首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The structural gene yqhD from a wild-type Escherichia coli encoding 1,3-propanediol oxidoreductase isoenzyme and the structural gene dhaB from Citrobacter freundii encoding glycerol dehydratase were amplified by using the PCR method. The temperature control expression vector pHsh harboring the yqhD and dhaB genes was transformed into E. coli JM109 to yield the recombinant strain E. coli JM109 (pHsh-dhaB-yqhD). The response surface method (RSM) was then applied to further optimize the fermentation condition of the recombinant strain. A mathematical model was then developed to show the effect of each medium composition and their interactions on the production of 1,3-propanediol by recombinant strain E. coli JM109. The model estimated that a maximal yield of 1,3-propanediol (43.86 g/l) could be obtained when the concentrations of glycerol, yeast extract and vitamin B12 were set at 61.8 g/l, 6.2 g/l and 49 mg/l, respectively; and the fermentation time was 30 h. These predicted values were also verified by validation experiments. Compared with the values obtained by other runs in the experimental design, the optimized medium resulted in a significant increase in the yield of 1,3-propanediol. The yield and productivity under the optimal parameters and process can reach 43.1 g/l and 1.54 g/l/h. Maximum 1,3-propanediol yield of 41.1 g/l was achieved in a 5-l fermenter using the optimized medium. This makes the engineered strain have potential application in the conversion of glycerol to 1,3-propanediol on an industrial scale.  相似文献   

2.
Pyruvate oxidase (PyOD) is a very useful enzyme for clinical diagnostic applications and environmental monitor. Optimization of the fermentation medium for maximization of PyOD constitutively, production by Escherichia coli DH5α/pSMLPyOD was carried out. Response surface methodology (RSM) was used to optimize the medium constituents. A 26–2 fractional factorial design (first order model) was carried out to identify the significant effect of medium components towards PyOD production. Statistical analysis of results shows that yeast extract, ammonium sulfate and composite phosphate were significant factors on PyOD production. The optimized values of these three factors were obtained by RSM based on the result of a 23 central composite rotatable design. Under these proposed optimized medium, the model predicted a PyOD activity of 610 U/L and via experimental rechecking the model, an activity of 670 U/L was attained.  相似文献   

3.
G protein‐coupled receptors (GPCRs) are a class of membrane proteins that represent a major target for pharmacological developments. However, there is still little knowledge about GPCR structure and dynamics since high‐level expression and characterization of active GPCRs in vitro is extremely complicated. Here, we describe the recombinant expression and functional folding of the human Y2 receptor from inclusion bodies of E. coli cultures. Milligram protein quantities were produced using high density fermentation and isolated in a single step purification with a yield of over 20 mg/L culture. Extensive studies were carried out on in vitro refolding and stabilization of the isolated receptor in detergent solution. The specific binding of the ligand, the 36 residue neuropeptide Y (NPY), to the recombinant Y2 receptors in micellar form was shown by several radioligand affinity assays. In competition experiments, an IC50 value in low nanomolar range could be determined. Further, a KD value of 1.9 nM was determined from a saturation assay, where NPY was titrated to the recombinant Y2 receptors. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009  相似文献   

4.
Aims: To investigate the effects of pretreated‐beet molasses on Escherichia coli fermentation using benzaldehyde lyase (BAL) production by recombinant E. coli BL21(DE3)pLySs process as the model system. Methods and Results: The effect of the initial pretreated (hydrolysed) beet molasses concentration was investigated at 16, 24, 30 and 56 g l?1 at a dissolved oxygen condition of 40% air saturation cascade to airflow, at N = 625 min?1 and pHC = 7·2 controlled‐pH operation conditions. The highest cell concentration and BAL activity were obtained as CX = 5·3 g l?1 and A = 1617 U cm?3, respectively, in the medium containing 30 g l?1 pretreated beet molasses consisting of 7·5 g l?1 glucose and 7·5 g l?1 fructose. Production with and without IPTG (isopropyl‐β‐d ‐thiogalactopyranoside) induction using the medium containing 30 g l?1 of pretreated beet molasses yielded the same amount of BAL production, where the overall cell yield on the substrate was 0·37 g g?1, and the highest oxygen transfer coefficient was KLa = 0·048 s?1. Conclusions: Pretreated beet molasses was used in the fermentation with E. coli for the first time and it yielded higher cell and BAL production compared with the glucose‐based medium. Significance and Impact of the Study: Pretreated beet molasses was found to be a good carbon source for E. coli fermentation. Furthermore, IPTG addition was not required to induce recombinant protein production as galactose, one of the monomers of trisaccharide raffinose present in the beet molasses (1·2%), induced the lac promoter.  相似文献   

5.
Corn cob hydrolysates, with xylose as the dominant sugar, were fermented to ethanol by recombinant Escherichia coli KO11. When inoculum was grown on LB medium containing glucose, fermentation of the hydrolysate was completed in 163 h and ethanol yield was 0.50 g ethanol/g sugar. When inoculum was grown on xylose, ethanol yield dropped, but fermentation was faster (113 h). Hydrolysate containing 72.0 g/l xylose and supplemented with 20.0 g/l rice bran was readily fermented, producing 36.0 g/l ethanol within 70 h. Maximum ethanol concentrations were not higher for fermentations using higher cellular concentration inocula. A simulation of an industrial process integrating pentose fermentation by E. coli and hexose fermentation by yeast was carried out. At the first step, E. coli fermented the hydrolysate containing 85.0 g/l xylose, producing 40.0 g/l ethanol in 94 h. Baker's yeast and sucrose (150.0 g/l) were then added to the spent fermentation broth. After 8 h of yeast fermentation, the ethanol concentration reached 104.0 g/l. This two-stage fermentation can render the bioconversion of lignocellulose to ethanol more attractive due to increased final alcohol concentration. Journal of Industrial Microbiology & Biotechnology (2002) 29, 124–128 doi:10.1038/sj.jim.7000287 Received 20 February 2002/ Accepted in revised form 04 June 2002  相似文献   

6.
(R)-1,3-butanediol ((R)-1,3-BD) is an important substrate for the synthesis of industrial chemicals. Despite its large demand, a bioprocess for the efficient production of 1,3-BD from renewable resources has not been developed. We previously reported the construction of recombinant Escherichia coli that could efficiently produce (R)-1,3-BD from glucose. In this study, the fermentation conditions were optimized to further improve 1,3-BD production by the recombinant strain. A batch fermentation was performed with an optimized overall oxygen transfer coefficient (82.3?h?1) and pH (5.5); the 1,3-BD concentration reached 98.5?mM after 36?h with high-yield (0.444?mol (mol glucose)?1) and a high maximum production rate (3.63?mM?h?1). In addition, a fed-batch fermentation enabled the recombinant strain to produce 174.8?mM 1,3-BD after 96?h cultivation with a yield of 0.372?mol (mol glucose)?1, a maximum production rate of 3.90?mM?h?1, and a 98.6% enantiomeric excess (% ee) of (R)-1,3-BD.  相似文献   

7.
1,3-Propanediol (1,3-PD) has numerous applications in polymers, cosmetics, foods, lubricants, and medicines as a bifunctional organic compound. The genes for the production of 1,3-PD in Klebsiella pneumoniae, dhaB, which encodes glycerol dehydratase, and dhaT, which encodes 1,3-PD oxidoreductase, and gdrAB, which encodes glycerol dehydratase reactivating factor, are naturally under the control of different promoters and are transcribed in different directions. These genes were coexpressed in E. coli using two incompatible plasmids (pET28a and pET22b) in the presence of selective pressure. The recombinant E. coli coexpressed the glycerol dehydratase, 1,3-propanediol oxidoreductase and reactivating factor for the glycerol dehydratase at high levels. In a fed-batch fermentation of glycerol and glucose, the recombinant E. coli containing these two incompatible plasmids consumed 14.3 g/l glycerol and produced 8.6 g/l 1,3-propanediol. In the substitution case of yqhD (encoding alcohol dehydrogenase from E. coli) for dhaT, the final 1,3-propanediol concentration of the recombinant E. coli could reach 13.2 g/l.  相似文献   

8.
Bioethanol produced from lignocellulosic materials has the potential to be economically feasible, if both glucose and xylose released from cellulose and hemicellulose can be efficiently converted to ethanol. Saccharomyces spp. can efficiently convert glucose to ethanol; however, xylose conversion to ethanol is a major hurdle due to lack of xylose‐metabolizing pathways. In this study, a novel two‐stage fermentation process was investigated to improve bioethanol productivity. In this process, xylose is converted into biomass via non‐Saccharomyces microorganism and coupled to a glucose‐utilizing Saccharomyces fermentation. Escherichia coli was determined to efficiently convert xylose to biomass, which was then killed to produce E. coli extract. Since earlier studies with Saccharomyces pastorianus demonstrated that xylose isomerase increased ethanol productivities on pure sugars, the addition of both E. coli extract and xylose isomerase to S. pastorianus fermentations on pure sugars and corn stover hydrolysates were investigated. It was determined that the xylose isomerase addition increased ethanol productivities on pure sugars but was not as effective alone on the corn stover hydrolysates. It was observed that the E. coli extract addition increased ethanol productivities on both corn stover hydrolysates and pure sugars. The ethanol productivities observed on the corn stover hydrolysates with the E. coli extract addition was the same as observed on pure sugars with both E. coli extract and xylose isomerase additions. These results indicate that the two‐stage fermentation process has the capability to be a competitive alternative to recombinant Saccharomyces cerevisiae‐based fermentations. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 30:300–310, 2014  相似文献   

9.
The introduction of an NADH/NAD+ regeneration system can regulate the distribution between acetoin and 2,3‐butanediol. NADH regeneration can also enhance butanol production in coculture fermentation. In this work, a novel artificial consortium of Paenibacillus polymyxa CJX518 and recombinant Escherichia coli LS02T that produces riboflavin (VB2) was used to regulate the NADH/NAD+ ratio and, consequently, the distribution of acetoin and 2,3‐butanediol by P. polymyxa. Compared with a pure culture of P. polymyxa, the level of acetoin was increased 76.7% in the P. polymyxa and recombinant E. coli coculture. Meanwhile, the maximum production and yield of acetoin in an artificial consortium with fed‐batch fermentation were 57.2 g/L and 0.4 g/g glucose, respectively. Additionally, the VB2 production of recombinant E. coli could maintain a relatively low NADH/NAD+ ratio by changing NADH dehydrogenase activity. It was also found that 2,3‐butanediol dehydrogenase activity was enhanced and improved acetoin production by the addition of exogenous VB2 or by being in the artificial consortium that produces VB2. These results illustrate that the coculture of P. polymyxa and recombinant E. coli has enormous potential to improve acetoin production. It was also a novel strategy to regulate the NADH/NAD+ ratio to improve the acetoin production of P. polymyxa.  相似文献   

10.
Agarase catalyzes the hydrolysis of agar, which is primarily used as a medium for microbiology, various food additives, and new biomass materials. In this study, we described the expression of the synthetic gene encoding β-agarase from Agarivorans albus (Aaβ-agarase) in Escherichia coli. The synthetic β-agarase gene was designed based on the biased codons of E. coli to optimize its expression and extracellular secretion in an active, soluble form. The synthesized agarase gene, including its signal sequence, was cloned into the pET-26 expression vector, and the pET-Aaβ-agarase plasmid was introduced into E. coli BL21-Star (DE3) cells. The E. coli transformants were cultured for high-yield secretion of recombinant Aaβ-agarase in Luria-Bertani broth containing 0.6?mM isopropyl β-D-1-thiogalactopyranoside for 9?h at 37°C. The expressed recombinant Aaβ-agarase was purified by ammonium sulfate precipitation and diethylaminoethyl-sepharose column chromatography, yielding ~10?mg/L Aaβ-agarase. The purified recombinant Aaβ-agarase exhibited optimal activity at pH 7 and 40°C, and its activity was strongly inhibited by Cu2+, Mn2+, Zn2+, and Al3+ ions. Furthermore, the KM and kcat values for purified Aaβ-agarase were ~0.02?mM and ~45/s, respectively. These kinetic values were up to approximately 15–100-fold lower than the KM values reported for other agarases and approximately 7–30-fold higher than the kcat/KM values reported for other agarases, indicating that recombinant Aaβ-agarase exhibited good substrate-binding ability and high catalytic efficiency. These results demonstrated that the E. coli expression system was capable of producing recombinant Aaβ-agarase in an active form, at a high yield, and with attributes useful in the relevant industries.  相似文献   

11.
Ribavirin is a broad-spectrum antiviral drug and can be produced by enzymatic synthesis by purine nucleoside phosphorylase (PNP). In this study, we describe the application of such a cold-adapted XmPNP in ribavirin bioconversion which showed approximately 15°C lower optimum temperature and 1.80-fold higher catalytic efficiency (kcat/Km) at 37°C within substrate inosine than homolog in E. coli. By contrast, E. coli (XmPNP) took only 12 h to reach maximum substrate conversion rate (70%) under its optimum temperature (50°C) by using recombinant strain cell as enzyme source, but E. coli (EcPNP) did at 24 h. These results suggest cold-adapted PNP is one attractive candidate for ribavirin bioconversion and other nucleoside medications to improve the catalytic efficiency.  相似文献   

12.
Itaconic acid, which is a promising organic acid in synthetic polymers and some base-material production, has been produced by Aspergillus terreus fermentation at a high cost. The recombinant Escherichia coli that contained the cadA gene from A. terreus can produce itaconic acid but with low yield. By introducing the protein–protein scaffold between citrate synthesis, aconitase, and cis-aconitase decarboxylase, 5.7 g/L of itaconic acid was produced, which is 3.8-fold higher than that obtained with the strain without scaffold. The optimum pH and temperature for itaconic acid production were 8.5 and 30°C, respectively. When the competing metabolic network was inactivated by knock-out mutation, the itaconic acid concentration further increased, to 6.57 g/L.  相似文献   

13.
To establish accurate detection methods of process-specific Escherichia coli residual host cell protein (HCP) and residual host cell DNA (rcDNA) in recombinant biological preparations. Taking the purification process of GLP expressed by E. coli as a specific-process model, the HCP of empty E. coli was intercepted to immunize mice and rabbits. Using IgG from immunized rabbits as the coating antibody and mouse immune serum as the second sandwich antibody, a process-specific enzyme-linked immunosorbent assay (ELISA) for E. coli HCP was established. Targeting the 16S gene of E. coli, ddPCR was used to obtain the absolute copies of rcDNA in samples. Non-process-specific commercial ELISA kit and the process-specific ELISA established in this study were used to detect the HCP in GLP preparation. About 62% of HCPs, which should be process-specific HCPs, could not be detected by the non-process-specific commercial ELISA kit. The sensitivity of established ELISA can reach 338 pg/mL. The rcDNA could be absolutely quantitated by ddPCR, for the copies of rcDNA in three multiple diluted samples showed a reduced gradient. While the copies of rcDNA in three multiple diluted samples could not be distinguished by the qPCR. Process-specific ELISA has high sensitivity in detecting process-specific E. coli HCP. The absolutely quantitative ddPCR has much higher accuracy than the relatively quantitative qPCR, it is a nucleic acid quantitative method that is expected to replace qPCR in the future.  相似文献   

14.
With the growing interest in continuous cultivation of Escherichia coli, secretion of product to the medium is not only a benefit, but a necessity in future bioprocessing. In this study, it is shown that induced decoupling of growth and heterologous gene expression in the E. coli X-press strain (derived from BL21(DE3)) facilitates extracellular recombinant protein production. The effect of the process parameters temperature and specific glucose consumption rate (qS) on growth, productivity, lysis and leakiness, is investigated, to find the parameter space allowing extracellular protein production. Two model proteins are used, Protein A (SpA) and a heavy-chain single-domain antibody (VHH), and performance is compared to the industrial standard strain BL21(DE3). It is shown that inducible growth repression in the X-press strain greatly mitigates the effect of metabolic burden under different process conditions. Furthermore, temperature and qS are used to control productivity and leakiness. In the X-press strain, extracellular SpA and VHH titer reach up to 349 and 19.6 mg g−1, respectively, comprising up to 90% of the total soluble product, while keeping cell lysis at a minimum. The findings demonstrate that the X-press strain constitutes a valuable host for extracellular production of recombinant protein with E. coli.  相似文献   

15.
Members of the cyclophilin (Cyp) family are known to function as co-chaperones, interacting with chaperones such as heat shock protein 90, and perform important roles in protein folding under high temperature stress. In addition, they have been isolated from a wide range of organisms. However, there have been no reports on the functions of algal Cyps under other stress conditions. To study the functions of the cDNAGjCyp-1 isolated from the red alga (Griffithsia japonica), a recombinant GjCyp-1 containing a hexahistidine tag at the amino-terminus was constructed and expressed inEscherichia coli. Most of the gene product expressed inE. coli was organized as aggregate insoluble particles known as inclusion bodies. Thus, the optimal time, temperature, and concentration ofl(+)-arabinose for expressing the soluble and nonaggregated form of GjCyp-1 inE. coli were examined. The results indicate that the induction of Cyp, at 0.2%l(+)-arabinose for 2 h at 25°C, had a marked effect on the yield of the soluble and active form of the co-chaperone as PPlase. An expressed fusion protein, H6GjCyp-1, maintained the stability ofE. coli proteins up to-75°C. In a functional bioassay of the recombinant H6GjCyp-1, the viability ofE. coli cells overexpressing H6GjCyp-1 was compared to that of cells not expressing H6GjCyp-1 at −75°C. For all the cycles of a freeze/thaw treatment, a significant increase in viability was observed in theE. coli cells overexpressing H6GjCyp-1. The results of the GjCyp-1 bioassays, as well asin vitro studies, strongly suggest that the algal Cyp confers freeze tolerance toE. coli.  相似文献   

16.
Switchgrass is a promising feedstock to generate fermentable sugars required for the sustainable operation of biorefineries because of their abundant availability, easy cropping system, and high cellulosic content. The objective of this study was to investigate the potentiality of switchgrass as an alternative sugar supplier for free fatty acid (FFA) production using engineered Escherichia coli strains. Recombinant E. coli strains successfully produced FFAs using switchgrass hydrolysates. A total of about 3 g/L FFAs were attained from switchgrass hydrolysates by engineered E. coli strains. Furthermore, overall yield assessments of our bioconversion process showed that 88 and 46% of the theoretical maximal yields of glucose and xylose were attained from raw switchgrass during sugar generation. Additionally, 72% of the theoretical maximum yield of FFAs were achieved from switchgrass hydrolysates by recombinant E. coli during fermentation. These shake‐flask results were successfully scaled up to a laboratory scale bioreactor with a 4 L working volume. This study demonstrated an efficient bioconversion process of switchgrass‐based FFAs using an engineered microbial system for targeting fatty acid production that are secreted into the fermentation broth with associated lower downstream processing costs, which is pertinent to develop an integrated bioconversion process using lignocellulosic biomass. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:91–98, 2018  相似文献   

17.
The bacterium Escherichia coli is among the most popular hosts for recombinant protein production, including that of membrane proteins (MPs). We have recently generated the specialized MP-producing E. coli strain SuptoxD, which upon co-expression of the effector gene djlA, is capable of alleviating two major bottlenecks in bacterial recombinant MP production: it suppresses the toxicity that frequently accompanies the MP-overexpression process and it markedly increases the cellular accumulation of membrane incorporated and properly folded recombinant MP. Combined, these two positive effects result in dramatically enhanced volumetric yields for various recombinant MPs of both prokaryotic and eukaryotic origin. Based on the observation that djlA is found in the genomes of various pathogenic bacteria, the aim of the present work was to investigate (a) whether other naturally occurring DjlA variants can exert the MP toxicity-suppressing and production-promoting effects similarly to the E. coli DjlA and (b) if we can identify a DjlA variant whose efficiency surpasses that of the E. coli DjlA of SuptoxD. We report that a quite surprisingly broad variety of homologous DjlA proteins exert beneficial effects on recombinant MP when overexpressed in E. coli. Furthermore, we demonstrate that the Salmonella enterica DjlA is an even more potent enhancer of MP productivity compared with the E. coli DjlA of SuptoxD. Based on this, we constructed a second-generation SuptoxD strain, termed SuptoxD2.0, whose MP-production capabilities surpass significantly those of the original SuptoxD, and we anticipate that SuptoxD2.0 will become a broadly utilized expression host for recombinant MP production in bacteria.  相似文献   

18.
 Temperature-regulated expression of recombinant proteins in the tac promoter (Ptac) system was investigated. Expression levels of fungal xylanase and cellulase from N. patriciarum in E. coli strains containing the natural lacI gene under the control of the Ptac markedly increased with increasing cultivation temperature in the absence of a chemical inducer. The specific activities (units per milligram protein of crude enzyme) of the fungal xylanase and cellulase produced from recombinant E. coli strain pop2136 grown at 42°C were about 4.5 times higher than those of the cells grown at 23°C and were even slightly higher when compared with cells grown in the presence of the inducer isopropyl β-D-thiogalactopyranoside. The xylanase expression level in the temperature-regulated Ptac system was about 35% of total cellular protein. However, this system can not be applied to E. coli strains containing lacI q, which confers over production of the lac repressor, for high-level expression of recombinant proteins. In comparison with the λPL system, the Ptac-based xylanase plasmid in E. coli pop2136 gave a considerably higher specific activity of the xylanase than did the best λPL-based construct using the same thermal induction procedure. The high-level expression of the xylanase using the temperature-regulated Ptac system was also obtained in 10-litre fermentation studies using a fed-batch process. These results unambiguously demonstrated that the temperature-modulated Ptac system can be used for overproduction of some non-toxic recombinant proteins. Received: 27 June 1995/Received revision: 13 September 1995/Accepted: 30 September 1995  相似文献   

19.
Summary Zymomonas mobilis and recombinant Escherichia coli B (pLOI297) were compared in side-by-side batch fermentations using a synthetic cellulose hydrolysate (glucose/salts) medium with pH control at 6.0 and an inoculation cell density of 35–50 mg dry wt. cells/L. At a nominal glucose concentration of 6%, both cultures achieved near maximal theoretical ethanol yields; however, the Z. mobilis fermentation was complete at 13h compared to 33h for the E.coli fermentation. With approx.12% glucose, the Z. mobilis fermentation was complete in 20h with a process yield of 0.49 g ethanol/g added glucose compared to the E. coli fermentation which remained 20% incomplete after 6 days resulting in a process yield of only 0.32 g/g. Nutrient supplementation (10g tryptone/L) resulted in complete fermentation of 12% glucose (pH 6.3) by the recombinant E. coli in 4 days, with a yield of 0.48 g/g.  相似文献   

20.
Heparosan is a crucial-polysaccharide precursor for the chemoenzymatic synthesis of heparin, a widely used anticoagulant drug. Presently, heparosan is mainly extracted with the potential risk of contamination from Escherichia coli strain K5, a pathogenic bacterium causing urinary tract infection. Here, a nonpathogenic probiotic, E. coli strain Nissle 1917 (EcN), was metabolically engineered to carry multiple copies of the 19-kb kps locus and produce heparosan to 9.1 g/L in fed-batch fermentation. Chromosome evolution driven by antibiotics was employed to amplify the kps locus, which governed the synthesis and export of heparosan from EcN at 21 mg L−1 OD−1. The average copy number of kps locus increased from 1 to 24 copies per cell, which produced up to 104 mg L-1 OD−1 of heparosan in the shaking flask cultures of engineered strains. The following in-frame deletion of recA stabilized the recombinant duplicates of chromosomal kps locus and the productivity of heparosan in continuous culture for at least 56 generations. Fed-batch fermentation of the engineered strain EcN8 was carried out to bring the yield of heparosan up to 9.1 g/L. Heparosan from the fermentation culture was further purified at a 75% overall recovery. The structure of purified heparosan was characterized and further modified by N-sulfotransferase with 3′-phosphoadenosine-5′-phosphosulfate as the sulfo-donor. The analysis of element composition showed that heparosan was N-sulfated by over 80%. These results indicated that duplicating large DNA cassettes up to 19-kb, followed by high-cell-density fermentation, was promising in the large-scale preparation of chemicals and could be adapted to engineer other industrial-interest bacteria metabolically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号