首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CDH1 is a cell-cell adhesion molecule expressed in the epithelium to coordinate key morphogenetic processes, establish cell polarity, and regulate epithelial differentiation and proliferation. To determine the role of CDH1 in the mouse uterus, Cdh1 was conditionally ablated by crossing Pgr-Cre and Cdh1-flox mice, and the phenotype was characterized. We found that loss of Cdh1 results in a disorganized cellular structure of the epithelium and ablation of endometrial glands in the neonatal uterus. Cdh1(d/d) mice lost adherens junctions (CTNNB1 and CTNNA1) and tight junctions (claudin, occludin, and ZO-1 proteins) in the neonatal uterus, leading to loss of epithelial cell-cell interaction. Ablation of Cdh1 induced abnormal epithelial proliferation and massive apoptosis, and disrupted Wnt and Hox gene expression in the neonatal uterus. Although the uteri of Cdh1(d/d) mice did not show any myometrial defects, ablation of Cdh1 inhibited expression of epithelial (cytokeratin 8) and stromal (CD10) markers. Cdh1(d/d) mice were infertile because of defects during implantation and decidualization. Furthermore, we showed in the model of conditional ablation of both Cdh1 and Trp53 in the uterus that interrupting cell cycle regulation through the loss of Cdh1 leads to abnormal uterine development. The uteri of Cdh1(d/d) Trp53(d/d) mice exhibited histological features of endometrial carcinomas with myometrial invasion. Collectively, these findings suggest that CDH1 has an important role in structural and functional development of the uterus as well as adult uterine function. CDH1 has a capacity to control cell fate by altering directional cell proliferation and apoptosis.  相似文献   

2.
Tissue inhibitor of metalloproteinase-1 (TIMP-1) is a multifunctional protein capable of regulating a variety of biological processes in a wide array of tissue and cell types. We have previously demonstrated that TIMP-1 deficient mice exhibit alterations in normal uterine morphology and physiology. Most notably, absence of TIMP-1 is associated with an altered uterine phenotype characterized by profound branching of the uterine lumen and altered adenogenesis. To begin to assess the mechanism by which TIMP-1 may control these uterine events, we utilized steroid-treated ovariectomized wild-type and TIMP-1 null mice exposed to estrogen for 72 hr. Administration of estrogen to TIMP-1 deficient mice resulted in development of an abnormal uterine histo-architecture characterized by increased endometrial gland density, luminal epithelial cell height, and abnormal lumen structure. To determine the mediators which may contribute to the abnormal uterine morphology in the TIMP-1 deficient mice, cDNA microarray analysis was performed. Analysis revealed that expression of two plasmin inhibitors (serpbinb2 and serbinb7) was significantly reduced in the TIMP-1 null mice. Associated with the reduction in expression of these inhibitors was a significant increase in plasmin activity. Localization of the novel uterine serpinb7 revealed that expression was confined to the luminal and glandular epithelial cells. Further, expression of uterine serpinb7 was decreased by estrogen and showed an inverse relationship with plasmin activity. We conclude from these studies that in addition to controlling MMP activity, TIMP-1 may also control activity of serine proteases through modulation of serine protease inhibitors such as serpinb7.  相似文献   

3.
The antiapoptotic role of pregnane X receptor in human colon cancer cells   总被引:1,自引:0,他引:1  
The orphan nuclear receptor pregnane X receptor (PXR) plays an important role in the detoxification of foreign and endogenous chemicals, including bile acids. PXR promotes bile acid elimination by activating bile acid-detoxifying enzymes and transporters. Certain bile acids are known to promote colonic carcinogenesis by inducing colon cancer cell apoptosis. However, whether and how PXR plays a role in colon cancer apoptosis has not been reported. In this study, we showed that activation of PXR by genetic (using a constitutively activated PXR) or pharmacological (using PXR agonist rifampicin) means protected the PXR-overexpressing colon cancer HCT116 cells from deoxycholic acid-induced apoptosis. Interestingly, activation of PXR also protected HCT116 cells from adriamycin-induced cell death, suggesting that the antiapoptotic effect of PXR was not bile acid specific. Moreover, the antiapoptotic effect of PXR in HCT116 cells appeared to be independent of xenobiotic enzyme regulation, because these cells had little basal and inducible expression of bile acid-detoxifying enzymes. Instead, SuperArray analysis showed that PXR-mediated deoxycholic acid resistance was associated with up-regulation of multiple antiapoptotic genes, including BAG3, BIRC2, and MCL-1, and down-regulation of proapoptotic genes, such as BAK1 and TP53/p53. Treatment with rifampicin in colon cancer LS180 cells, a cell line known to express endogenous PXR, also inhibited apoptosis. Activation of PXR in transgenic mice inhibited bile acid-induced colonic epithelial apoptosis and sensitized mice to dimethylhydrazine-induced colonic carcinogenesis, suggesting that the antiapoptotic effect of PXR is conserved in normal colon epithelium. In summary, our results have established the antiapoptotic role of PXR in both human colon cancer cells and normal mouse colon epithelium.  相似文献   

4.
We investigated the mechanisms involved in the resistance to cell death observed in epithelial cancers. Here, we identify that primary epithelial cancer cells from colon, breast and lung carcinomas express high levels of the antiapoptotic proteins PED, cFLIP, Bcl-xL and Bcl-2. These cancer cells produced interleukin-4 (IL-4), which amplified the expression levels of these antiapoptotic proteins and prevented cell death induced upon exposure to TRAIL or other drug agents. IL-4 blockade resulted in a significant decrease in the growth rate of epithelial cancer cells and sensitized them, both in vitro and in vivo, to apoptosis induction by TRAIL and chemotherapy via downregulation of the antiapoptotic factors PED, cFLIP, Bcl-xL and Bcl-2. Furthermore, we provide evidence that exogenous IL-4 was able to upregulate the expression levels of these antiapoptotic proteins and potently stabilized the growth of normal epithelial cells rendering them apoptosis resistant. In conclusion, IL-4 acts as an autocrine survival factor in epithelial cells. Our results indicate that inhibition of IL-4/IL-4R signaling may serve as a novel treatment for epithelial cancers.  相似文献   

5.
6.
Regulation of progesterone receptor (PR) in uterine stroma (endometrial stroma plus myometrium) by estrogen was investigated in estrogen receptor-alpha (ERalpha) knockout (alphaERKO) mice. 17 beta-Estradiol (E(2)) increased PR levels in uterine stroma of ovariectomized alphaERKO mice, and ICI 182 780 (ICI) inhibited this E(2)-induced PR expression. Estrogen receptor-beta(ER beta) was detected in both uterine epithelium and stroma of wild-type and alphaERKO mice by immunohistochemistry. In organ cultures of alphaERKO uterus, both E(2) and diethylstilbestrol induced stromal PR, and ICI inhibited this induction. These findings suggest that estrogen induces stromal PR via ERbeta in alphaERKO uterus. However, this process is not mediated exclusively by ERbeta+, because in ERbeta knockout mice, which express ERalpha, PR was up-regulated by E(2) in uterine stroma. In both wild-type and alphaERKO mice, progesterone and mechanical traumatization were essential and sufficient to induce decidual cells, even though E(2) and ERalpha were also required for increase in uterine weight. Progesterone receptor was strongly expressed in decidual cells in alphaERKO mice, and ICI did not inhibit decidualization or PR expression. This study suggests that up-regulation of PR in endometrial stroma is mediated through at least three mechanisms: 1) classical estrogen signaling through ERalpha, 2) estrogen signaling through ERbeta, and 3) as a result of mechanical stimulation plus progesterone, which induces stromal cells to differentiate into decidual cells. Each of these pathways can function independently of the others.  相似文献   

7.
In utero exposure to diethylstilbestrol (DES) leads to patterning defects in the female reproductive tract (FRT) and a propensity to the development of vaginal adenocarcinomas in humans. In the mouse, DES treatment similarly induces a plethora of FRT developmental defects, including stratification of uterine epithelium and presence of glandular tissue in cervix and vagina. Uterine abnormalities are associated with repression of the homeobox gene Msx2, and DES leads to an altered uterine response in Msx2 mutants including a dilated uterine lumen. Here we investigate the role of Msx2 in normal vaginal development and in FRT response to DES. During vaginal development, Msx2 is required for Tgfbeta2 and Tgfbeta3 expression and for proper vaginal epithelial differentiation. Moreover, Msx2 is involved in caudal Wolffian duct regression by promoting apoptosis. Consistently, neonatal DES exposure represses Msx2 expression in the Wolffian duct epithelium and inhibits its apoptosis and subsequent regression. Intriguingly, although DES treatment also represses Msx2 expression in the vaginal epithelium, a much more severe DES-induced vaginal phenotype was observed in Msx2 mutant mice, including a complete failure of Müllerian vaginal epithelial stratification and a severely dilated vaginal lumen, accompanied by loss of p63 and water channel protein expression. These results demonstrate a critical role for Msx2 in counteracting the effect of DES on FRT patterning and suggest that the response to DES may be highly variable depending on the genotype of an individual.  相似文献   

8.
Data indicate that estrogen-dependent and -independent pathways are involved in the teratogenic/carcinogenic syndrome that follows developmental exposure to 17beta-estradiol or diethylstilbestrol (DES), a synthetic estrogen. However, the exact role and extent to which each pathway contributes to the resulting pathology remain unknown. We employed the alphaERKO mouse, which lacks estrogen receptor-alpha (ERalpha), to discern the role of ERalpha and estrogen signaling in mediating the effects of neonatal DES exposure. The alphaERKO provides the potential to expose DES actions mediated by the second known ER, ERbeta, and those that are ER-independent. Wild-type and alphaERKO females were treated with vehicle or DES (2 microg/pup/day for Days 1-5) and terminated after 5 days and 2, 4, 8, 12, and 20 months for biochemical and histomorphological analyses. Assays for uterine expression of the genes Hoxa10, Hoxa11, and Wnt7a shortly after treatment indicated significant decreases in DES-treated wild-type but no effect in the alphaERKO. In contrast, the DES effect on uterine expression of Wnt4 and Wnt5a was preserved in both genotypes, suggesting a developmental role for ERbeta. Adult alphaERKO mice exhibited complete resistance to the chronic effects of neonatal DES exposure exhibited in treated wild-type animals, including atrophy, decreased weight, smooth muscle disorganization, and epithelial squamous metaplasia in the uterus; proliferative lesions of the oviduct; and persistent vaginal cornification. Therefore, the lack of DES effects on gene expression and tissue differentiation in the alphaERKO provides unequivocal evidence of an obligatory role for ERalpha in mediating the detrimental actions of neonatal DES exposure in the murine reproductive tract.  相似文献   

9.
10.
Sik-similar protein (Sik-SP), a small nucleolar ribonucleoprotein, has been shown to be primarily involved in ribosome biogenesis. However, its role in the hormone-directed nuclear receptor signaling is largely unknown. Here, we provide novel evidence that Sik-SP is required for appropriate regulation of estrogen receptor (ER)α-mediated estradiol-17β (E2)-dependent uterine physiologic responses in mice. Studies by Western blotting using the newly developed antibodies for Sik-SP showed that this protein is up-regulated in both the ovariectomized wild-type and ERα null uteri by E2. Immunohistochemical analyses in uterine sections showed that this protein is induced in the epithelial and stromal cells. Coimmunoprecipitation studies revealed that E2 directs molecular interaction between Sik-SP and ERα. Furthermore, gel-mobility shift and chromatin immunoprecipitation analyses provided evidence that Sik-SP is recruited with ERα to estrogen-responsive uterine gene promoters. Overexpression of Sik-SP in vitro demonstrated a role for Sik-SP in cellular growth and viability. In a primary uterine epithelial-stromal coculture system, E2 exhibited early induction of Sik-SP in both the epithelial and stromal cells. Interestingly, suppression of Sik-SP in this coculture model, for the stromal but not epithelial cells, caused perturbation of E2-dependent proliferation in the epithelial cell layer. Similarly, in vivo uterine suppression of Sik-SP also caused inhibition of epithelial cell proliferation and aberrant prolongation of water imbibition in the late phase by E2. Finally, studies showed that Sik-SP is physiologically important during the onset of implantation by E2. In conclusion, Sik-SP, an early E2-responsive nucleolar protein, is necessary to induce E2-dependent ERα-mediated appropriate physiologic responses in the uterus.  相似文献   

11.
We have utilized in vitro three-dimensional epithelial cell cultures to analyze the role of apoptosis in the formation and maintenance of a hollow glandular architecture. Lumen formation is associated with the selective apoptosis of centrally located cells; this apoptosis follows apicobasal polarization and precedes proliferative suppression during acinar development. Notably, either inhibiting apoptosis (by exogenously expressing antiapoptotic Bcl family proteins) or enhancing proliferation (via Cyclin D1 or HPV E7 overexpression) does not result in luminal filling, suggesting glandular architecture is resistant to such isolated oncogenic insults. However, the lumen is filled when oncogenes that enhance proliferation are coexpressed with those that inhibit apoptosis, or when ErbB2, which induces both activities, is activated by homodimerization. Hence, apoptosis can counteract increased proliferation to maintain luminal space, suggesting that tumor cells must restrain apoptosis to populate the lumen.  相似文献   

12.
13.
Chen GY  Chen SH  Yu CH  Huang SY  Tsai ML 《Proteomics》2008,8(15):3173-3184
Pregnant uteri become quiescent after functional remodeling but details are not fully known. Here we revealed uterine proteins of late-gestation rats by 2-D shotgun proteomic analysis and correlated protein expression with uterine functions. After duplication, 239 proteins were identified. About 190 proteins commonly found in duplicate analyses were subjected to functional annotation. The proteins associated with signal transduction fell into three known pathways. Western blotting and functional data indicated that: (i) a reduction of Na(+)/K(+)-ATPase-related proteins was associated with the decrease of contraction rate, (ii) a reduction of tyrosine hydroxylase and cyclic AMP-dependent protein kinase type II-alpha regulatory chain (PKARII alpha) was associated with an increase in the relaxation response to 8-bromo-cAMP, and (iii) in the presence of Ras, an increased expression of nucleolin was associated with the elevation of Bcl-xL, an antiapoptotic protein. In conclusion, 2-D shotgun proteomic analysis provides a global database of uterine proteins for hypothesis-driven studies. Our data suggest that in late-gestation uteri down-regulation of PKARII alpha and Na(+)/K(+)-ATPase may cause functional remodeling and lead to uterine quiescent. Up-regulation of antiapoptotic proteins (nucleolin and Bcl-xL) in the Ras-mediated pathway may maintain cell survival and counteract cell loss during remodeling.  相似文献   

14.
Naip5/Birc1e and susceptibility to Legionella pneumophila   总被引:6,自引:0,他引:6  
Genetic analysis in mice is a powerful approach for the identification of genes and proteins that have a key role at the interface of the host-pathogen interaction. The Lgn1 locus has been found to control the intracellular replication of Legionella pneumophila in murine macrophages. Using functional complementation in transgenic mice, the Naip5/Birc1e gene has been identified as responsible for the Lgn1 effect. The classification of Naip5/Birc1e as a member of the NLR protein family suggests that Naip5/Birc1e acts as an intracellular sensor of L. pneumophila. The nature of the signal transduced by Naip5/Birc1e in response to Legionella products is of great interest but is currently unknown. Here, several possible scenarios are presented.  相似文献   

15.
16.
Women exposed to diethylstilbestrol (DES) in utero develop abnormalities, including cervicovaginal adenosis that can lead to cancer. We report that transient disruption of developmental signals by DES permanently changes expression of p63, thereby altering the developmental fate of Müllerian duct epithelium. The cell fate of Müllerian epithelium to be columnar (uterine) or squamous (cervicovaginal) is determined by mesenchymal induction during the perinatal period. Cervicovaginal mesenchyme induced p63 in Müllerian duct epithelium and subsequent squamous differentiation. In p63(-/-) mice, cervicovaginal epithelium differentiated into uterine epithelium. Thus, p63 is an identity switch for Müllerian duct epithelium to be cervicovaginal versus uterine. P63 was also essential for uterine squamous metaplasia induced by DES-exposure. DES-exposure from postnatal day 1 to 5 inhibited induction of p63 in cervicovaginal epithelium via epithelial ERalpha. The inhibitory effect of DES was transient, and most cervicovaginal epithelial cells recovered expression of p63 by 2 days after discontinuation of DES-treatment. However, some cervicovaginal epithelial cells failed to express p63, remained columnar and persisted into adulthood as adenosis.  相似文献   

17.
18.
Estrogen regulation of tissue-specific expression of complement C3   总被引:14,自引:0,他引:14  
The administration of estradiol to immature rats results in the increased synthesis and secretion of a 180-kDa protein, composed of 115- and 65-kDa subunits, by the uterine luminal epithelial cells. A monoclonal antibody against the 180-kDa protein was utilized to isolate the corresponding cDNA (LE-1) from a rat uterine luminal epithelial cell cDNA lambda gt11 expression library. This LE-1 cDNA was sequenced and shown to be homologous to complement component C3. The sequence was approximately 81 and 90% homologous to human and mouse C3, respectively. The LE-1 cDNA sequence was homologous with the 3' portion of the C3 mRNA containing the alpha subunit (115 kDa). Uterine mRNA isolated from immature rats treated with 1 microgram of estradiol for 24 h demonstrated a 25-fold increase in the concentration of a 6.0-kilobase mRNA by Northern hybridization with either LE-1 or authentic human C3 cDNA probes. To further examine the possibility that the estradiol-regulated secretory protein was C3, an aliquot of radiolabeled media protein from control and estradiol-stimulated rat uteri was incubated with goat anti-rat C3 antibody. The immunoprecipitated radiolabeled protein from estradiol-treated animals was increased significantly (p less than 0.01) compared to media from control animals. Analysis of the immunoprecipitated proteins on nonreducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed a single protein of 180 kDa from estradiol-stimulated uterine media, whereas no detectable proteins were immunoprecipitated from media obtained from control uteri. Also, when the immunoprecipitated protein was reduced (20 mM dithiothreitol) it dissociated into two subunits of 115 and 65 kDa. Immunohistochemical studies demonstrated the presence of C3 only in the epithelial cells of estrogen-stimulated rat uteri. In addition, the estradiol-stimulated mRNA was only detectable in uterine epithelial cell RNA. Analysis of liver RNA demonstrated a 6.0-kilobase mRNA, as in the uterus, when hybridized with LE-1. However, unlike the uterus, its concentration was not influenced by estrogen administration with up to three daily injections of 100 micrograms of diethylstilbestrol. Based on biophysical, DNA sequence, and antibody data we conclude that rat uterine epithelial cells produce C3 in response to estradiol whereas the expression in the liver was not modulated by estrogens.  相似文献   

19.
The significant role that estrogens play in spermatogenesis has opened up an exciting area of research in male reproductive biology. The realization that estrogens are essential for proper maintenance of spermatogenesis, as well as growing evidence pointing to the deleterious effects of estrogen-like chemicals on male reproductive health, has made it imperative to dissect the role estrogens play in the male. Using a model estrogen, diethylstilbestrol (DES), to induce spermatogenic cell apoptosis in vivo in the male rat, we provide a new insight into an estrogen-dependent regulation of the Fas-FasL system specifically in spermatogenic cells. We show a distinct increase in Fas-FasL expression in spermatogenic cells upon exposure to diethylstilbestrol. This increase is confined to the spermatid population, which correlates with increased apoptosis seen in the haploid cells. Testosterone supplementation is able to prevent DES-induced Fas-FasL up-regulation and apoptosis in the spermatogenic cells. DES-induced germ cell apoptosis does not occur in Fas-deficient lpr mice. One other important finding is that spermatogenic cells are type II cells, as the increase in Fas-FasL expression in the spermatogenic cells is followed by the cleavage of caspase-8 to its active form, following which Bax translocates to the mitochondria and precipitates the release of cytochrome c that is accompanied by a drop in mitochondrial potential. Subsequent to this, activation of caspase-9 occurs that in turn activates caspase-3 leading to the cleavage of poly(ADP-ribose) polymerase. Taken together, the data indicate that estrogen-like chemicals can precipitate apoptotic death in spermatogenic cells by increasing the expression of spermatogenic cell Fas-FasL, thus initiating apoptosis in the same lineage of cells through the activation of the apoptotic pathway chosen by type II cells.  相似文献   

20.
During organogenesis, the middle to caudal portion of Müllerian epithelium differentiates into uterine and vaginal epithelia in females. Functional differentiation of uterine and vaginal epithelia occurs in adulthood, and is regulated by 17beta-estradiol (E(2)) and progesterone. In this report, the roles of mesenchyme/stroma in differentiation of uterine and vaginal epithelia were studied in tissue recombination experiments. At birth, Müllerian epithelium was negative for uterine and vaginal epithelial markers. Tissue recombinant experiments showed that uterine and vaginal gene expression patterns were induced in neonatal Müllerian epithelium by the respective mesenchymes. Differentiated adult uterine and vaginal epithelia did not change their original gene expression in response to heterotypic mesenchymal induction. In the adult vagina, E(2) induced expression of involucrin, a CCAAT/enhancer-binding protein beta and cytokeratin 1 via estrogen receptor alpha (ERalpha). Tissue recombination experiments with wild-type and ERalpha knockout mice demonstrated that epithelial gene expression is regulated by E(2) via epithelial-stromal tissue interactions. Uterine/vaginal heterotypic tissue recombinations demonstrated that functional differentiation of uterine and vaginal epithelia required organ-specific stromal factors. In contrast, stromal signals regulating epithelial proliferation appeared to be nonspecific in the uterus and vagina.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号