 44/34°C at ambient (350 μmol mol?1) and elevated (700 μmol mol?1) CO2 on reproductive processes and yield of peanut, and (b) to evaluate whether the higher photosynthetic rates and vegetative growth at elevated CO2 will negate the detrimental effects of high temperature on reproductive processes and yield. Doubling of CO2 increased leaf photosynthesis and seed yield by 27% and 30%, respectively, averaged across all temperatures. There were no effects of elevated CO2 on pollen viability, seed‐set, seed number per pod, seed size, harvest index or shelling percentage. At ambient CO2, seed yield decreased progressively by 14%, 59% and 90% as temperature increased from 32/22 to 36/26, 40/30 and 44/34°C, respectively. Similar percentage decreases in seed yield occurred at temperatures above 32/22°C at elevated CO2 despite greater photosynthesis and vegetative growth. Decreased seed yields at high temperature were a result of lower seed‐set due to poor pollen viability, and smaller seed size due to decreased seed growth rates and decreased shelling percentages. Seed harvest index decreased from 0.41 to 0.05 as temperature increased from 32/22 to 44/34°C under both ambient and elevated CO2. We conclude that there are no beneficial interactions between elevated CO2 and temperature, and that seed yield of peanut will decrease under future warmer climates, particularly in regions where present temperatures are near or above optimum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号