首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Halohydrin dehalogenase (HheC) from Agrobacterium radiobacter AD1 catalyzes the dehalogenation of vicinal haloalcohols by an intramolecular substitution reaction, resulting in the formation of the corresponding epoxide, a halide ion, and a proton. Halide release is rate-limiting during the catalytic cycle of the conversion of (R)-p-nitro-2-bromo-1-phenylethanol by the enzyme. The recent elucidation of the X-ray structure of HheC showed that hydrogen bonds between the OH group of Tyr187 and between the Odelta1 atom of Asn176 and Nepsilon1 atom of Trp249 could play a role in stabilizing the conformation of the halide-binding site. The possibility that these hydrogen bonds are important for halide binding and release was studied using site-directed mutagenesis. Steady-state kinetic studies revealed that mutant Y187F, which has lost both hydrogen bonds, has a higher catalytic activity (k(cat)) with two of the three tested substrates compared to the wild-type enzyme. Mutant W249F also shows an enhanced k(cat) value with these two substrates, as well as a remarkable increase in enantiopreference for (R)-p-nitro-2-bromo-1-phenylethanol. In case of a mutation at position 176 (N176A and N176D), a 1000-fold lower catalytic efficiency (k(cat)/K(m)) was obtained, which is mainly due to an increase of the K(m) value of the enzyme. Pre-steady-state kinetic studies showed that a burst of product formation precedes the steady state, indicating that halide release is still rate-limiting for mutants Y187F and W249F. Stopped-flow fluorescence experiments revealed that the rate of halide release is 5.6-fold higher for the Y187F mutant than for the wild-type enzyme and even higher for the W249F enzyme. Taken together, these results show that the disruption of two hydrogen bonds around the halide-binding site increases the rate of halide release and can enhance the overall catalytic activity of HheC.  相似文献   

2.
RS-8359, (+/-)-4-(4-cyanoanilino)-5,6-dihydro-7-hydroxy-7H-cyclopenta[d]-pyrimidine is a selective and reversible MAO-A inhibitor. The (S)-enantiomer of RS-8359 has been demonstrated to be inverted to the (R)-enantiomer after oral administration to rats. In the current study, we investigated the chiral inversion mechanism and the properties of involved enzymes using rat liver subcellular fractions. The 7-hydroxy function of RS-8359 was oxidized at least by the two different enzymes. The cytosolic enzyme oxidized enantiospecifically the (S)-enantiomer with NADP as a cofactor. On the other hand, the microsomal enzyme catalyzed more preferentially the oxidation of the (S)-enantiomer than the (R)-enantiomer with NAD as a cofactor. With to product enantioselectivity of reduction of the 7-keto derivative, it was found that only the alcohol bearing (R)-configuration was formed by the cytosolic enzyme with NADPH and the microsomal enzyme with NADH at almost equal rate. The reduction rate was much larger than the oxidation rate of 7-hydroxy group. The results suggest that the chiral inversion might occur via an enantioselectivity of consecutive two opposing reactions, oxidation and reduction of keto-alcohol group. In this case, the direction of chiral inversion from the (S)-enantiomer to the (R)-enantiomer is governed by the enantiospecific reduction of intermediate 7-keto group to the alcohol with (R)-configuration. The enzyme responsible for the enantiospecific reduction of the 7-keto group was purified from rat liver cytosolic fractions and identified as 3alpha-hydroxysteroid dehydrogenase (3alpha-HSD) via database search of peptide mass data obtained by nano-LC/MS/MS.  相似文献   

3.
Digits JA  Hedstrom L 《Biochemistry》1999,38(8):2295-2306
IMP dehydrogenase (IMPDH) catalyzes the oxidation of IMP to XMP with conversion of NAD+ to NADH. This reaction is the rate-limiting step in de novo guanine nucleotide biosynthesis. IMPDH is a target for antitumor, antiviral, and immunosuppressive chemotherapy. We have determined the complete kinetic mechanism for IMPDH from Tritrichomonas foetus using ligand binding, isotope effect, pre-steady-state kinetic, and rapid quench kinetic experiments. Both substrates bind to the free enzyme, which suggests a random mechanism. IMP binds to the enzyme in two steps. Two steps are also involved when IMP binds to a mutant IMPDH in which the active site Cys is substituted with a Ser. This observation suggests that this second step may be a conformational change of the enzyme. No Vm isotope effect is observed when [2-2H]IMP is the substrate which indicates that hydride transfer is not rate-limiting. This result is confirmed by the observation of a pre-steady-state burst of NADH production when monitored by absorbance. However, when NADH production was monitored by fluorescence, the rate constant for the exponential phase is 5-10-fold lower than when measured by absorbance. This observation suggests that the fluorescence of enzyme-bound NADH is quenched and that this transient represents NADH release from the enzyme. The time-dependent formation and decay of [14C]E-XMP intermediates was monitored using rapid quench kinetics. These experiments indicate that both NADH release and E-XMP hydrolysis are rate-limiting and suggest that NADH release precedes hydrolysis of E-XMP.  相似文献   

4.
Halohydrin dehalogenase (HheC) from Agrobacterium radiobacter AD1 is a homotetrameric protein containing four tryptophan residues per subunit. The fluorescence properties of the enzyme are strongly influenced by halide binding. To examine the role of the tryptophans (W139, W192, W238, and W249) in halide binding and catalysis, they were individually mutated to a phenylalanine. All mutations, except for W238F, influenced the enzymatic properties. Mutating W192 to phenylalanine inactivated the enzyme and led to dissociation into dimers and monomers. In the structure of HheC, residue W139 and residue W249 from the opposite subunit are close to the active site of the enzyme. Substitution of W139 mainly affected K(m) values with all tested substrates and reduced the enantiopreference for p-nitro-2-bromo-1-phenylethanol. Replacing W249 increased both k(cat) and K(m) values with all tested substrates except for the (S)-enantiomer of p-nitro-2-bromo-1-phenylethanol, for which k(cat) was 3-fold decreased, resulting in a 6-fold increase of the enantioselectivity. Fluorescence measurements revealed that in the ligand-free state the intrinsic protein fluorescence of mutant W139F is higher than that of the wild-type enzyme, while the fluorescence intensity of mutants W238F and W249F was lower. The fluorescence intensities of the W238F and W249F enzymes were increased when they were unfolded or when bromide was added, whereas the fluorescence of mutant W139F was not increased by unfolding or addition of bromide. These results demonstrate that the fluorescence of residues W238 and W249 is partially quenched in the folded ligand-free state, and that W139 is completely quenched and acts as an energy acceptor for the other tryptophan residues as well. Changes of the maximum fluorescence emission wavelength of the HheC variants and the results of acrylamide quenching experiments confirmed that bromide binding induces a local conformational change around the active site, resulting in residue W139 and the quencher group being separated.  相似文献   

5.
Pol E  Wang L 《Biochemistry》2006,45(2):513-522
Surface plasmon resonance (SPR) detection technology was employed to investigate the kinetic mechanism of deoxyadenosine kinase from Mycoplasma mycoides ssp. mycoides SC. In our experimental approach, the enzyme was attached to the sensor surface, the reactants were injected in the mobile phase, and the product-enzyme complex formation was measured using the fact that the rate of product formation exceeds that of its dissociation. The pre-steady-state analysis of deoxyguanosine phosphorylation showed the presence of a burst phase, which is consistent with product dissociation being a rate-limiting step. High activity of the immobilized enzyme was demonstrated by analyzing the reaction mixture eluted from the chip and by determining the Michaelis-Menten constants for several phosphate acceptors (e.g., deoxyadenosine) and phosphate donors (e.g., ATP) using SPR detection. These values were in good agreement with those reported previously [Wang, L. et al. (2001) Mol. Microbiol. 42, 1065-1073]. The bisubstrate initial rate pattern obtained was characteristic of a sequential kinetic mechanism. Because in the method applied here it is the mass change on the surface that is monitored, a new mathematical approach to interpreting product inhibition experiments was proposed. According to that approach, product inhibition studies, supported by product binding experiments, indicated that the reaction mechanism was of Bi Bi sequential ordered type, involving the formation of a ternary complex, in which ATP and deoxyadenosine bound sequentially, followed by a transfer of the phosphate group, and an ordered release of products with ADP dissociating before dAMP.  相似文献   

6.
(S)-Hydroxynitrile lyase (EC 4.1.2.39) from Hevea brasiliensis(rubber tree) catalyzes the reversible cleavage of cyanohydrins to aldehydes or ketones and prussic acid (HCN). Enzyme kinetics in both directions was studied on a model system with mandelonitrile, benzaldehyde, and HCN using two different methods-initial rate measurements and progress curve analysis. To discriminate between possible mechanisms with the initial rate method, product inhibition was studied. Benzaldehyde acts as a linear competitive inhibitor against mandelonitrile whereas HCN shows S-linear I-parabolic mixed-type inhibition. These results indicate an Ordered Uni Bi mechanism with the formation of a dead-end complex of enzyme, (S)-mandelonitrile and HCN. Prussic acid is the first product released from the enzyme followed by benzaldehyde. For progress curve analysis, a kinetic model of an Ordered Uni Bi mechanism including a dead-end complex, enzyme inactivation, and the chemical parallel reaction was set up, which described the experimental values very well. From the reaction rates obtained the kinetic constants were calculated and compared with the ones obtained from the initial rate method. Good agreement could be achieved between the two methods supporting the suggested mechanism. Copyright 1999 John Wiley & Sons, Inc.  相似文献   

7.
Haloalkane dehalogenase from Rhodococcus rhodochrous NCIMB 13064 (DhaA) catalyzes the hydrolysis of carbon-halogen bonds in a wide range of haloalkanes. We examined the steady-state and pre-steady-state kinetics of halopropane conversion by DhaA to illuminate mechanistic details of the dehalogenation pathway. Steady-state kinetic analysis of DhaA with a range of halopropanes showed that bromopropanes had higher k(cat) and lower K(M) values than the chlorinated analogues. The kinetic mechanism of dehalogenation was further studied using rapid-quench-flow analysis of 1,3-dibromopropane conversion. This provided a direct measurement of the chemical steps in the reaction mechanism, i.e., cleavage of the carbon-halogen bond and hydrolysis of the covalent alkyl-enzyme intermediate. The results lead to a minimal mechanism consisting of four main steps. The occurrence of a pre-steady-state burst, both for bromide and 3-bromo-1-propanol, suggests that product release is rate-limiting under steady-state conditions. Combining pre-steady-state burst and single-turnover experiments indicated that the rate of carbon-bromine bond cleavage was indeed more than 100-fold higher than the steady-state k(cat). Product release occurred with a rate constant of 3.9 s(-1), a value close to the experimental k(cat) of 2.7 s(-1). Comparing the kinetic mechanism of DhaA with that of the corresponding enzyme from Xanthobacter autotrophicus GJ10 (DhlA) shows that the overall mechanisms are similar. However, whereas in DhlA the rate of halide release represents the slowest step in the catalytic cycle, our results suggest that in DhaA the release of 3-bromo-1-propanol is the slowest step during 1,3-dibromopropane conversion.  相似文献   

8.
The extent of substrate enantioselectivity and regioselectivity of a series of aliphatic 2,3-dialkyl- and trialkylsubstituted oxiranes in their in vitro epoxide-hydrolase-catalyzed hydrolysis depends on the size of the alkyl residues and on the substitution pattern of the oxirane ring. The enzyme-catalyzed hydrolysis of cis-oxiranes, containing at least one methyl substituent, shows complete or nearly complete substrate enantioselectivity and regioselectivity with nucleophilic attack by water occurring with inversion of configuration at the methylsubstituted ring carbon atom of (S)-configuration. In the hydrolysis of the isomeric trans-oxiranes, both enantiomers are metabolized with a higher rate for the (2S;3S)-enantiomer. The conversion of trimethyloxirane occurs with high substrate enantioselectivity in favor of the (S)-enantiomer and with complete regioselectivity at the monomethylsubstituted ring carbon atom. The differentiation of the enantiotopic ring carbon atoms (product enantioselectivity) in the smallest aliphatic meso-oxirane, cis-2,3-dimethyloxirane, leads to (2R;3R)-butane-2,3-diol with ee = 86%. cis-2-Ethyl-3-propyloxirane, possessing alkyl residues larger than methyl, represents an extremely poor substrate in the epoxide-hydrolase-catalyzed hydrolysis process.  相似文献   

9.
S6K1 is a member of the AGC subfamily of serine-threonine protein kinases, whereby catalytic activation requires dual phosphorylation of critical residues in the conserved T-loop (Thr-229) and hydrophobic motif (Thr-389). Previously, we described production of the fully activated catalytic kinase domain construct, His(6)-S6K1alphaII(DeltaAID)-T389E. Now, we report its kinetic mechanism for catalyzing phosphorylation of a model peptide substrate (Tide, RRRLSSLRA). First, two-substrate steady-state kinetics and product inhibition patterns indicated a Steady-State Ordered Bi Bi mechanism, whereby initial high affinity binding of ATP (K(d)(ATP)=5-6 microM) was followed by low affinity binding of Tide (K(d)(Tide)=180 microM), and values of K(m)(ATP)=5-6 microM and K(m)(Tide)=4-5 microM were expressed in the active ternary complex. Global curve-fitting analysis of ATP, Tide, and ADP titrations of pre-steady-state burst kinetics yielded microscopic rate constants for substrate binding, rapid chemical phosphorylation, and rate-limiting product release. Catalytic trapping experiments confirmed rate-limiting steps involving release of ADP. Pre-steady-state kinetic and catalytic trapping experiments showed osmotic pressure to increase the rate of ADP release; and direct binding experiments showed osmotic pressure to correspondingly weaken the affinity of the enzyme for both ADP and ATP, indicating a less hydrated conformational form of the free enzyme.  相似文献   

10.
Initial rate kinetic studies with bovine liver fructose-1,6-bisphosphatase were carried out in both directions of the reaction to determine the sequence of product release from the enzyme. Product inhibition by fructose-6-P was found to be S-linear, I-linear noncompetitive relative to fructose-1,6-bisphosphate, whereas inorganic orthophosphate was determined to be linear competitive with respect to the substrate. The kinetics of the reverse reaction were studied by coupling the phosphatase reaction to the aldolase, triosephosphate isomerase, and glycerolphosphate dehydrogenase reactions. The kinetic results were found to be in harmony with the Uni Bi ordered and random sequential mechanisms as well as a Uni Bi ping-pong mechanism. The nomenclature is that of Cleland (Cleland, W.W. (1963) Biochim. Biophys. Acta 67, 104-137). However, nonkinetic considerations, when taken together with the kinetic results, suggest that the steady state ordered Uni Bi mechanism is the most likely possibility. There is evidence that isomerization of the binary complex of enzyme and phosphate occurs in the kinetic mechanism. Although magnesium is required for the reverse reaction, there is no evidence to suggest that the enzyme discriminates between the magnesium-associated or divalent cation-free forms of the substrates.  相似文献   

11.
To investigate the function of aspartic acid residue 101 and arginine residue 166 in the active site of Escherichia coli alkaline phosphatase (EAP), two single mutants D101S (Asp 101 →Ser) and R166K (Arg 166 →Lys) and a double mutant D101S/R166K of EAP were generated through site-directed mutagenesis based on over-lap PCR method. Their enzymatic kinetic properties, thermal stabilities and possible reaction mechanism were explored. In the presence of inorganic phosphate acceptor, 1 M diethanolamine buffer, the k cat for D101S mutant enzyme increased 10-fold compared to that of wild-type EAP. The mutant R166K has a 2-fold decrease of k cat relative to the wild-type EAP, but the double mutant D101S/R166K was in the middle of them, indicative of an additive effect of these two mutations. On the other hand, the catalytic efficiencies of mutant enzymes are all reduced because of a substantial increase of K m values. All three mutants were more resistant to phosphate inhibitor than the wild-type enzyme. The analysis of the kinetic data suggests that (1) the D101S mutant enzyme obtains a higher catalytic activity by allowing a faster release of the product; (2) the R166K mutant enzyme can reduce the binding of the substrate and phosphate competitive inhibitor; (3) the double mutant enzyme has characteristics of both quicker catalytic turnover number and decreased affinity for competitive inhibitor. Additionally, pre-steady-state kinetics of D101S and D101S/R166K mutants revealed a transient burst followed by a linear steady state phase, obviously different from that of wild-type EAP, suggesting that the rate-limiting step has partially change from the release of phosphate from non-covalent E-Pi complex to the hydrolysis of covalent E-Pi complex for these two mutants.  相似文献   

12.
To investigate the function of aspartic acid residue 101 and arginine residue 166 in the active site of Escherichia coli alkaline phosphatase (EAP), two single mutants D101S (Asp 101 &#77 Ser) and R166K (Arg 166 &#77 Lys) and a double mutant D101S/R166K of EAP were generated through site-directed mutagenesis based on over-lap PCR method. Their enzymatic kinetic properties, thermal stabilities and possible reaction mechanism were explored. In the presence of inorganic phosphate acceptor, 1 M diethanolamine buffer, the k cat for D101S mutant enzyme increased 10-fold compared to that of wild-type EAP. The mutant R166K has a 2-fold decrease of k cat relative to the wild-type EAP, but the double mutant D101S/R166K was in the middle of them, indicative of an additive effect of these two mutations. On the other hand, the catalytic efficiencies of mutant enzymes are all reduced because of a substantial increase of K m values. All three mutants were more resistant to phosphate inhibitor than the wild-type enzyme. The analysis of the kinetic data suggests that (1) the D101S mutant enzyme obtains a higher catalytic activity by allowing a faster release of the product; (2) the R166K mutant enzyme can reduce the binding of the substrate and phosphate competitive inhibitor; (3) the double mutant enzyme has characteristics of both quicker catalytic turnover number and decreased affinity for competitive inhibitor. Additionally, pre-steady-state kinetics of D101S and D101S/R166K mutants revealed a transient burst followed by a linear steady state phase, obviously different from that of wild-type EAP, suggesting that the rate-limiting step has partially change from the release of phosphate from non-covalent E-Pi complex to the hydrolysis of covalent E-Pi complex for these two mutants.  相似文献   

13.
Isocitrate lyase was purified from Phycomyces blakesleeanus N.R.R.L. 1555(-). The native enzyme has an Mr of 240,000. The enzyme appeared to be a tetramer with apparently identical subunits of Mr 62,000. The enzyme requires Mg2+ for activity, and the data suggest that the Mg2(+)-isocitrate complex is the true substrate and that Mg2+ ions act as a non-essential activator. The kinetic mechanism of the enzyme was investigated by using product and dead-end inhibitors of the cleavage and condensation reactions. The data indicated an ordered Uni Bi mechanism and the kinetic constants of the model were calculated. The spectrophotometric titration of thiol groups in Phycomyces isocitrate lyase with 5.5'-dithiobis-(2-nitrobenzoic acid) gave two free thiol groups per subunit of enzyme in the native state and three in the denatured state. The isocitrate lyase was completely inactivated by iodoacetate, with non-linear kinetics. The inactivation data suggest that the enzyme has two classes of modifiable thiol groups. The results are also in accord with the formation of a non-covalent enzyme-inhibitor complex before irreversible modification of the enzyme. Both the equilibrium constants for formation of the complex and the first-order rate constants for the irreversible modification step were determined. The partial protective effect of isocitrate and Mg2+ against iodoacetate inactivation was investigated in a preliminary form.  相似文献   

14.
Dihydrofolate reductase from Mycobacterium tuberculosis (MtDHFR) catalyzes the NAD(P)H-dependent reduction of dihydrofolate, yielding NAD(P)(+) and tetrahydrofolate, the primary one-carbon unit carrier in biology. Tetrahydrofolate needs to be recycled so that reactions involved in dTMP synthesis and purine metabolism can be maintained. Previously, steady-state studies revealed that the chemical step significantly contributes to the steady-state turnover number, but that a step after the chemical step was likely limiting the reaction rate. Here, we report the first pre-steady-state investigation of the kinetic sequence of the MtDHFR aiming to identify kinetic intermediates, and the identity of the rate-limiting steps. This kinetic analysis suggests a kinetic sequence comprising two parallel pathways with a rate-determining product release. Although product release is likely occurring in a random fashion, there is a slight preference for the release of THF first, a kinetic sequence never observed for a wild-type dihydrofolate reductase of any organism studied to date. Temperature studies were conducted to determine the magnitude of the energetic barrier posed by the chemical step, and the pH dependence of the chemical step was studied, demonstrating an acidic shift from the pK(a) observed at the steady state. The rate constants obtained here were combined with the activation energy for the chemical step to compare energy profiles for each kinetic sequence. The two parallel pathways are discussed, as well as their implications for the catalytic cycle of this enzyme.  相似文献   

15.
Halohydrin dehalogenase from Agrobacterium radiobacter AD1 (HheC) is a valuable tool in the preparation of R enantiomers of epoxides and β-substituted alcohols. In contrast, the halohydrin dehalogenase from Arthrobacter sp. AD2 (HheA) shows a low S enantioselectivity toward most aromatic substrates. Here, three amino acids (V136, L141, and N178) located in the two neighboring active-site loops of HheA were proposed to be the key residues for controlling enantioselectivity. They were subjected to saturation mutagenesis aimed at evolving an S-selective enzyme. This led to the selection of two outstanding mutants (the V136Y/L141G and N178A mutants). The double mutant displayed an inverted enantioselectivity (from S enantioselectivity [E(S)] = 1.7 to R enantioselectivity [E(R)] = 13) toward 2-chloro-1-phenylethanol without compromising enzyme activity. Strikingly, the N178A mutant showed a large enantioselectivity improvement (E(S) > 200) and a 5- to 6-fold-enhanced specific activity toward (S)-2-chloro-1-phenylethanol. Further analysis revealed that those mutations produced some interference for the binding of nonfavored enantiomers which could account for the observed enantioselectivities. Our work demonstrated that those three active-site residues are indeed crucial in modulating the enantioselectivity of HheA and that a semirational design strategy has great potential for rapid creation of novel industrial biocatalysts.  相似文献   

16.
Shaffer J  Adams JA 《Biochemistry》1999,38(17):5572-5581
The kinetic mechanism for the catalytic subunit of protein kinase A was evaluated using physiological concentrations of free magnesium (0.5 mM) and a rapid quench flow technique. When the enzyme is pre-equilibrated with ATP, the peptide substrate, LRRASLG (Kemptide), is phosphorylated in a biphasic manner with a rapid, exponential "burst" phase (kb) followed by a slower, linear phase (kL) that corresponds to the steady-state kinetic rate. Both the amplitude and the substrate-rate dependence of the initial, burst phase indicate that the rate of phosphoryl transfer is fast (approximately 500 s-1) and does not limit turnover (45 s-1). Viscosity studies indicate that, while Kemptide is in rapid equilibrium, ATP does not exchange rapidly with the active site and kcat/KATP is limited by the rate constant for nucleotide encounter. When the pre-steady-state kinetic experiments are initiated with ATP, a lag phase is observed at low ATP concentrations consistent with rate-limiting association. At high ATP concentrations (>1 mM), a burst phase is observed but the rate and amplitude are low on the basis of the bimolecular rate constant for ATP association and the rate constant for phosphoryl transfer. The kinetic data indicate that the phosphoryl transfer step is fast at physiological magnesium concentrations, but an ATP-linked conformational change precedes this step, limiting the burst phase rate constant. Simulations of the pre-steady-state kinetic transients indicate that turnover (45 s-1) is limited both by net product release (70 s-1) and by this structural change (170 s-1). This structural change may also occur at high free magnesium concentrations, but it must be significantly faster than 170 s-1 and, consequently, not rate-limiting for turnover (kcat = 20 s-1 at 10 mM free Mg2+). We propose that this conformational event is an obligatory component of the kinetic pathway and includes a movement of the catalytic residues necessary for supporting phosphoryl group donation.  相似文献   

17.
Liu J  Murkin AS 《Biochemistry》2012,51(26):5307-5319
As part of the non-mevalonate pathway for the biosynthesis of the isoprenoid precursor isopentenyl pyrophosphate, 1-deoxy-d-xylulose-5-phosphate (DXP) reductoisomerase (DXR) catalyzes the conversion of DXP into 2-C-methyl-d-erythritol 4-phosphate (MEP) by consecutive isomerization and NADPH-dependent reduction reactions. Because this pathway is essential to many infectious organisms but is absent in humans, DXR is a target for drug discovery. In an attempt to characterize its kinetic mechanism and identify rate-limiting steps, we present the first complete transient kinetic investigation of DXR. Stopped-flow fluorescence measurements with Mycobacterium tuberculosis DXR (MtDXR) revealed that NADPH and MEP bind to the free enzyme and that the two bind together to generate a nonproductive ternary complex. Unlike the Escherichia coli orthologue, MtDXR exhibited a burst in the oxidation of NADPH during pre-steady-state reactions, indicating a partially rate-limiting step follows chemistry. By monitoring NADPH fluorescence during these experiments, the transient generation of MtDXR·NADPH·MEP was observed. Global kinetic analysis supports a model involving random substrate binding and ordered release of NADP(+) followed by MEP. The partially rate-limiting release of MEP occurs via two pathways-directly from the binary complex and indirectly via the MtDXR·NADPH·MEP complex-the partitioning being dependent on NADPH concentration. Previous mechanistic studies, including kinetic isotope effects and product inhibition, are discussed in light of this kinetic mechanism.  相似文献   

18.
The propionyl-CoA synthetase (PrpE) enzyme of Salmonella enterica catalyzes the first step of propionate catabolism, i.e., the activation of propionate to propionyl-CoA. The PrpE enzyme was purified, and its kinetic properties were determined. Evidence is presented that the conversion of propionate to propionyl-CoA proceeds via a propionyl-AMP intermediate. Kinetic experiments demonstrated that propionate was the preferred acyl substrate (kcat/Km = 1644 mM(-1) x s(-1)). Adenosine 5'-propyl phosphate was a potent inhibitor of the enzyme, and inhibition kinetics identified a Bi Uni Uni Bi Ping Pong mechanism for the reaction catalyzed by the PrpE enzyme. Site-directed mutagenesis was used to change the primary sequence of the wild-type protein at positions G245A, P247A, K248A, K248E, G249A, K592A, and K592E. Mutant PrpE proteins were purified, and the effects of the mutations on enzyme activity were investigated. Both PrpEK592 mutant proteins (K592A and K592E) failed to convert propionate to propionyl-CoA, and plasmids containing these alleles of prpE failed to restore growth on propionate of S. enterica carrying null prpE alleles on their chromosome. Both PrpEK592 mutant proteins converted propionyl-AMP to propionyl-CoA, suggesting residue K592 played no discernible role in thioester bond formation. To the best of our knowledge, these mutant proteins are the first acyl-CoA synthetases reported that are defective in adenylation activity.  相似文献   

19.
S-Adenosyl-L-methionine:macrocin O-methyltransferase catalyzes conversion of macrocin to tylosin, the terminal and main rate-limiting step of tylosin biosynthesis in Streptomyces fradiae. The O-methyltransferase was stabilized in vitro and purified to electrophoretic homogeneity. The purified enzyme had a molecular weight of 65,000 and consisted of two identical subunits of 32,000 with an isoelectric point of 4.5. The enzyme required Mg2+, Mn2+, or Co2+ for maximal activity and was catalytically optimal at pH 7.5-8.0 and 31 degrees C. The O-methyltransferase catalyzed the conversion of macrocin to tylosin at a stoichiometric ratio of 1:1. The enzyme also mediated conversion of lactenocin----desmycosin. The corresponding Vmax/Km ratios for the two analogous conversions were similar, and both enzymic conversions were susceptible to extensive competitive and noncompetitive inhibitions by macrolide metabolites. Steady-state kinetic studies for initial velocity, substrate analogue, and product inhibitions have allowed formulation of Ordered Bi Bi as the reaction mechanism for macrocin O-methyltransferase.  相似文献   

20.
Like arginyl-tRNA synthetases from other organisms, human placental arginyl-tRNA synthetase catalyzes the arginine-dependent ATP-PPi exchange reaction only in the presence of tRNA. We have investigated the order of substrate addition and product release of this human enzyme in the tRNA aminoacylation reaction by using initial velocity experiments and dead-end product inhibition studies. The kinetic patterns obtained are consistent with a random Ter Ter sequential mechanism, instead of the common Bi Uni Uni Bi ping-pong mechanism for all other human aminoacyl-tRNA synthetases so far investigated in this respect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号