首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this study was to evaluate the effect of temperature on growth and aerobic metabolism in clones of Daphnia magna from different thermal regimes. Growth rate (increment in size), somatic juvenile growth rate (increment in mass), and oxygen consumption were measured at 15 and 25 degrees C in 21 clones from one northern and two southern sites. There were no significant differences in body size and growth rate (increase in length) at both 15 and 25 degrees C among the three sites. Clones from southern site 2 had a higher mass increment than clones from the other two sites at both temperatures. Clone had a significant effect on growth (body length) and body size at both temperatures. As expected, age at maturity was lower at 25 degrees C (4.5 days) than at 15 degrees C, (11.6 days) and body sizes, after the release of the third clutch, were larger at 15 degrees C than at 25 degrees C. Northern clones had higher oxygen consumption rates and specific dynamic action (SDA) than southern clones at 15 degrees C. By contrast, southern clones from site 1 had a higher oxygen consumption and SDA than subarctic clones at 25 degrees C. Clones from southern site 2 had high oxygen consumption rates at both temperatures. Our results reveal important differences in metabolic rates among Daphnia from different thermal regimes, which were not always reflected in growth rate differences.  相似文献   

2.
We tested the hypothesis that the lack of metabolic thermal acclimation ability in tropical and subtropical amphibians is dependent on season and investigated the effects of body size, sex, time of day, and season on metabolic rates in Rana latouchii. The males were acclimated at 15 degrees, 20 degrees, and 25 degrees C, and their oxygen consumption was measured at 15 degrees, 20 degrees, 25 degrees, and 30 degrees C in all four seasons, with the exception that we did not measure oxygen consumption at 30 degrees C in winter frogs. We also acclimated the males at 30 degrees C in summer for investigating diel variation of metabolic rate. The females were acclimated at 20 degrees and 25 degrees C, and their oxygen consumption was measured at 15 degrees , 20 degrees , 25 degrees , and 30 degrees C in summer. Our results showed that metabolic rates of R. latouchii differed by time of day, season, and acclimation temperature but did not differ by sex if the results were adjusted for differences in body mass. Summer males exhibited a 26%-48% increase in metabolic rates from the lowest values in the seasons. There was a trend of increased oxygen consumption in cold-acclimated males, but it was significant only at 15 degrees and 25 degrees C in summer, autumn, and winter. These results support the hypothesis that thermal acclimation of metabolism is seasonally dependent, which has not been reported in other tropical and subtropical amphibians.  相似文献   

3.
Relationship of body weight, imposed fasting, temperature, light intensity, and oxygen concentration to oxygen consumption in Porcellio laevis and Armadillidium vulgare has been investigated in a series of laboratory experiments. It was observed that (1) the metabolic response in the two species to temperature change was a uniform increase of oxygen consumption with increasing temperature from 15 degrees C to 60 degrees C. Beyond 30 degrees C, the oxygen consumption in each species fell, and the thermal death point was reached at about 40 degrees C. (2) The response to decreasing oxygen concentrations was a corresponding decrease in oxygen consumption. Armadillidium vulgare was a partial regulator while Porcellio laevis was able to conform its internal state to the changing oxygen levels. (3) In each species there was a decrease in metabolic rate with increasing body weight. (4) On the basis of their general activity level and oxygen consumption rate, Porcellio appeared to be a nocturnal species, while Armadillidium had a day active metabolism.  相似文献   

4.
The oxygen consumption rate of the southern rock lobster, Jasus edwardsii, was evaluated in response to body weight, temperature, activity, handling, diurnal rhythm, feeding and oxygen saturation level. There was a positive relationship between standard oxygen consumption (M(O(2))) and both body weight and water temperature. The relationship between total oxygen consumption and wet whole body weight was described by the equation: LogM(O(2))=0.595log W-0.396 (r(2)=0.83). The relationship between weight-specific oxygen consumption and temperature was described by the equation: LogM(O(2))=0.047T-2.25 (r(2)=0.94). Activity had a significant influence on the oxygen consumption rate, causing a three-fold increase above the standard rate at the temperature of acclimation (13 degrees C). However, at temperatures approaching the upper and lower extremes, lobsters had a decreased ability to increase their oxygen consumption rates during activity. Lobsters took 4.5-5 h to return to standard oxygen consumption rates after a period of emersion and handling. A strong diurnal rhythm to oxygen consumption was recorded. J. edwardsii displayed a classic postprandial increase in oxygen consumption. A peak (1.72 times standard M(O(2))) occurred 10-13 h after feeding with an increase above standard M(O(2)) being maintained for 42 h. In its rested state J. edwardsii was an oxygen regulator down to a critical oxygen tension of 58 Torr, whilst activity resulted in the critical oxygen tension increasing to 93 Torr.  相似文献   

5.
Experiments were done on seven lambs between the ages of 10 and 24 days to investigate the effects of sleep on the cardiovascular and metabolic responses to a decrease in ambient temperature. Each lamb was anesthetized and instrumented for recordings of electrocorticogram, electro-oculogram, and nuchal electromyograms and measurements of cardiac output, systemic and pulmonic pressures and hemoglobin oxygen saturations as well as body core temperature. No sooner than three days after surgery, measurements were made during periods of quiet wakefulness, quiet sleep and active sleep at ambient temperatures of 25 degrees C and 18 degrees C. Decreasing the environmental temperature from 25 degrees C to 18 degrees C elicited a similar thermogenic response during quiet wakefulness, quiet sleep and active sleep as evidenced by an increase in total body oxygen consumption. The increased metabolic oxygen demand was met by an increase in systemic oxygen transport as well as by an increase in total body oxygen extraction. Since shivering was absent during active sleep, it is likely that nonshivering thermogenesis played a major role in the metabolic response. Our data provide evidence that sleep does not significantly alter the cardiovascular and metabolic responses to a modest decrease in ambient temperature in young lambs.  相似文献   

6.
Measurements of total body oxygen consumption, visceral and hepatic blood flow, oxygen consumption, exchanges of amino acids, lactate, pyruvate and glucose were made on sheep fed 3--6 h or 21 h before the experiment and exposed for 3 h to a neutral environment (15 degrees C) or a cold environment (0.5 to 4 degrees C with clipped coat and wind speed 2 m.s-1). Recent feeding significantly increasedd the total oxygen consumption and the oxygen consumption of the viscera and liver. No general release of amino acids from the viscera or uptake by the liver after feeding was detected although the arterial plasma concentration of essential amino acids did increase significantly after feeding. The plasma concentration of most non-essential amino acids also increased except that of glycine, which decreased significantly. Cold exposure increased the total oxygen consumption and reduced the respiratory quotient significantly. Release of amino acids from the viscera was stimulated by cold exposure. There was a variable increase in the hepatic uptake of lactate and alanine when the sheep were fasted and cold-exposed. The liver's glucose output doubled and the blood (arterial) glucose concentration significantly increased in the cold.  相似文献   

7.
Heart rate and oxygen consumption were measured simultaneously in albino rats. These measurements were carried out in the resting animal at different temperatures between 18 degrees and 33 degrees C. The metabolism evolution with the environmental temperature allowed to place the thermal neutrality at 29 degrees C. The resting heart rate varies as metabolism. It shows the lowest values round the thermoneutrality and increases quickly as the environment is cooling. This result shows the effect of the thermal environment upon the resting heart rate level. On the other hand, the non linear relationship between metabolism and heart rate points out that the heart rate increase is not the only factor that allows an increased oxygen consumption during the body temperature regulation.  相似文献   

8.
The effects of several bacterial endotoxins on body temperature and resting oxygen consumption (VO2) were compared in normal rats. Low doses (0.05 mg/kg, i.m.) of 0127:B8 phenol-extracted endotoxin caused significant increases in both parameters. Maximal febrile responses (+1.6 degrees C) occurred at a dose of 0.05 mg/kg, but higher doses produced smaller effects. The maximal increase in VO2 (17%) occurred at doses of 0.5-1.0 mg/kg. A TCA extract of the same strain of endotoxin elicited a similar pattern of responses but was less potent than the phenol extract, whereas another endotoxin 026:B6 (TCA extract) was much less potent. The data illustrate the importance of constructing dose-response curves when comparing different endotoxins and indicate that in the rat, oxygen consumption provides a useful index of the response to pyrogens.  相似文献   

9.
栉孔扇贝耗氧率和排氨率的研究   总被引:36,自引:0,他引:36  
1999年 4~ 6月 ,采用室内实验生态学方法对栉孔扇贝的耗氧率和排氨率进行了研究 .结果表明 ,在适宜的温度范围内 ,栉孔扇贝的耗氧率和排氨率均与温度成正比 ,而与体重呈负相关关系 .在实验室温度 (8~ 2 8℃ )条件下 ,栉孔扇贝的耗氧率为 0 .48~ 9.0 9mg·g-1·h-1,排氨率为 0 .0 5~ 1 0 1mg·g-1·h-1.其中耗氧率在 2 3℃时达到最高值 ,2 8℃时开始下降 ,而排氨率则呈持续升高趋势 .栉孔扇贝的日常代谢明显高于标准代谢 ,耗氧率和排氨率平均值分别提高约 35 .8%和 75 .9% .  相似文献   

10.
We have studied the variations of oxygen consumption of solitary workers, and grouping workers (10 and 20) of the ant Dolichoderus quadripunctatus in function of time, at constant temperature (25 degrees C). We have studied hibernating and active workers (summer activity). Our results shows that the oxygen consumption of summer workers, increase directly and regularly in function of time and social number. Hibernating workers shows a significant decrease in the level of respiratory rate when the ants are grouping (10--20 workers). Finally, we showed a strong grouping effect reducing the oxygen consumption of hibernating populations of the ant Dolichoderus quadripunctatus.  相似文献   

11.
Fed animals have a higher resting metabolic rate in the thermoneutral zone than fasting ones. The metabolic increase is due to the specific dynamic action of food. With a decline of environmental temperature this increase in metabolism either declines or remains unchanged; decisive is whether the heat is used for thermoregulation or not (Mejsnar and Jansky 1971). The objective of our work was to find out to what extent a single intake of a diet with a different ratio of nutrients can influence resting metabolism in the golden hamster and whether this heat can be used for thermoregulation in the cold. Female golden hamsters aged 6-8 weeks kept at a constant temperature of 22 +/-1 degrees C with twelve-hour alternation of light (6 a.m. - 6 p.m.) and darkness ( 6 p.m. - 6 a.m.) were used for the experiments. The oxygen consumption was assessed after a single intake of a standard, high-carbohydrate (76 cal.% starch), high-fat (80 cal.% margarine) and high-protein (82 cal.% casein) diet-for detailed composition see Fábry (1959). The food was given at 6.m. after previous 20 hours of fasting. Animals were then transferred into the respiration chamber and kept there for three hours, including one hour when they were left to settle down; during this period the oxygen consumption was not measured. Oxygen consumption measurement started at 9 a.m. and lasted till 11 a.m. The metabolism of the animals at rest was assessed at temperatures of 10, 20 and 30 degrees C by measuring the oxygen consumption by the interferometric method (Wollschitt et al. 1935). The results are expressed in ml of oxygen per g of body weight per hour. The relationship between the metabolism at rest and environmental temperatures in hamsters given a single dose of standard, high-proetin, high-fat or high-carbohydrate diet is apparent from Table 1. The maximum increase of oxygen consumption after administration of the experimental diets was found at a temperature of 30 degrees C. At an environmental temperature of 20 degrees C the administration of the high-protein and high-fat diet causes roughly the same increase of metabolism. The high-carbohydrate diet increase is only one third of thevalues found, in the remaining two diets at the same temperature and is non-significant. At the environmental temperature of 10 degrees C all the diets used increased the oxygen consumption insignificantly. The changes in metabolism at different environmental temperatures after administration of various diets expressed as percentage of metabolism at 30 degrees C in animals fed the standard diet indicate that the specific dynamic action of the high-protein and high-fats diets is lower at lowered temperatures. We may thus assume that the heat produced as a result of specific dynamic action of the high-protein and high-fat diets is perhaps used for thermoregulation. The role of specific dynamic action of high-carbohydrate diet for thermoregulation is not clear from our experiments. The role of specific dynamic action of food was assessed by several authors...  相似文献   

12.
We assessed the seasonal variations in the effects of hypercarbia (3 or 5% inspired CO2) on cardiorespiratory responses in the bullfrog Rana catesbeiana at different temperatures (10, 20 and 30 degrees C). We measured breathing frequency, blood gases, acid-base status, hematocrit, heart rate, blood pressure and oxygen consumption. At 20 and 30 degrees C, the rate of oxygen consumption had a tendency to be lowest during winter and highest during summer. Hypercarbia-induced changes in breathing frequency were proportional to body temperature during summer and spring, but not during winter (20 and 30 degrees C). Moreover, during winter, the effects of CO2 on breathing frequency at 30 degrees C were smaller than during summer and spring. These facts indicate a decreased ventilatory sensitivity during winter. PaO2 and pHa showed no significant change during the year, but PaCO2 was almost twice as high during winter than in summer and spring, indicating increased plasma bicarbonate levels. The hematocrit values showed no significant changes induced by temperature, hypercarbia or season, indicating that the oxygen carrying capacity of blood is kept constant throughout the year. Decreased body temperature was accompanied by a reduction in heart rate during all four seasons, and a reduction in blood pressure during summer and spring. Blood pressure was higher during winter than during any other seasons whereas no seasonal change was observed in heart rate. This may indicate that peripheral resistance and/or stroke volume may be elevated during this season. Taken together, these results suggest that the decreased ventilatory sensitivity to hypercarbia during winter occurs while cardiovascular parameters are kept constant.  相似文献   

13.
We measured the rate of consumption of oxygen by alligators in a dry metabolic chamber and in a tank of water where they were free to dive and surface at will at 10-35 degrees C, a range spanning most of the body temperatures experienced by alligators in nature. Neither the standard metabolic rate nor the rate of oxygen consumption during one hour of sustained, voluntary activity varied with body mass, month of the year, duration of fasting before measurement, or experimental condition (terrestrial vs aquatic). Voluntary diving is not accompanied by any reduction in standard metabolic rate; these results and those of others suggest that the "diving reflex" of alligators is probably employed only in emergencies. Spontaneous activity for one hour is accompanied by a 1.9-4.4 fold rise in oxygen consumption; this factorial increase is less than that for other reptiles induced to maximal activity for brief intervals. Both standard and active oxygen consumption rise significantly with body temperature.  相似文献   

14.
O L Tulp 《Life sciences》1984,35(16):1699-1704
The capacity for non-shivering thermogenesis was measured in groups of 12 week-old congenic lean and corpulent LA/N-cp rats of both sexes to determine if their obese state might be associated with an impairment in energy expenditure via non-shivering thermogenesis. Body weights of the corpulent phenotypes were 1.6 to 1.8 times greater than those of the lean phenotype. Measurements of resting oxygen consumption were similar in lean and in corpulent rats, and were greater in female than in male rats. Isoproterenol stimulation resulted in a significant increase in oxygen consumption in lean rats, while the rates of oxygen consumption of isoproterenol-stimulated corpulent rats were unchanged. Acute exposure of male rats to a 5 degrees C cold environment resulted in significant decreases in colonic and in rectal temperature in both phenotypes, but body temperatures recovered more rapidly in lean than in corpulent rats. Urinary VMA excretion was greater in lean than in corpulent rats and increased following cafeteria-feeding in lean but not in corpulent rats. These observations are consistent with an impaired mechanism of sympathetically-mediated thermogenesis in the corpulent phenotype of the LA/N-cp rat, and which may be a contributing factor in the development of their obese state via a decreased capacity for energy expenditure.  相似文献   

15.
Experiments were done on ten lambs ranging in age from 15 to 25 days to define the temperature, metabolic and cardiorespiratory responses to intravenous administration of a small dose of bacterial pyrogen (SAE). Administration of SAE but not normal saline produced a short-lived fever of about 0.7 degrees C. The increase in body-core temperature was preceded by a surge in total body oxygen consumption and the onset of shivering which was influenced by behavioral state (ie, shivering was inhibited during active sleep). The increase in total body oxygen consumption was initially met by an increase in total body oxygen extraction and then by an increase in systemic oxygen delivery. Systemic arterial blood pressure did not change significantly during the febrile response; however, pulmonic arterial blood pressure increased significantly. Thus, our experiments provide new data on oxygen supply and demand during the development of fever and that shivering thermogenesis is inhibited in active sleep following the administration of bacterial pyrogen in young lambs. The influence of active sleep on the overall febrile response, and whether or not there is a shift from shivering thermogenesis to non-shivering thermogenesis remains to be determined.  相似文献   

16.
1. The extent of cardiovascular adjustments to heat and cold were investigated between ambient temperatures of 5 and 45 degrees C by measuring conductance and the rates of oxygen consumption and heart beats. 2. Minimum heart rate was observed at 25 degrees C (114 +/- 9 beats/min). In the heat at 45 degrees C heart rate was observed to increase only slightly (127 +/- 12 beats/min) but in the cold -5 degrees C heart rate nearly doubled that at 25 degrees C. 3. Thermal conductance was on average 0.031 mlO2 (g. hr. degrees C)-1 below 25 degrees C but increased by more than 20 times at 40 degrees C. 4. A positive correlation between heart rate and rate of oxygen consumption was demonstrated below 25 degrees C and the relation may be of practical use.  相似文献   

17.
Estivation is accompanied by a reduction of oxygen consumption in amphibians during drought. We tested the hypothesis that, during the dry season, the toad Bufo paracnemis selects a lower preferred body temperature (T(b)), and would be less sensitive to hypoxia, than during its active period. Therefore, during winter (dry season in S?o Paulo state, Brazil) and summer, we measured the effects of hypoxia (7% inspired O(2)) on preferred T(b). Additionally, pulmonary ventilation, heart rate, blood pressure, and oxygen consumption were also measured in toads at 15 and 25 degrees C. Blood gases were measured at 25 degrees C. Oxygen consumption was significantly higher during summer in toads at 25 degrees C. Under normoxia, preferred T(b) was higher during summer than during winter, and hypoxia caused a drop in preferred T(b) during both seasons. In both seasons, toads at 15 degrees C showed reduced pulmonary ventilation, heart rate, and blood pressure, and hypoxia had no effect. At 25 degrees C during summer only, hypoxia caused an increase in ventilation. Season had no effect on blood gases. We conclude that B. paracnemis displays an endogenous seasonal pattern of thermoregulation and control of ventilation. The decreased preferred T(b) and the physiological responses to hypoxia may be beneficial to toads encountering drought and when food is not available.  相似文献   

18.
The oxygen consumption of rat versus turtle brain and heart slices was compared as a function of extracellular pH and temperature. At pH = 6.20 rat (mammalian) brain and heart slices show a significant depression of oxygen consumption as compared to pH = 7.50 at temperatures of both 24 degrees and 37 degrees C. In the turtle oxygen consumption in brain and heart slices was not depressed at pH = 6.20 compared to pH = 7.50 at 24 degrees C and brain oxygen consumption was not significantly different at the two pH values at 37 degrees C. Turtle heart QO2 was depressed at 37 degrees C. The results suggest that extracellular acidosis depresses mitochondrial O2 uptake in mammalian brain and heart, playing a role in the bioenergetic manifestations of O2 depletion. Turtle brain mitochondria do not show a depression of QO2 at the acidotic pH. The resistance to acidosis of turtle brain mitochondria presumably enhances the possibility of survival following prolonged diving by maintaining ATP generation during the early diving period and during recovery.  相似文献   

19.
Heart rate of the Mediterranean limpet Patella caerulea L. was investigated on the natural shore and in the laboratory by using a technique based on infrared phototransducers. Field recording occurred in the Gulf of Trieste (northern Adriatic) during March and June 1997. A consistent dependence of heart rate on temperature was observed in limpets both when submerged and when exposed to air in the two periods, but thermal acclimation was evident. During spontaneous activity at high tide, heart rate increased 1.5-1.7 times the values observed during resting in water at corresponding temperatures. The dependence of heart rate on temperature (10 degrees, 16 degrees, and 22 degrees C) and size (wet weight <1.25 and >1.30 g) in submerged limpets from different populations (northern Adriatic and Tyrrhenian) was tested in the laboratory by adopting a factorial design. The results showed a marked effect of temperature, body weight, and their interaction, independent from the site of origin. Smaller limpets showed a linear increase of heart rate in the whole range of temperature tests, while in the larger ones the increase between 10 degrees and 16 degrees C was greater than between 16 degrees and 22 degrees C. Heart rate decreased with increasing body size at control (16 degrees C) and high (22 degrees C) temperature, while at lower temperature (10 degrees C) no effect of body size was evident. When removed from their home scar, limpets increased heart rate to about 1.5 times the reference value. Finally, correlation of oxygen consumption with heart rate of submerged limpets maintained at a different temperature (10 degrees -22 degrees C) was statistically significant.  相似文献   

20.
Ozone at concentrations found in urban air pollution is known to have significant physiological effects on humans and other mammals. Exposure of the lizard, Sceloporus occidentalis, to 0.6 ppm ozone for 4 h at 25 degrees C induced 1.6 degrees C of behavioral hypothermia immediately following exposure, but selected body temperature recovered to control 35.3 degrees C the next day. Lizards exposed at 35 degrees C to 0.6 ppm ozone for 4 h selected body temperatures 1.9 degrees C below controls after exposure, and the behavioral hypothermic response persisted and increased to 3.3 degrees C the following day. Four-hour exposures of the frog, Pseudacris cadaverina, to 0.2 to 0.8 ppm ozone resulted in concentration-dependent alterations of respiration including depression of lung ventilation and oxygen consumption and the adoption of a low profile posture that reduced the exposed body surface. Ozone levels in wilderness habitats downwind of urban sources can potentially have stressful physiological effects on wildlife. Defensive physiological and behavioral reactions to ozone exposure may interfere with routine activities, and oxidant air pollution may be in part responsible for observed wildlife population declines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号