首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Treatment of methyl 13(S)-hydroperoxy-9(Z), 11(E)-octadecadienoate with vanadium oxyacetylacetonate led to the formation of two diastereometric α,β-epoxy alcohols, i.e. methyl 11(R), 12(R)-epoxy-13(S)-hydroxy-9(Z)-octadecenoate and methyl 11(S), 12(S)-epoxy-13(S)-hydroxy-9(Z)-octadecenoate. The epoxy alcohols underwent spontaneous hydrolysis into isomeric trihydroxyesters. The first mentioned epoxy alcohol afforded methyl 9(R), 12(S), 13(S)- and methyl 9(S), 12(S), 13(S)-trihydroxy-10(E)-octadecenoates as major hydrolysis products whereas the latter epoxy alcohol afforded methyl 9(R), 12(R), 13(S)- and methyl 9(S), 12(R)-13(S)-trihydroxy-10(E)-octadecenoates as major compounds. Smaller amounts of diastereomeric methyl 11,12,13-trihydroxy-9-octadecenoates were also formed from both epoxy alcohols. The vanadium-catalyzed conversion of 13(S)-hydroperoxy-9(Z),11(E)-octadecadienoic acid (13(S)HPOD) (methyl ester) into α,β-epoxy alcohols and their further conversion into trihydroxy derivatives offers a model system for similar transformations of certain poly-unsaturated fatty acids recently described in the fungus, Saprolegnia parasitica.  相似文献   

2.
In the presence of oxygen, UV-irradiation of a solution of methyl 13(S)-hydroperoxy-9(Z), 11(E)-octadecadienoate (13-HPOD) in methanol yields stereoisomers of methyl 9,13-dihydroxy-10-methoxy-11-(E)-octadecenoate and methyl 9,13-dihydroxy-12-methoxy-10(E)-octadecenoate as major products. The reaction pathway to the products was established by photolysis experiments with labeled 13-HPOD and with intermediates of the reaction route. When methanol was substituted by water in the reaction system, the corresponding trihydroxyoctadecenoic acids were formed. This was confirmed by aerobic photolysis of 13-HPOD (free acid) dissolved in water. Threo and erythro methyl 12, 13-epoxy-11-hydroxy-9(Z)-octadecenoates belong to the minor compounds formed during aerobic photolysis of the 13-HPOD in methanol. Labeling experiments indicated that the threo compound resulted mainly from a rearrangement of the 13-HPOD while the erythro compound is mainly formed via secondary hydroperoxidation.  相似文献   

3.
The fetal origins of adult disease hypothesis suggests that poor intrauterine growth is associated with an increased risk of cardiovascular disease. The hypothesis goes on to implicate different growth 'phenotypes', particularly disproportionate growth, in the determination of the type of cardiovascular disease that develops. Analysis of the antenatal growth of a low-risk pregnancy population does not identify such growth phenotypes within the general population. Rather, intrauterine growth is characterized by poor predictability of subsequent size, suggesting that centile crossing is a common feature of intrauterine growth. Furthermore, there is a sexually dimorphic pattern to this growth that needs to be considered in further work to test the fetal origins hypothesis.  相似文献   

4.
Polypeptide growth factors, which belong to different families (epidermal growth factors, insulin-like growth factors, fibroblast growth factors, transforming growth factors-beta, and some others), were characterized regarding their specific role in embryogenesis and tumor growth. Differences and parallels of the functioning of growth factors in these processes have been noted. Potential significance of the described characteristics of growth factors for directed modulation of embryogenesis and tumor growth is discussed.  相似文献   

5.
Mammalian metapodials (metacarpals and metatarsals), unlike most long bones, form a single growth plate, and undergo longitudinal growth at only one end. The growth dynamics of non-mammalian tetrapod metapodials have not been systematically examined in order to determine if unidirectional growth is unique to mammals. Here we compare murine metapodial ossification in growth stages that parallel those of embryonic, juvenile and subadult American alligators (Alligator mississippiensis). Safranin O staining was used for qualitative histology, and chondrocyte differentiation and proliferation were assessed via immunohistochemistry for type X collagen and proliferative cell nuclear antigen (PCNA). We establish that growth plates form at both ends of alligator metapodials and are maintained in the subadult. PCNA results show that alligators and mice share common patterns of chondrocyte proliferation during growth plate formation. In addition, while alligators and mice differ initially in the degree of organization and pace of chondrocyte differentiation, these parameters are largely similar in established growth plates. However, the replacement of cartilage by bone is highly irregular throughout growth in the alligator, in contrast to the more uniform process in the mouse. These results indicate that while alligators and mammals share common mechanisms of chondrocyte regulation, they differ substantially in their processes of ossification. Phylogenetic analysis indicates that the direct ossification of one epiphysis and reliance on a single growth plate is a derived character (synapomorphy) in therian mammals and likely indicates an adaptation for erect quadrupedal gait.  相似文献   

6.
To assess the role of cdc42 during neurite development, cmyc-tagged constitutively active (CA) and dominant negative (DN) cdc42 were expressed in dissociated primary chick spinal cord neurons using adenoviral-mediated gene transfer. Three days after infection, >85% of the neurons in infected cultures expressed cdc42 proteins, as detected by indirect immunofluorescence against cmyc. Growth cones of infected neurons displayed 1.83- (CAcdc42) and 1.93-fold (DNcdc42) higher cmyc immunofluorescence per square micrometer than uninfected controls. CAcdc42 expression stimulated growth cones, almost doubling growth cone size and number of filopodia, and increased neurite growth rates by 65-89%. In neurons plated onto fibronectin, the percent of growth cones with both filopodia and lamellipodia increased from 71 to 92%. Total Texas Red-phalloidin staining in these growth cones doubled, and the percent of growth cones with F-actin localized to peripheral regions increased from 52% in controls to 78% after CAcdc42 expression. Expression of DNcdc42 did not significantly alter growth cone morphology or neurite growth rates. Addition of soluble laminin to spinal cord neurons resulted in the identical phenotype as CAcdc42 expression, including changes in growth cone morphology, F-actin localization, and neurite growth rates. Significantly, expression of DNcdc42 blocked the effects of laminin on growth cones. These results show that cdc42 promotes neurite outgrowth and filopodial and lamellipodial formation in growth cones and suggests that cdc42 and laminin share a common signaling pathway during neurite development. Addition of laminin to CAcdc42-expressing neurons is inhibitory to growth cones, indicating that laminin also may activate some other pathways.  相似文献   

7.
The growth characteristics of soybean (Glycine max [L.] Merr.) embryos in culture and seeds in situ were found to be similar, but developmental differences were observed. Embryos placed in culture when very small (<2 milligrams dry weight) failed to attain the maximal growth rates attained by embryos which were more mature when placed in culture. When nutrient levels were maintained in the culture medium, embryos continued to grow indefinitely, reaching dry weights far in excess of seeds matured in situ. Apparently, maternal factors were important in early and late development during the determination of maximum growth rate and the cessation of growth. Embryo growth rate was not affected by substituting glucose plus fructose for sucrose in the medium, nor by hormone treatments, including abscisic acid. Glutamine was found to give substantially better growth than glutamate, however. Contrary to prior reports, the response of soybean embryo growth rate to irradiance was found to be primarily an artifact of the effect of irradiance on media temperature. Across seven genotypes the correlation coefficient between seed growth rate in situ and embryo growth rate in vitro was 0.94, indicating essentially all of the variability of in situ seed growth rate between cultivars could be attributed to inherent growth rate differences associated with the embryos. The response to temperature was very similar for both embryos in culture and seeds in situ at temperatures below 30°C. Beyond that temperature, embryo growth rate continued to increase, while seed growth rate did not. The implication is that in situ seed growth rate is determined by the inherent growth potential of the embryo at low to moderate temperatures; however, at higher temperatures, the maternal plant is unable to support the rapid growth rates that the embryo is capable of attaining under conditions of unlimited assimilate supply.  相似文献   

8.
Summary This report describes the development of a culture system for long-term growth and cloning of human fetal adrenocortical cells. Optimal conditions for stimulating clonal growth were determned by testing the efficacy of horse serum (HS), fetal bovine serum (FBS), fibroblast growth factor (FGF), epidermal growth factor (EGF), fibronectin, and a combination of growth factors, UltroSer G, in stimulating growth from low density. Optimal conditions for clonal growth were achieved using fibronectin-coated dishes and DME/F12 medium with 10% FEBS, 10% HS, 2% UltroSer G, and 100 ng/ml FGF or 100 pM EGF. Conditions for growth at clonal density were found to be optimal for growth of early passage, nonclonal cultures at higher densities. The improved growth conditions used for cloning were shown to allow continued long-term growth of nonclonal human adrenocortical cells without fibroblasts overgrowth. All cells in cultures grown in HS, FBS, and UltroSer G had morphologic characteristics of adrenocortical cells, whereas cells grown in FBS only rapidly became overgrown with fibroblasts. Clonal and nonclonal early passage human adrenocortical cells had smilar mitogenic responses to FGF and EGF. Whereas FGF, EGF, and UltroSer G showed similar stimulation of DNA synthesis and clonal growth in human adrenocortical cells and human adrenal gland fibroblasts, the tumor promoter 12-O-teradecanoylphorbol-13-acetate stimulated growth only in adrenocortical cells and was strongly inhibitory to growth in fibroblasts. In both cell types, forskolin inhibited DNA synthesis. Human adrenocortical cell cultures were functional and synthesized cortisol, dehydroepiandrosterone, and dehydroepiandrosterone sulfate. The improved growth conditions for clonal growth of human adrenocortial cells also provided optimal conditions for long-term growth of cultured rat adrenocortical cells and ncreased the cloning efficiency of cultured bovine adrenocortical cells. This work was supported by Research grants AG-00936 and AG-06108 from the National Institute on Aging, Bethesda, MD.  相似文献   

9.
The aim of this study is to test the hypothesis that it depends on plant species used in the wetlands and their stubble growth attributes, as to whether monoculture or mixed wetland is superior in plant growth and nutrient removal. Monoculture and mixed wetland microcosms of five wetland plant species were studied. Significant differences in growth and aboveground biomass were found in the monoculture wetlands. Species that showed faster growth and larger biomass in monoculture wetland were also dominant in the mixed wetland. The mixed wetland exhibited similar biomass and root growth to the averages of five monocultures. ANOVA showed that there were very significant differences among the wetlands in removal rates of all the nutrients studied except nitrate nitrogen (NO3-N) and chemical oxygen demand (COD). The removal rates from the mixed wetland were generally comparable to the highest removal rates from the monocultures. The species exhibited different stubble growth attributes, with some species showing increasing stubble growth and removal rates, while other species showing decreasing stubble growth and removal rates. The results indicated that in both monocultures and mixed constructed wetlands, growth and nutrient removal rates depended on plant species, and attributes of plant stubble growth affected overall growth and nutrient removal capabilities.  相似文献   

10.
Studying the emergence of distinctive human growth patterns is essential to understanding the evolution of our species. The large number of Neandertal fossils makes this species the best candidate for a comparative study of growth patterns in archaic and modern humans. Here, Neandertal height growth during infancy and early childhood is described using a mathematical model. Height growth velocities for individuals five years old or younger are modelled as age functions based on different estimates of height and age for a set of ten Neandertal infants and children. The estimated heights of each Neandertal individual are compared with those of two modern human populations based on longitudinal and cross-sectional data. The model highlights differences in growth velocity during infancy (from the age of five months onward). We find that statural growth in Neandertal infants is much slower than that seen in modern humans, Neandertal growth is similar to modern humans at birth, but decreases around the third or fourth month. The markedly slower growth rates of Neandertal infants may be attributable to ontogenetic constraints or to metabolic stress, and contribute to short achieved adult stature relative to modern humans.  相似文献   

11.
Intrinsic and extrinsic control of growth in developing organs   总被引:10,自引:0,他引:10  
The growth rate and final size of developing organs is controlled by organ-intrinsic mechanisms as well as by hormones and growth factors that originate outside the target organ. Recent work on Drosophila imagined discs and other regenerating systems has led to the conclusion that the intrinsic growth-control mechanism that controls regenerative growth depends on position-specific interactions between cells and their neighbors, and that these interactions also control pattern formation. According to this interpretation, local growth by cell proliferation is stimulated when cells with disparate positional information are confronted as a result of grafting or wound healing. This local growth leads to intercalation of cells with intervening positional values until the positional information discontinuity is eliminated. When all discontinuities have been eliminated from a positional field, growth stops. In this article we consider the possibility that organ growth during normal development may be controlled by an intercalation mechanism similar to that proposed for regenerative growth. Studies of imaginal disc growth are consistent with this suggestion, and in addition they show that the cell interactions thought to control growth are independent of cell lineage. Developing organs of vertebrates also show intrinsic growth-control mechanisms, as demonstrated by the execution of normal growth programs by immature organs that are transplanted to fully grown hosts or to hosts with genetically different growth parameters. Furthermore, these organ-intrinsic mechanisms also appear to be based on position-specific cell interactions, as suggested by the growth stimulation seen after partial extirpation or rearrangement by grafting. In organs of most adult vertebrates, the organ-intrinsic growth-control system seems to be suppressed as shown by the loss of regenerative ability, although it is clearly retained in the limbs, tails and other organs of salamanders. The clearest example of an extrinsic growth regulator is growth hormone, which plays a dominant role along with insulin-like growth factors, thyroid hormone and sex hormones in supporting the growth of bones and other organs in postnatal mammals. These hormones do not appear to regulate prenatal growth, but other hormones and insulin-like growth factors may be important prenatally. The importance of other growth factors in regulating organ growth in vivo remains to be established. It is argued that both intrinsic and extrinsic factors control organ growth, and that there may be important interactions between the two types of control during development.  相似文献   

12.
It has been recognized for a long time that the neuronal cytoskeleton plays an important part in neurite growth and growth cone pathfinding, the mechanism by which growing axons find an appropriate route through the developing embryo to their target cells. In the growth cone, many intracellular signaling pathways that are activated by guidance cues converge on the growth cone cytoskeleton and regulate its dynamics. Most of the research effort in this area has focussed on the actin, microfilament cytoskeleton of the growth cone, principally because it underlies growth cone motility, the extension and retraction of filopodia and lamellipodia, and these structures are the first to encounter guidance cues during growth cone advance. However, more recently, it has become apparent that the microtubule cytoskeleton also has a role in growth cone pathfinding and is also regulated by guidance cues operating through intracellular signaling pathways via engagement with cell membrane receptors. Furthermore, recent work has revealed an interaction between these two components of the growth cone cytoskeleton that is probably essential for growth cone turning, a fundamental growth cone behavior during pathfinding. In this short review I discuss recent experiments that uncover the function of microtubules in growth cones, how their behavior is regulated, and how they interact with the actin filaments.  相似文献   

13.
This study examines variation in brain growth relative somatic growth in four hominoids and three platyrrhines to determine whether there is a trade-off during ontogeny. I predicted that somatic growth would be reduced during periods of extensive brain growth, and species with larger degrees of encephalization would reach a smaller body size at brain growth completion because more energy is directed towards the brain. I measured cranial capacity and skeletal size in over 500 skeletal specimens from wild populations. I calculated nonlinear growth curves and velocity curves to determine brain/body growth allometry during ontogeny. In addition, I calculated linear regressions to describe the brain/body allometry during the postnatal period prior to brain size reaching an asymptote. The results showed that somatic growth is not substantially reduced in species with extensive brain growth, and body size at brain growth completion was larger in species with greater degrees of encephalization. Furthermore, large body size at brain growth completion was not correlated with interbirth interval, but was significantly correlated with prolonged juvenile periods and late age at maturity when data were corrected for phylogeny. These results indicate that neither reduction in body growth nor reproductive rate are compensatory mechanisms for the energetic costs of brain growth. Other avenues for meeting energetic costs must be in effect. In addition, the results show that somatic growth in encephalized species is particularly slow during the juvenile period after brain growth at or near completion, suggesting that these growth patterns are explained by reasons other than energetic costs.  相似文献   

14.
The hypothesis that growth in Pacific salmon Oncorhynchus spp. is dependent on previous growth was tested using annual scale growth measurements of wild Chinook salmon Oncorhynchus tshawytscha returning to the Yukon and Kuskokwim Rivers, Alaska, from 1964 to 2004. First-year marine growth in individual O. tshawytscha was significantly correlated with growth in fresh water. Furthermore, growth during each of 3 or 4 years at sea was related to growth during the previous year. The magnitude of the growth response to the previous year's growth was greater when mean year-class growth during the previous year was relatively low. Length (eye to tail fork, L ETF) of adult O. tshawytscha was correlated with cumulative scale growth after the first year at sea. Adult L ETF was also weakly correlated with scale growth that occurred during freshwater residence 4 to 5 years earlier, indicating the importance of growth in fresh water. Positive growth response to previous growth in O. tshawytscha was probably related to piscivorous diet and foraging benefits of large body size. Faster growth among O. tshawytscha year classes that initially grew slowly may reflect high mortality in slow growing fish and subsequent compensatory growth in survivors. Oncorhynchus tshawytscha in this study exhibited complex growth patterns showing a positive relationship with previous growth and a possible compensatory response to environmental factors affecting growth of the age class.  相似文献   

15.
Post-embryonic growth is characterized by a constant reduction of some growth parameters in relation to other growth parameters. Comparison of growth in chickens, rats and nematodes reveals an identical growth pattern, so a theory about the growth process in general is presented. It is presumed that the same growth promoting and growth inhibiting substances regulate not only growth but also ageing and that it is the equilibrium between growth promoters and growth inhibitors which is constantly changed.  相似文献   

16.
Polypeptide growth factors modulate proliferation of nontransformed cells in vivo and in vitro, while cancer appears to reflect an alteration of growth-regulatory mechanisms found in normal cells. Some provocative clues for understanding the cellular biochemical events involved in growth regulation have come from the study of transforming retroviral oncogenes. Some of these oncogenes encode proteins similar to those implicated in growth factor-mediated growth control. Of particular interest is the study of growth factor receptors present on the cell surface, which are cellular homologs of members of the largest class of oncogenes, the tyrosine kinases. It is likely that the study of the interplay of growth factors, and the molecular basis of pleiotropic effects elicited by growth factors, will help to explain how growth factor-signaling pathways affect gene expression and cell division in normal and transformed states.  相似文献   

17.
营口市城市及村镇聚落增长与土地利用变化的模拟预测   总被引:6,自引:0,他引:6  
基于辽宁省营口市1988、1992、1997、2000和2004年5期Landsat TM卫星遥感影像数据,利用城市增长和土地利用变化模拟模型SLEUTH模拟预测了6种预案(当前趋势预案、无保护预案、适当保护预案、管理增长预案、生态可持续预案和区域及城市规划预案)下2005—2030年营口市城市及农村聚落的增长和土地利用变化情况.结果表明:1988—2004年,营口市城市及村镇聚落的增长面积为14.93 km2;1997—2004年,研究区水域、园地、矿山、耕地等土地类型面积的变化较大.2005—2030年,生态可持续预案下,营口市城市及村镇聚落的面积将缓慢增长,较好地保护耕地、林地等资源,但在一定程度上将限制城市及村镇聚落的增长;无保护预案下研究区城市及农村聚落的增长速度最快,耕地流失面积较大;当前趋势预案下,耕地流失面积与无保护预案相近,但耕地流失的格局不同;适当保护预案和管理增长预案下,耕地的流失面积较小;区域与城市规划预案下,城市及村镇聚落增长主要分布在城市开发区和城市周边地区.利用不同预案下的SLEUTH模型可以模拟不同土地管理政策对城市及村镇聚落增长和土地利用变化的影响,对我国实施统筹城乡发展、建设社会主义新农村具有指导意义.  相似文献   

18.
在暖温型和中温型草原对大针茅(Stipa grandis)、羊草(Leymus chinensis)、糙隐子草(Cleisto-genes squorrosa)、达乌里胡枝子(Lespedeza dahurica)和阿尔泰狗哇花(Heteropappus altaicus)5个共有植物种群的构件生长特征进行了比较研究,并应用种群统计的生长分析指标与研究站点的月平均温度、降水量和湿润度进行了灰色关联分析。结果表明,中温型草原各共有种的相对生长速率(DRGR&;DRGRa)和单位叶速率(DULA)均高于暖温型草原,显示出对中温型草原生长季短、热量条件不足的生态适应特征;而暖温型草原则以较长的叶面积及构件持续时间适应该草原区生长季长、热量较为充足的气修条件。暖温型草原各共有种的构件生长指标与湿润度之间的灰色关联度普遍高于中温型草原,即暖温型草原植物的构件生长对生长季内的水热组合更为敏感,显示出不同热量型草原区植物构件生长的响应特征。  相似文献   

19.
Summary Barley seeds have been germinated in gas mixtures containing ethylene (up to 20 vpm) and various amounts of oxygen (0.5–21.0 per cent). When oxygen was adequate, ethylene had no effect on germination but decreased root growth and increased top growth. Ethylene-treated roots were short, broad and curled. When inadequate oxygen slowed seedling growth, ethylene had no effect on roots but increased top growth. Effects of carbon dioxide concentration and of the residual effects of ethylene on seedling growth are also discussed.  相似文献   

20.
Cellular transformation may be accomplished in vitro and in vivo through the concerted action of growth factors and oncogenes. This association has demonstrated that malignant growth results from aberrations in growth factor-signal transduction pathways that normally operate to control proliferation. Activation of genes that code for growth factors and/or their receptors provides tumor cells with potential mechanisms to maintain their proliferative state. Tumor cells have been shown to produce endogenous substances that augment their growth (autocrine stimulation), as well as responding to exogenous substances (paracrine stimulation). With solid tumor cells these responses have been shown to involve aberrant expression of growth factor and/or receptor genes. The study of the interrelationship of these various growth regulatory molecules is important not only in the identification of gene products essential to cellular proliferation, but also in providing clues as to what forces are driving tumor cell growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号