首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Obesity is characterized by an excess storage of body fat and promotes the risk for complex disease traits such as diabetes mellitus and cardiovascular diseases. The obesity prevalence in Europe is rising and meanwhile ranges from 10 to 20% in men and 15–25% in women. Body fat accumulation occurs in states of positive energy balance and is favored by interactions among environmental, psychosocial and genetic factors. Energy balance is regulated by a complex neuronal network of anorexigenic and orexigenic neurons which integrates peripheral and central hormonal and neuronal signals relaying information on the metabolic status of organs and tissues in the body. A key component of this network is the central melanocortin pathway in the hypothalamus that elicits metabolic and behavioral adaptations for the maintenance of energy homeostasis. Genetic defects in this system cause obesity in mice and humans. In this review we emphasize mouse models with spontaneous natural mutations as well as targeted mutations that contributed to our understanding of the central melanocortin system function in the control of energy balance.  相似文献   

2.
Irani BG  Haskell-Luevano C 《Peptides》2005,26(10):1788-1799
The process of energy homeostasis is a highly regulated process involving interacting signals between a variety of anorexigenic and orexigenic peptides, proteins and signaling molecules. The melanocortin system is an important component of this complex regulatory network. Involvement of the melanocortin pathway in the control of food intake and body weight regulation has been studied extensively in the past two decades. Previous studies that involve central administration of melanocortin molecules and examination of molecules that effect food intake in melanocortin knockout (KO) mice (MC3R, MC4R, POMC, AGRP and NPY) have been examined. In this review, we have summarized feeding studies that have resulted in the recognition of the melanocortin system as a major contributor to the complex neuroendocrine system regulating energy homeostasis.  相似文献   

3.
Ghrelin, the endogenous growth hormone secretagogue, has an important role in metabolic homeostasis. It exists in two major molecular forms: acylated (AG) and unacylated (UAG). Many studies suggest different roles for these two forms of ghrelin in energy balance regulation. In the present study, we compared the effects of acute intracerebroventricular administration of AG, UAG and their combination (AG+UAG) to young adult Wistar rats on food intake and central melanocortin system modulation. Although UAG did not affect food intake it significantly increased the number of c-Fos positive neurons in the arcuate (ARC), paraventricular (PVN) and solitary tract (NTS) nuclei. In contrast, UAG suppressed AG-induced neuronal activity in PVN and NTS. Central UAG also modulated hypothalamic expression of Mc4r and Bmp8b, which were increased and Mc3r, Pomc, Agrp and Ucp2, which were decreased. Finally, UAG, AG and combination treatments caused activation of c-Fos in POMC expressing neurons in the arcuate, substantiating a physiologic effect of these peptides on the central melanocortin system. Together, these results demonstrate that UAG can act directly to increase neuronal activity in the hypothalamus and is able to counteract AG-induced neuronal activity in the PVN and NTS. UAG also modulates expression of members of the melanocortin signaling system in the hypothalamus. In the absence of an effect on energy intake, these findings indicate that UAG could affect energy homeostasis by modulation of the central melanocortin system.  相似文献   

4.
Regulation of thermogenesis by the central melanocortin system   总被引:1,自引:0,他引:1  
Fan W  Voss-Andreae A  Cao WH  Morrison SF 《Peptides》2005,26(10):1800-1813
Adaptive thermogenesis represents one of the important homeostatic mechanisms by which the body maintains appropriate levels of stored energy and its core temperature. Dysregulation of adaptive thermogenesis promotes obesity. The central melanocortin system, in particular the melanocortin 4 receptor (MC4R) signaling pathway, influences the regulation of every aspect of energy balance, including thermogenesis, and plays a critical role in energy homeostasis in both rodent and man. This review will outline our current understanding of adaptive thermogenesis, focusing on the role of the central melanocortin pathway in the regulation of thermogenesis.  相似文献   

5.
Arcuate nucleus (ARC) pro-opiomelanocortin (POMC) neurons are essential regulators of food intake, energy expenditure, and glucose homeostasis. POMC neurons integrate several key metabolic signals that include neurotransmitters and hormones. The change in activity of POMC neurons is relayed to melanocortin receptors in distinct regions of the central nervous system. This review will summarize the role of leptin and serotonin receptors in regulating the activity of POMC neurons and provide a model in which different melanocortin pathways regulate energy and glucose homeostasis.  相似文献   

6.
Zhou L  Williams T  Lachey JL  Kishi T  Cowley MA  Heisler LK 《Peptides》2005,26(10):1728-1732
Multiple lines of research provide compelling support for an important role for central serotonergic (5-hydroxytryptamine, 5-HT) and melanocortin pathways in the regulation of food intake and body weight. In this brief review, we outline data supporting a model in which serotonergic pathways affect energy balance, in part, by converging upon central melanocortin systems to stimulate the release of the endogenous melanocortin agonist, alpha-melanocyte stimulating hormone (alpha-MSH). Further, we review the neuroanatomical mapping of a downstream target of alpha-MSH, the melanocortin 4 receptor (MC4R), in the rodent brain. We propose that downstream activation of MC4R-expressing neurons substantially contributes to serotonin's effects on energy homeostasis.  相似文献   

7.
Martin NM  Smith KL  Bloom SR  Small CJ 《Peptides》2006,27(2):333-339
Recent studies of transgenic mice and humans have provided compelling evidence for the importance of the hypothalamic melanocortin system in the regulation of energy balance. Energy homeostasis is a balance between food intake (energy input) and energy expenditure. The melanocortin system regulates feeding via effects of the endogenous agonist, alpha-melanocyte stimulating hormone (alpha-MSH) and the endogenous antagonist agouti-related protein (AGRP) on melanocortin 3 and 4 receptors (MC3-Rs and MC4-Rs). It has been demonstrated that the melanocortin system interacts with the hypothalamo-pituitary-thyroid (HPT) axis. Thyroid hormones influence metabolism and hence energy expenditure. Therefore, an interaction between the HPT axis and the melanocortin system would allow control of both sides of the energy balance equation, by the regulation of both energy input and energy expenditure. Here we will discuss the evidence demonstrating interactions between the melanocortin system and the HPT axis.  相似文献   

8.
The anorexia-cachexia syndrome is a debilitating clinical condition characterizing the course of chronic diseases, which heavily impacts on patients' morbidity and quality of life, ultimately accelerating death. The pathogenesis is multifactorial and reflects the complexity and redundancy of the mechanisms controlling energy homeostasis under physiological conditions. Accumulating evidence indicates that, during disease, disturbances of the hypothalamic pathways controlling energy homeostasis occur, leading to profound metabolic changes in peripheral tissues. In particular, the hypothalamic melanocortin system does not respond appropriately to peripheral inputs, and its activity is diverted largely toward the promotion of catabolic stimuli (i.e., reduced energy intake, increased energy expenditure, possibly increased muscle proteolysis, and adipose tissue loss). Hypothalamic proinflammatory cytokines and serotonin, among other factors, are key in triggering hypothalamic resistance. These catabolic effects represent the central response to peripheral challenges (i.e., growing tumor, renal, cardiac failure, disrupted hepatic metabolism) that are likely sensed by the brain through the vagus nerve. Also, disease-induced changes in fatty acid oxidation within hypothalamic neurons may contribute to the dysfunction of the hypothalamic melanocortin system. Ultimately, sympathetic outflow mediates, at least in part, the metabolic changes in peripheral tissues. Other factors are likely involved in the pathogenesis of the anorexia-cachexia syndrome, and their role is currently being elucidated. However, available evidence shows that the constellation of symptoms characterizing this syndrome should be considered, at least in part, as different phenotypes of common neurochemical/metabolic alterations in the presence of a chronic inflammatory state.  相似文献   

9.
Murphy KG  Bloom SR 《Peptides》2005,26(10):1744-1752
The melanocortins are peptide products of post-translational processing of the pro-opiomelanocortin precursor protein. Melanocortin-expressing neurons are found in the arcuate nucleus of the hypothalamus and the nucleus of the solitary tract in the brain stem. The central melanocortin system is involved in a number of biological functions, including regulation of energy homeostasis. Hypothalamic and brain stem circuits interpret and integrate a number of peripheral inputs to provide a coordinated central response. This review examines the effect of these peripheral signals on central melanocortin signaling.  相似文献   

10.
The neural pathways through which central serotonergic systems regulate food intake and body weight remain to be fully elucidated. We report that serotonin, via action at serotonin1B receptors (5-HT1BRs), modulates the endogenous release of both agonists and antagonists of the melanocortin receptors, which are a core component of the central circuitry controlling body weight homeostasis. We also show that serotonin-induced hypophagia requires downstream activation of melanocortin 4, but not melanocortin 3, receptors. These results identify a primary mechanism underlying the serotonergic regulation of energy balance and provide an example of a centrally derived signal that reciprocally regulates melanocortin receptor agonists and antagonists in a similar manner to peripheral adiposity signals.  相似文献   

11.
Sadaf Farooqi 《Mammalian genome》2014,25(9-10):377-383
Body weight is a highly heritable trait across species. In humans, genetic variation plays a major role in determining the inter-individual differences in susceptibility or resistance to environmental factors which influence energy intake and expenditure. In this review, I discuss how genetic studies have contributed to our understanding of the central pathways that govern energy homeostasis. The study of individuals harboring highly penetrant genetic variants that disrupt the leptin–melanocortin pathway has informed our understanding of the physiological pathways involved in mammalian energy homeostasis.  相似文献   

12.
Boswell T  Takeuchi S 《Peptides》2005,26(10):1733-1743
The mammalian melanocortin system has been established as a crucial regulatory component in an extraordinarily diverse number of physiological functions. In contrast, comparatively little is known about the avian melanocortin system: interest in the physiological role of alpha-MSH in birds has been limited by the fact that birds lack the intermediate lobe of the pituitary, the main source of circulating alpha-MSH in most vertebrates. Recently, however, the main avian melanocortin system genes, including POMC, AGRP, and all the melanocortin receptors, have been cloned and their physiological roles are the beginning to be elucidated. This review outlines our improved understanding of the avian melanocortin system, particularly in relation to two of the most widely studied physiological functions of the melanocortin system in mammals, the regulation of pigmentation and energy homeostasis. The data reviewed here indicate that the melanocortin system has been strongly conserved during vertebrate evolution and that alpha-MSH is produced locally in birds to act as an autocrine/paracrine hormone.  相似文献   

13.
Endogenous modulators of the central melanocortin system, such as the agouti-related protein (AgRP), should hold a pivotal position in the regulation of energy intake and expenditure. Despite this, AgRP-deficient mice were recently reported to exhibit normal food intake, body weight gain, and energy expenditure. Here we demonstrate that 2- to 3-month-old Agrp null mice do in fact exhibit subtle changes in response to feeding challenges (fasting and MCR agonists) but, of more significance and magnitude, exhibit reduced body weight and adiposity after 6 months of age. This age-dependent lean phenotype is correlated with increased metabolic rate, body temperature, and locomotor activity and increased circulating thyroid hormone (T4 and T3) and BAT UCP-1 expression. These results provide further proof of the importance of the AgRP neuronal system in the regulation of energy homeostasis.  相似文献   

14.
A little more than a decade ago, the molecular basis of the lipostat was largely unknown. At that time, many laboratories were at work attempting to clone the genes encoding the obesity, diabetes, fatty, tubby and agouti loci, with the hope that identification of these obesity genes would help shed light on the process of energy homeostasis, appetite and energy expenditure. Characterization of obesity and diabetes elucidated the nature of the adipostatic hormone leptin and its receptor, respectively, while cloning of the agouti gene eventually led to the identification and characterization of one of the key neural systems upon which leptin acts to regulate intake and expenditure. In this review, we describe the neural circuitry known as the central melanocortin system and discuss the current understanding of its role in feeding and other processes involved in energy homeostasis.  相似文献   

15.
CNS melanocortin system involvement in the regulation of food intake   总被引:4,自引:0,他引:4  
Accumulating evidence indicates that the central melanocortin (MC) system plays a key role in the regulation of food intake and energy balance. This evidence includes findings that either spontaneous genetic mutations or targeted gene deletions that impair melanocortin signaling cause disrupted food intake and body-weight control. In addition, expression of the mRNA that encodes the endogenous agonists and antagonists for CNS melanocortin receptors is regulated by changes in energy balance and body-adiposity signals. Finally, administration of both natural and synthetic ligands to MC receptors produces changes in food intake. The data collectively suggest a critical role for melanocortin signaling in the control of energy balance.  相似文献   

16.
Obesity is a global health issue, as it is associated with increased risk of developing chronic conditions associated with disorders of metabolism such as type 2 diabetes and cardiovascular disease. A better understanding of how excessive fat accumulation develops and causes diseases of the metabolic syndrome is urgently needed. The hypothalamic melanocortin system is an important point of convergence connecting signals of metabolic status with the neural circuitry that governs appetite and the autonomic and neuroendocrine system controling metabolism. This system has a critical role in the defense of body weight and maintenance of homeostasis. Two neural melanocortin receptors, melanocortin 3 and 4 receptors (MC3R and MC4R), play crucial roles in the regulation of energy balance. Mutations in the MC4R gene are the most common cause of monogenic obesity in humans, and a large literature indicates a role in regulating both energy intake through the control of satiety and energy expenditure. In contrast, MC3Rs have a more subtle role in energy homeostasis. Results from our lab indicate an important role for MC3Rs in synchronizing rhythms in foraging behavior with caloric cues and maintaining metabolic homeostasis during periods of nutrient scarcity. However, while deletion of the Mc3r gene in mice alters nutrient partitioning to favor accumulation of fat mass no obvious role for MC3R haploinsufficiency in human obesity has been reported. This article is part of a Special Issue entitled: Modulation of Adipose Tissue in Health and Disease.  相似文献   

17.
Since the discovery of leptin and the central melanocortin circuit, electrophysiological studies have played a major role in elucidating mechanisms underlying energy homeostasis. This review highlights the contribution of findings made by electrophysiological measurements to the current understanding of hypothalamic neuronal networks involved in energy homeostasis with a specific focus on the arcuate–paraventricular nucleus circuit.  相似文献   

18.
Energy homeostasis is a complex physiological function coordinated at multiple levels. The issue of genetic regulation of nutrition and metabolism is attracting increasing interest and new energy homeostasis-regulatory genes are continuously identified. Among these genes, vgf is gaining increasing interest following two observations: (1) VGF-/- mice have a lean and hypermetabolic phenotype; (2) the first VGF-derived peptide involved in energy homeostasis, named TLQP-21, has been identified. The aim of this review will be to discuss the role of the vgf gene and VGF derived peptides in metabolic and nutritional functions. In particular we will: (1) provide a brief overview on the central systems regulating energy homeostasis and nutrition particularly focusing on the melanocortin system; (2) introduce the structure and molecular characteristic of vgf; (3) describe the phenotype of VGF deficient mice; (4) present recent data on the metabolic role of VGF-derived peptides, particularly focusing on one peptide named TLQP-21.  相似文献   

19.
Gene polymorphisms and their effects in the melanocortin system   总被引:1,自引:0,他引:1  
Carroll L  Voisey J  van Daal A 《Peptides》2005,26(10):1871-1885
In addition to its role in human pigmentation, components of the melanocortin system regulate appetite, energy homeostasis and hormone production. Recent studies have suggested possible roles of this system in immunity, transmission of pain signals, and reproductive potential. A number of polymorphisms have been identified in genes of the melanocortin system and are associated with pigmentation in humans, as well as being causative of disorders of adrenal hormone production and obesity. This review gives an outline of these polymorphisms, their functional significance and possible application to or impact on diagnosis and pharmacotherapy based on melanocortin pathways.  相似文献   

20.
敲减MC4R表达对牛胎儿成纤维细胞CMS系统关键因子的影响   总被引:1,自引:0,他引:1  
为获得敲减黑素皮质素4受体(melanocortin 4 receptor,MC4R)基因的牛胎儿成纤维细胞,并探讨其在能量平衡神经调节系统中的作用,将构建成功并已鉴定为有效序列的短发夹状RNA (short hairpin RNA, shRNA)真核表达载体pGSH1 GFP MC4R,利用阳离子脂质体转染牛胎儿成纤维细胞并使用G418筛选稳定转染细胞株.利用实时荧光定量和Western印迹检测MC4R及中枢黑素皮质素系统(central melanocortin system, CMS)关键因子的表达水平变化.结果表明,在稳定转染的牛胎儿成纤维细胞系中, MC4R表达显著抑制,瘦蛋白(leptin)和阿黑色素原(POMC)表达下调,黑素皮质素拮抗物agouti相关蛋白(AGRP)和MC3R表达上调,而神经肽Y (NPY)表达无明显改变.综上所述,本研究成功获得了敲减MC4R基因表达的牛胎儿成纤维细胞.相关基因表达水平检测结果提示, MC4R的表达水平对CMS系统中的各关键基因的表达有不同的抑制或促进影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号