首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The murine Leydig tumor cell line, MLTC-1, contains a gonadotropin receptor-coupled adenylate cyclase. Although the binding of human choriogonadotropin (hCG) initially causes cells to accumulate cAMP, in time, the response to hCG is attenuated by desensitization. Treating intact cells with the tumor promoter, 12-O-tetradecanoyl-phorbol-13-acetate (TPA), or with diacylglycerol also causes desensitization of the hCG response. These compounds are activators of calcium/phospholipid-dependent protein kinase (PKC). Treating MLTC-1 cells with TPA or dioctanoylglycerol increased the portion of PKC in the cell membrane fraction. This phenomenon is associated with activation of PKC. Treating isolated membranes with purified PKC desensitize the hCG response. Thus, desensitization caused by TPA or dioctanoylglycerol is probably mediated by PKC. PKC is normally activated when phosphoinositides are metabolized to diacylglycerol and inositol phosphates. There was no significant accumulation of inositol phosphates when cells were treated with hCG. hCG did not increase the portion of PKC in the cell membrane fraction. However, hCG could desensitize isolated membranes, but TPA could not. We conclude that although protein kinase C activity can desensitize the gonadotropin response, hCG does not cause desensitization by activating PKC. The implications of this observation are discussed.  相似文献   

2.
Chronic treatment with the immunosuppressive drug Cyclosporine A (CsA) is associated with increased intracellular calcium in vascular smooth muscle cells, which may activate phospholipase A2. We used rat aortic endothelial cells to investigate the role of protein kinase C (PKC) in CsA-induced prostacyclin (PGI2) release. CsA (10(-9) M) produced a significant increase in PGI2 release. CsA-induced PGI2 release were inhibited 80-85% by 10(-9) M, and 99-100% by 10(-6) M pretreatment doses of any of three different PKC inhibitors, i.e. 1-(5-isoquinolinesulfonylmethyl)piperazine(H7), staurosporine or 1-(5-isoquinolinesulfonyl)piperazine. Pretreatment with (10(-9) M) of diltiazem (a voltage-sensitive L-type calcium channel blocker) completely inhibited both CsA-induced PGI2 release. Conversely, pretreatment with (10(-9) M) of thapsigargin (an intracellular calcium channel blocker) did not alter the action of CsA. These results strongly suggest that PKC, in association with an influx of extracellular calcium, mediates CsA-induced PGI2 release in rat aortic endothelial cells.  相似文献   

3.
A possible interaction between Cd2+ and Ca2+ as a component in Cd2+-induced insulin release was investigated in beta cells isolated from obese hyperglycemic mice. The glucose stimulated Cd2+ uptake was dependent on the concentration of sugar. This uptake was sigmoidal with a Km for glucose of about 5 mM and was suppressed by both 50 microM of the voltage-activated Ca2+ channel blocker D-600 and 12 mM Mg2+. In the presence of 8 mM glucose 5 microM Cd2+ evoked a prompt and sustained stimulatory response, corresponding to about 3-fold of the insulin release obtained in the absence of the ion. Whereas 5 microM Cd2+ was without effect on the glucose-stimulated 45Ca efflux in the presence of extracellular Ca2+, 40 microM inhibited it. At a concentration of 5 microM, Cd2+ had no effect on the resting membrane potential or the depolarization evoked by either glucose or K+. In the absence of extracellular Ca2+ there was only a modest stimulation of 45Ca efflux by 5 microM Cd2+. Studies of the ambient free Ca2+ concentration maintained by permeabilized cells also indicate that 5 microM Cd2+ do not mobilize intracellularly bound Ca2+ to any great extent. On the contrary, at this concentration, Cd2+ even suppressed inositol 1,4,5-trisphosphate (IP3)-induced Ca2+ release. The present study suggests that Cd2+ stimulates insulin release by a direct mechanism which does not involve an increase in cytoplasmic free Ca2+ concentration.  相似文献   

4.
Endothelin (ET) is a vasoconstrictor peptide released from endothelial cells that is known to cause prostaglandin (PG) release. The mechanism remains unclear. To determine whether the protein kinase C (PKC) signaling pathway is stimulated by endothelin, we pretreated rat aortic endothelial cells with either PKC activator or inhibitors and measured the release of prostacyclin (PGI2) by radioimmunoassay. ET (10(-9) M) produced a 10-fold increase in PGI2 release. Pretreatment with 10(-9) M of three different PKC inhibitors: 1-(5-isoquinolinesulfonyl) piperazine (CL), staurosporine, and 1-(5-isoquinolinesulfonyl-methyl) piperazine (H7) blocked ET induced PGI2 release. ET induced prostacyclin release was also blocked by pretreatment with inhibitors of either phospholipase A2 (7,7,dimethyleicosadienoic acid or trifluoromethyl ketone analogue) (10(-9) M) or cyclooxygenase (indomethacin) (10(-9) M). We conclude that ET activates PKC which activates phospholipase A2 which liberates arachidonic acid which increases PGI2 production and release.  相似文献   

5.
The light-activated protein kinase C inhibitor, calphostin C, is shown to inhibit the ability of IL-3-dependent 32D cells to reduce the tetrazolium salt, MTT. To determine whether this inhibition was mediated through mitochondria which have been implicated in MTT reduction, isolated mitochondria were treated with calphostin C in the presence of various substrates for mitochondrial electron transport and EDTA (to exclude PKC involvement). Calphostin C extensively inhibited succinate-dependent MTT reduction (IC50 = 110nM) but had little effect on either NADH- or NADPH-dependent MTT reduction. An alternative protein kinase C inhibitor, H7, did not affect succinate-dependent mitochondrial MTT reduction, and the protein kinase A inhibitor, KT5720, had little effect on either cellular or mitochondrial MTT reduction. These results show that in addition to its role as a PKC inhibitor, calphostin C is also a potent inhibitor of succinate-dependent mitochondrial electron transport.  相似文献   

6.
Immunohistochemical staining of human placenta revealed intense reactivity for amino terminal and midregional parathyroid-hormone-related protein (PTHrp) in the cytotrophoblast cells and weaker staining in the syncytiotrophoblasts. The cytotrophoblasts also displayed conspicuous surface staining with the monoclonal antibodies E11 and G11, which recognize a Ca2+ receptor mechanism regulating hormone release of parathyroid cells. Cytotrophoblasts enriched on Percoll gradients or by linking surface-bound E11 to magnetic beads revealed biphasic elevation of cytoplasmic Ca2+ ([Ca2+]i) upon a stepwise rise of external Ca2+ from 0.5 to 3.0 mM, with a half-maximal effect at 1.75 mM. Individual cytotrophoblasts identified by their E11 reactivity disclosed a temporary increase of [Ca2+]i upon elevation of external Mg2+, while Mn2+ triggered both a [Ca2+]i transient and an influx of itself. These effects were efficiently blocked by the G11 antibody. Depolarization with K+ or addition of the voltage-dependent Ca2+ channel blocker verapamil had only marginal effects on [Ca2+]i. Raised extracellular calcium inhibited release of PTHrp from the cells, and this inhibition was blocked by the G11 antibody. The virtually parathyroid-identical Ca2+ regulation of [Ca2+]i may mediate feedback control of PTHrp release from the cytotrophoblasts and thereby participate in the regulation of placental Ca2+ transport.  相似文献   

7.
Prolonged incubation of quiescent 3T3, 3T6, and A431 cells with the P2Y purinoceptor agonists ATP, ADP, or AMPPNP reduced the mitogenic responses of target cells to a further challenge by these agonists, as measured by [3H]thymidine incorporation. The mitogenic desensitization was agonist-specific, for no effect was seen on DNA synthesis stimulated by epidermal growth factor, insulin, bombesin, 12-0-tetradecanoyl-phorbol-12 acetate (TPA), or adenosine. The desensitization was completely reversible, since after a 24 hr incubation in the absence of ATP, the cells responded fully to the mitogenic action of ATP. The presence of a low level of cycloheximide blocked recovery, suggesting that down-regulation of the P2Y receptor may have occurred during desensitization. In Swiss 3T3 cells, stimulation of DNA synthesis occurs predominantly by activation of arachidonic acid release, followed by its oxidation to prostaglandin E2 and stimulation of adenylyl cyclase. Interestingly, prolonged preincubation with ATP produced a similar degree of desensitization of DNA synthesis and of ATP-dependent arachidonic acid release and cAMP accumulation. Furthermore, this was true for both wild type cells and mutants with a defective cAMP-dependent protein kinase (PKA). We conclude that homologous desensitization is likely due to uncoupling of the P2Y purinoceptor from phospholipase A2, and this process does not require activation of protein kinase A. © 1995 Wiley-Liss Inc.  相似文献   

8.
Stimulation of adenosine A1 receptors in the heart exerts cardioprotective effects by inhibiting norepinephrine (NE) release from sympathetic nerve endings. The intraneuronal signal transduction triggered by presynaptic adenosine A1 receptors is still not completely understood. The objective of the present study was to determine whether phospholipase C (PLC), protein kinase C (PKC), and adenylyl cyclase (AC) are involved in the adenosine A1 receptor-mediated inhibition of endogenous (stimulation-induced) NE release in isolated Langendorff-perfused rat hearts as an approach to elucidate their role in the cardiovascular system. Activation of adenosine A1-receptors with 2-chloro-N6-cyclopentyladenosine (CCPA) decreased cardiac NE release by approximately 40%. Inhibition of PLC with 1-[6-[[(17b)-3-methoxyestra-1,3,5(10)-trien-17-yl]amino]hexyl]-1H-pyrrole-2,5-dione (U 73122) as well as inhibition of PKC with 2-[1-(3-dimethylaminopropyl)indol-3-yl]-3-(indol-3-yl)maleimide (GF 109203X) slightly but significantly decreased NE release; however, the suppressive effect of CCPA on NE release was not modulated by U 73122 or GF 109203X. Blockade of AC with 9-(tetrahydro-2'-furyl)adenine (SQ 22536) reversed the inhibitory effect of CCPA on sympathetic neurotransmitter release irrespective of whether PKC was pharmacologically activated by phorbol 12-myristate 13-acetate or was not activated, indicating a PKC-independent but AC-dependent mechanism. Direct stimulation of AC with forskolin increased NE release by approximately 20%; an effect that was antagonized by either CCPA or SQ 22536. These data suggest that the adenosine A1 receptor-mediated inhibition of NE release does not involve PLC or PKC but does involve AC.  相似文献   

9.
Tumor-promoting phorbol esters and histamine induce tissue plasminogen activator (tPA) release from human endothelial cells in a dose- and time-dependent manner. Phorbol myristate acetate (PMA) and phorbol dibutyrate (PDBu) increased tPA concentration in the culture medium by eight to 12 times after 24 h with half-maximal stimulation at 13 and 55 nM, respectively. Maximum release by histamine was only half that of the phorbol esters and required 18 microM for half-maximal response. Kinetics of enhanced release was similar with both types of agonists: a 4-h lag period followed by a period of rapid release (4 h in PMA-treated and 10 h in histamine-treated cultures) followed by a decline toward pretreatment rates. The PMA and histamine effects were additive while histamine and thrombin, which also stimulates tPA release in human endothelial cells, were no more effective together than they were alone. Exposure of the cells to PMA, PDBu, or phorbol 12,13-didecanoate caused a loss of responsiveness to second treatment of the homologous agent that was time- and dose-dependent, sustained, and specific to active tumor promoters (half-maximal desensitization = 52 nM PDBu). A partial desensitized state was also established by histamine which resulted in a 60% lower response to a second challenge dose. Histamine-induced desensitization did not interfere with the PMA response. However, PMA-induced desensitization caused a 75% loss of the histamine and a 67% loss of the thrombin effects. These studies indicate that tumor promoters are potent agonists of tPA release from human endothelial cells and establish a desensitized state to further stimulation. Treatment of these cells with histamine has similar effects which may be mediated at least in part by pathways common to phorbol ester stimulation.  相似文献   

10.
Endothelial cells (EC) synthesize platelet-activating factor (PAF) when stimulated with agonists that bind to cell-surface receptors. We examined events that link receptor binding to synthesis of PAF by EC. Bovine EC stimulated with agonists that interact with specific cell-surface receptors accumulated PAF only in the presence of extracellular calcium. Hormonal stimulation of EC resulted in Ca2+ entry characteristic of that seen with receptor-operated calcium channels; Indo-1 measurements demonstrated that this inward flux of Ca2+ caused prolonged elevated levels of intracellular Ca2+. EC were exposed to melittin or theta toxin from Clostridium perfringens (pore-forming peptides that increase the permeability of the plasma membrane for small molecules) resulting in an inward flux of Ca2+ and accumulation of PAF. Ca2+ appears to be regulatory for PAF production at the level of phospholipase A2-mediated production of the PAF precursor 1-O-alkyl-2-lyso-sn-glycero-3-phosphocholine, as Ca2+ was required for the stimulated hydrolysis of 1-O-alkyl-2-acyl-sn-glycero-3-phosphocholine. PAF accumulation in EC is also regulated by protein kinase C. Pretreatment of EC with phorbol esters that activate protein kinase C or with dioctanoylglycerol, followed by stimulation, resulted in a 2-fold increase in stimulated PAF production. The regulatory effect of protein kinase C also appears to be at a phospholipase A2-mediated hydrolysis of 1-O-alkyl-2-acyl-sn-glycero-3-phosphocholine.  相似文献   

11.
12.
Fan B  Wang YX  Yao T  Zhu YC 《生理学报》2005,57(1):13-20
血管内皮细胞中血管内皮生长因子(vascular endothelial growthfactor,VEGF)的合成增加在促进血管新生的过程中起着非常重要的作用.然而低氧诱导VEGF分泌的细胞内信号转导机制还不是很清楚.人脐静脉内皮细胞系(ECV304)在低氧或常氧的状态下培养12~24 h后分别用实时定量PCR和Western blot的方法来检测VEGF mRNA的表达及ERK1/2和p38激酶的磷酸化水平.分泌到培养液中的VEGF蛋白用酶联免疫吸附(ELISA)的方法来检测.业已报道,ERK的抑制剂PD98059能够抑制低氧诱导的VEGF基因的表达,根据这个报道,我们发现在低氧情况下,ECV304细胞的ERK1/2磷酸化水平增高以及VEGF的合成增加等这些变化也能被PD98059所抑制.本次实验的新发现是p38激酶的激活在低氧诱导VEGF合成增加中的作用.p38激酶的抑制剂SB202190能抑制低氧诱导的VEGF合成增加.这些数据首次直接证实了p38激酶在低氧诱导人内皮细胞分泌VEGF增加过程中的作用.  相似文献   

13.
The increase of intracellular free calcium concentration ([Ca(2+)](i)) and protein kinase C (PKC) activity are two major early mitogenic signals to initiate proliferation of human peripheral T cells. Bacterial lipopolysaccharide (LPS) is nonmitogenic in human T cells. However, in the presence of monocytes, LPS becomes mitogenic to proliferate T cells. The aim of this study was to define the incompetency of LPS on two mitogenic signals in human peripheral T cells. T cells were isolated from human peripheral blood. [Ca(2+)](i) and pH(i) were determined by loading the cells with the fluorescent dyes, Fura-2 acetoxymethyl ester (Fura-2/AM) and 2',7'-bis(2-carboxyethyl)-5-(and 6)carboxyfluorescein acetoxymethyl ester (BCECF/AM). PKC activity was determined by protein kinase assay and cell proliferation was estimated from the incorporation of [(3)H]-thymidine. The results indicated that (1) LPS (10 microg/ml) stimulated PKC activity significantly within 5 min, reached a plateau at 30 min, and maintained that level for at least 2 h; and (2) LPS stimulated cytoplasmic alkalinization but did not affect the levels of [Ca(2+)](i) and [(3)H]-thymidine incorporation into T cells. Moreover, the combination of calcium ionophore A23187 with LPS significantly stimulated [(3)H]-thymidine incorporation into T cells. Thus, the results demonstrate that LPS failed to proliferate T cells, probably because of a lack of the machinery necessary to stimulate the mitogenic signal on [Ca(2+)](i) elevation.  相似文献   

14.
Bradykinin (BK)-induced release of arachidonic acid (AA) fromMadin-Darby canine kidney (MDCK) D1 cells was investigated. Phorbol12-myristate 13-acetate (PMA) caused a synergistic increase in BK- andA-23187-induced release of AA but alone had no effect on this release.Inhibition of protein kinase C (PKC) with bisindolmaleimide I (BIS)abolished the synergistic effects of PMA but did not affect AA releasecaused by BK or A-23187 alone. Downregulation of PKC with 100 nM PMAresulted in a reduction of AA release induced by BK or A-23187addition, which corresponded to a decrease in cytoplasmic phospholipaseA2(cPLA2) activity as measured incell extracts. Although Western blotting revealed no differences in cPLA2 expression as a result ofPMA treatment, phosphorylation of the enzyme, as assessed byphosphoserine content, was significantly reduced in PKC-depleted cells.These results imply that, with PKC downregulation, subsequent BKstimulation results in aCa2+-dependent translocation of aless phosphorylated, less active form ofcPLA2. Any stimulation of PKC byBK addition did not appear as a significant event in onset reponsesleading to AA release. On the other hand, inhibition of themitogen-activated protein kinase (MAPK) cascade with the MAPK kinaseinhibitor, PD-98059, significantly decreased BK-induced release of AA,a finding that, with our other results, points to the existence of aPKC-independent route for stimulation of MAPK and the propagation ofonset responses.

  相似文献   

15.
16.
The functional significance of protease-activated receptors (PARs) in endothelial cells is largely undefined, and the intracellular consequences of their activation are poorly understood. Here, we show that the serine protease thrombin, a PAR-1-selective peptide (TFLLRN), and SLIGKV (PAR-2-selective peptide) induce cyclooxygenase-2 (COX-2) protein and mRNA expression in human endothelial cells without modifying COX-1 expression. COX-2 induction was accompanied by sustained production of 6-keto-PGF1alpha, the stable hydrolysis product of prostacyclin, and this was inhibited by indomethacin and the COX-2-selective inhibitor NS398. PAR-1 and PAR-2 stimulation rapidly activated both ERK1/2 and p38MAPK, and pharmacological blockade of MEK with either PD98059 or U0126 or of p38MAPK by SB203580 or SB202190 strongly inhibited thrombin- and SLIGKV-induced COX-2 expression and 6-keto-PGF1alpha formation. Thrombin and peptide agonists of PAR-1 and PAR-2 increased luciferase activity in human umbilical vein endothelial cells infected with an NF-kappaB-dependent luciferase reporter adenovirus, and this, as well as PAR-induced 6-keto-PGF1alpha synthesis, was inhibited by co-infection with adenovirus encoding wild-type or mutated (Y42F) IkappaBalpha. Thrombin- and SLIGKV-induced COX-2 expression and 6-keto-PGF1alpha generation were markedly attenuated by the NF-kappaB inhibitor PG490 and partially inhibited by the proteasome pathway inhibitor MG-132. Activation of PAR-1 or PAR-2 promoted nuclear translocation and phosphorylation of p65-NF-kappaB, and thrombin-induced but not PAR-2-induced p65-NF-kappaB phosphorylation was reduced by inhibition of MEK or p38MAPK. Activation of PAR-4 by AYPGKF increased phosphorylation of ERK1/2 and p38MAPK without modifying NF-kappaB activation or COX-2 induction. Our data show that PAR-1 and PAR-2, but not PAR-4, are coupled with COX-2 expression and sustained endothelial production of vasculoprotective prostacyclin by mechanisms that depend on ERK1/2, p38MAPK, and IkappaBalpha-dependent NF-kappaB activation.  相似文献   

17.
We investigated whether human fetal adrenal cells pretreated with or continuously exposed to adrenocorticotropic hormone (ACTH) would develop refractoriness of the steroidogenic response. Fetal adrenal glands from fetuses of 18-24 wk gestation, were studied. Fetal zone cells were pretreated with increasing doses of ACTH (0-10(-6) M) for 24 h and then restimulated with a single dose of ACTH (10(-6) M) for an additional 24 h. Regardless of the dose of ACTH in the first incubation, the cells responded to the second stimulation with a 2- to 6-fold increase in dehydroepiandrosterone sulfate (DHAS) production. When human fetal adrenal cells were incubated in the continuous presence of 10(-8) M ACTH for 72 h, DHAS production was increased compared to that of the untreated cultures (5-fold at 24 h and 50-fold at 72 h), and the cells remained responsive during the entire experimental period. In contrast, human adult adrenal cells showed a significant decrease of the steroidogenic response after 48 h of ACTH treatment. Twenty-four hours of incubation with increasing doses of ACTH also increased the basal steroidogenic capacity of the fetal adrenal cells. One of the steroidogenic enzymatic steps stimulated by ACTH pretreatment was that of 17 alpha-hydroxylase/17, 20-lyase, since conversion of pregnenolone and 17 alpha-hydroxypregnenolone to DHAS was increased in a dose-dependent manner. These results demonstrate that human fetal adrenal cells, in contrast to those of the adult, do not become desensitized to ACTH.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
In human embryonic kidney (HEK) cells stably transfected with green fluorescent protein targeted to the endoplasmic reticulum (ER), elevation of intracellular Ca2+ ([Ca2+]i) altered ER morphology, making it appear punctate. Electron microscopy revealed that these punctate structures represented circular and branched rearrangements of the endoplasmic reticulum, but did not involve obvious swelling or pathological fragmentation. Activation of protein kinase C with phorbol 12-myristate 13-acetate (PMA), prevented the effects of ionomycin on ER structure without affecting the elevation of [Ca2+]i. These results suggest that protein kinase C activation alters cytoplasmic or ER components underlying the effects of high [Ca2+]i on ER structure. Treatment of HEK cells with PMA also reduced the size of the thapsigargin-sensitive Ca2+ pool and inhibited Ca2+ entry in response to thapsigargin. Thus, protein kinase C activation has multiple actions on the calcium storage and signalling function of the endoplasmic reticulum in HEK cells: (1) reduced intracellular Ca2+ storage capacity, (2) inhibition of capacitative Ca2+ entry, and (3) protection of the endoplasmic reticulum against the effects of high [Ca2+]i.  相似文献   

19.
Histamine stimulation of cultured human umbilical vein endothelial cells induced dose- and time-dependent increases in glycerophosphoinositol (GroPIns), inositol-1-phosphate (InsP), inositolbisphosphate (InsP2) and inositoltrisphosphate (InsP3) in addition to release of thromboxane A2 and prostacyclin. Increases in InsP2 and InsP3 were immediate while increases in GroPIns and InsP occurred only after 1 min. Thromboxane A2 and prostacyclin release paralleled GroPIns and InsP production. The data indicate that, in endothelial cells, histamine evokes early hydrolysis of polyphosphoinositides, and that subsequent mobilization of arachidonic acid for thromboxane and prostacyclin synthesis involves both deacylation and phosphodiesteratic cleavage of phosphatidylinositol.  相似文献   

20.
The demonstration that GnRH provokes the accumulation of diacylglycerol and the redistribution of protein kinase C to the membrane fraction in gonadotropes suggests a role for this enzyme as a mediator of GnRH action. In the present work we have investigated the possibility that protein kinase C might mediate GnRH-stimulated receptor down-regulation and desensitization. Pretreatment of pituitary cells for 6 h with GnRH (10(-11) - 10(-6) M) caused a biphasic change in GnRH receptor number [the maximum binding (Bmax) for 125I-buserelin binding was increased by 10(-10) M GnRH and reduced by 10(-7) and 10(-6) M GnRH] and caused desensitization (pretreatment with 10(-9) - 10(-6) M GnRH reduced the proportion of cellular LH released in a subsequent challenge with GnRH). Pretreatment for 6 h with 0.2-200 nM phorbol myristate acetate (a protein kinase C-activating phorbol ester) did not cause desensitization, but at 200 nM, did reduce GnRH receptor number. As a further test of the requirement for protein kinase C for GnRH action, cells were depleted of all measurable protein kinase C (and rendered unresponsive to protein kinase C activators) by prior treatment with a high dose of phorbol myristate acetate (500 nM for 6 h followed by 12 h in plating medium). Depletion of protein kinase C did not alter the ability of GnRH to desensitize gonadotropes or down-regulate its own receptors. The demonstration that the effects of GnRH on receptor number and gonadotrope responsiveness are neither blocked by depletion of protein kinase C nor entirely mimicked by activation of protein kinase C suggests that these effects of the releasing hormone are not solely mediated by this enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号