首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sodium deoxycholate extraction was used to isolate extracellular matrix from various cultured cells: human and murine embryonic fibroblasts, epithelial lines of mouse (MPTR), rat (IAR 2 and IAR 20), pig (SPEV) and cow (FBT). Protein composition of the matrix was studied by sodium dodecyl sulfate polyacrylamide gel electrophoresis and immunofluorescence. The matrix morphology was investigated by scanning electron microscopy. In cell lines FBT and MPTR the major component of the matrix was laminin, whereas in other lines and fibroblasts it was fibronectin. The matrix of the majority of lines had a fibrillar structure, and the fibrils usually formed networks. MPTR cells had a punctate matrix composed of laminin and collagen type IV, densely covering the substratum. The treatment of the matrix by hyaluronidase and/or DNAase I did not influence its protein composition. The isolated matrix of different structure and composition may serve a biological substratum in studies of normal tumor cell behavior in tissue culture.  相似文献   

2.
E K Fetisova 《Ontogenez》1988,19(5):481-486
Interaction of several lines of epithelial cells was studied in a mixed culture: FBT (bovine fetal trachea), MDSK (dog kidney), IAR-2 (rat liver), MPTR (SV-40 transformed mouse kidney). During mixed cultivation epithelia cells of different types were capable to force out each other from the substrate to full elimination. This capacity correlated with the pattern of cell contacts with the substrate. It is supposed that epithelial cells can form lamellae at the lower surfaces competing for substrate. Those cells which have lamellae with continuous marginal focal contacts and numerous focal contacts eliminate the cells having lamellae with few focal contacts.  相似文献   

3.
In the embryo, fibroblasts migrating through extracellular matrices (ECM) are generally elongate in shape, exhibiting a leading pseudopodium with filopodial extensions, and a trailing cell process. Little is known about the mechanism of movement of embryonic cells in ECM, for studies of fibroblast locomotion in the past have been largely confined to observations of flattened cells grown on planar substrata. We confirm here that embryonic avian corneal fibroblasts migrating within hydrated collagen gels in vitro have the bipolar morphology of fibroblasts in vivo, and we show for the first time that highly flattened gerbil fibroma fibroblasts, grown as cell lines on planar substrata, can also respond to hydrated collagen gels by becoming elongate in shape. We demonstrate that the collagen-mediated change in cell shape is accompanied by dramatic rearrangement of the actin, α-actinin, and myosin components of the cytoskeleton. By immunofluorescence, the stress fibers of the flattened corneal fibroblasts grown on glass are seen to stain with antiactin, anti-α-actinin, and antimyosin, as has been reported for fibroma and other fibroblasts grown on glass. Stress fibers, adhesion plaques, and ruffles do not develop when the corneal or fibroma fibroblast is grown in ECM; these features seem to be a response to strong attachment of the cell underside to a planar substratum. When the fibroblasts are grown in ECM, antimyosin staining is distributed diffusely through the cytoplasm. Antiactin and anti-α-actinin stain the microfilamentous cell cortex strongly. We suggest that locomotion of the fibroblast in ECM is accompanied by adhesion of the cell to the collagen fibrils and may involve an interaction of the myosin-rich cytosol with the actin-rich filamentous cell cortex. Interestingly, the numerous filopodia that characterize the tips of motile pseudopodia of cells in ECM are very rich in actin and α-actinin, but seem to lack myosin; if filopodia use myosin to move, the interaction must be at a distance. Soluble collagen does not convert flattened fibroblasts on planar substrata to bipolar cells. Thus, the effect of collagen on the fibroblast cytoskeleton seems to depend on the presence of collagen fibrils in a gel surrounding the cell.  相似文献   

4.
L A Liass  Iu M Vasil'ev 《Ontogenez》1985,16(2):167-170
The effect of colcemid on the distribution of actin microfilament bundles in the mouse embryo fibroblasts was studied using immunomorphological methods. In the control fibroblasts, microfilament bundles usually cross the entire cell and are oriented in parallel to the stable edges of the cell. In the colcemid-treated cells there are several groups of bundles. In each group all bundles are oriented in the same direction but these directions do not depend on the cell shape. Besides, bundles in the colcemid-treated cells are shorter than in the control cells. Microtubules are suggested to control the organization of action bundles.  相似文献   

5.
《The Journal of cell biology》1993,120(6):1381-1391
Myosin I is present in Swiss 3T3 fibroblasts and its localization reflects a possible involvement in the extension and/or retraction of protrusions at the leading edge of locomoting cells and the transport of vesicles, but not in the contraction of stress fibers or transverse fibers. An affinity-purified polyclonal antibody to brush border myosin I colocalizes with a polypeptide of 120 kD in fibroblast extracts. Within initial protrusions of polarized, migrating fibroblasts, myosin I exhibits a punctate distribution, whereas actin is diffuse and myosin II is absent. Myosin I also exists in linear arrays parallel to the direction of migration in filopodia and microspikes, established protrusions, and within the leading lamellae of migrating cells. Myosin II and actin colocalize along transverse fibers in the lamellae of migrating cells, while myosin I displays no definitive organization along these fibers. During contractions of actin-based fibers, myosin II is concentrated in the center of the cell, while the distribution of myosin I does not change. Thus, myosin I is found at the correct location and time to be involved in the extension and/or retraction of protrusions and the transport of vesicles. Myosin II-based contractions in more posterior cellular regions could generate forces to separate cells, maintain a polarized cell shape, maintain the direction of locomotion, maximize the rate of locomotion, and/or aid in the delivery of cytoskeletal/contractile subunits to the leading edge.  相似文献   

6.
Substrate-attached normal mouse fibroblasts, transformed mouse fibroblasts (L-strain) and epithelial cells (MPTR strain) were incubated with two ligands that are cross-linking different group of the surface receptors: concanavalin A and cationic ferritin. Surface-attached ligands were revealed by the indirect immunofluorescent methods. The incubation of control cells with these ligands induced a patching of corresponding surface receptors, and a clearing of these receptors from the surface zones located on the lamellar cytoplasm near the cell edges actively protruding pseudopodia. Effects of three antitubulins (colcemid, colchicine and vinblastin) on the ligand-induced redistribution of receptors were examined and compared with the previously described effects of these drugs on the distribution of active cell edges.  相似文献   

7.
Calyculin-A, an inhibitor of type 1 and 2A phosphatases, was applied extracellularly to 3T3 fibroblasts. At 0.1 microM, calyculin-A caused a marked increase in protein phosphorylation in both the cytosolic and insoluble cellular fractions. This effect was independent of external Ca2+. An immunoprecipitate, formed with an antibody to myosin, contained several cytoskeletal components. Increased phosphorylation following treatment with calyculin-A was observed in vimentin, the 20-kD myosin light chain, and an unidentified 440-kD component. An enhanced level of vimentin phosphorylation was found in intermediate filament preparations from treated cells. Calyculin-A also caused marked shape changes of 3T3 cells. Within minutes after addition of calyculin-A (0.1 microM) cells became rounded and lost attachment to the substratum. Stress fibers, intermediate filaments, and microtubules, prominent in the attached control cells, were not evident in the rounded cells. Shape changes were reversible and after removal of calyculin-A the rounded cells attached to the substratum, resumed a flattened shape, and were active mitotically. In the cells treated with calyculin-A an unusual "ball-like" structure was observed with transmission electron microscopy. This unique structure was 2-3 microM in diameter and was located close to the nucleus. The use of calyculin-A adds further support to the idea that cell shape is controlled, at least in part, by concerted actions of a kinase-phosphatase couple.  相似文献   

8.
Cytoskeletons of colcemid-treated mouse embryo fibroblasts were studied using platinum replica technique. In the control cells, cytoskeletal components were oriented along direction of cell polarization. Structure of the control cytoskeleton changed regularly from the cell active edge to its centre forming several zones. Distribution of microtubules by colcemid led to significant changes in the organization of actin cytoskeleton. Both orientation and zonal differentiation of cytoskeleton disappeared in colcemid-treated fibroblasts. Changes in the fine structure of microfilament sheath were most prominent. Control sheath was composed of stretched tightly packed microfilaments. Colcemid treatment transformed it into fine microfilament meshwork, normally characteristic only for ruffle zone. Alterations of the fine structure of focal contacts and ruffles were also observed in treated cells. The role of microtubules in the organization of intracellular tensions and in the distribution of sites of actin polymerization is discussed.  相似文献   

9.
A thermoreversible fibrillar hydrogel has been formed from an aqueous lysozyme solution in the presence of dithiothreitol (DTT). Its physical properties and potential as a tissue engineering scaffold have been explored. Hydrogels were prepared by dissolving 3 mM protein in a 20 mM DTT/water mixture, heating to 85 degrees C and cooling at room temperature. No gel was observed for the equivalent sample without DTT. The elastic nature of the gel formed was confirmed by rheology, and the storage modulus of our gel was found to be of the same order of magnitude as for other cross-linked biopolymers. Micro differential scanning calorimetry (microDSC) experiments confirmed that the hydrogel was thermally reversible and that gelation and melting occurs through a solid-liquid-like first-order transition. Infrared spectroscopy of the hydrogel and transmission electron microscopy studies of very dilute samples revealed the presence of beta-sheet-rich fibrils that were approximately 4-6 nm in diameter and 1 mum in length. These fibrils are thought to self-assemble along their long axes to form larger fibers that become physically entangled to form the three-dimensional network observed in both cryo-scanning electron microscopy (cryo-SEM) and small-angle neutron scattering (SANS) studies. The hydrogel was subsequently cultured with 3T3 fibroblasts and cells spread extensively after 7 days and stretched actin filaments formed that were roughly parallel to each other, indicating the development of organized actin filaments in the form of stress fibers in cells.  相似文献   

10.
We have altered the shape of aligned hydrated collagen gels, without substantially altering their orientation, by air-drying them on coverslips. The original wet gels had a three-dimensional shape and elicited a strong contact guidance response when used as a substratum for heart fibroblasts or nerve axons, whereas the air-dried gels were totally flattened onto the plane support and were much less effective in guiding the cells. Treatment of the dried gels with dilute acetic acid slightly restored their three-dimensional shape and slightly restored their original contact guiding property. We interpret these results as indicating that contact guidance on such oriented fibrillar matrices is a direct cellular response to the shape of the substratum.  相似文献   

11.
Summary This study examined the behavior of rat tendon fibroblasts, baby hamster kidney fibroblasts, macrophage-like P388D1 cells, and neurons from rat dorsal root ganglia, cultured on fibronectin strands 0.2–5 μm in diameter. We investigated cell spreading, orientation, formation of focal contacts, the speed of cell movement, and the speed of neurite outgrowth in cells cultured on fibronectin strands, glass covered with fibronectin, and plain, nontreated glass. Fibronectin strands significantly promoted cell spreading and caused a marked alignment of all kinds of cells to the direction of the fiber. The fibers caused the alignment of actin filaments in fibroblasts and focal contacts in fibroblasts and macrophages and increased polymerization of F-actin in cells. Fibronectin fibers also increased the speed and persistence of cell movement and the rate of neurite outgrowth. Macrophages grown on fibronectin fibers produced numerous actin-rich microspikes and adopted a polarized, migratory phenotype. These findings indicate that fibronectin strands, resembling natural components of the extracellular matrix, are more effective in activating various types of cells than two-dimensional, fibronectin-covered substrata. The results also confirm the suitability of the three-dimensionally oriented fibronectin form for use in clinical practice.  相似文献   

12.
E-cadherin–mediated cell–cell adhesion, which is essential for the maintenance of the architecture and integrity of epithelial tissues, is often lost during carcinoma progression. To better understand the nature of alterations of cell–cell interactions at the early stages of neoplastic evolution of epithelial cells, we examined the line of nontransformed IAR-2 epithelial cells and their descendants, lines of IAR-6-1 epithelial cells transformed with dimethylnitrosamine and IAR1170 cells transformed with N-RasG12D. IAR-6-1 and IAR1170 cells retained E-cadherin, displayed discoid or polygonal morphology, and formed monolayers similar to IAR-2 monolayer. Fluorescence staining, however, showed that in IAR1170 and IAR-6-1 cells the marginal actin bundle, which is typical of nontransformed IAR-2 cells, disappeared, and the continuous adhesion belt (tangential adherens junctions (AJs)) was replaced by radially oriented E-cadherin–based AJs. Time-lapse imaging of IAR-6-1 cells stably transfected with GFP-E-cadherin revealed that AJs in transformed cells are very dynamic and unstable. The regulation of AJ assembly by Rho family small GTPases was different in nontransformed and in transformed IAR epithelial cells. As our experiments with the ROCK inhibitor Y-27632 and the myosin II inhibitor blebbistatin have shown, the formation and maintenance of radial AJs critically depend on myosin II-mediated contractility. Using the RNAi technique for the depletion of mDia1 and loading cells with N17Rac, we established that mDia1 and Rac are involved in the assembly of tangential AJs in nontransformed epithelial cells but not in radial AJs in transformed cells. Neoplastic transformation changed cell–cell interactions, preventing contact paralysis after the establishment of cell–cell contact and promoting dynamic cell–cell adhesion and motile behavior of cells. It is suggested that the disappearance of the marginal actin bundle and rearrangements of AJs may change the adhesive function of E-cadherin and play an active role in migratory activity of carcinoma cells.  相似文献   

13.
This study investigated the functional morphology of the blubber that forms the caudal keels of the harbor porpoise (Phocoena phocoena). Blubber is a pliant biocomposite formed by adipocytes and structural fibers composed of collagen and elastic fibers. Caudal keels are dorsally and ventrally placed triangular wedges of blubber that define the hydrodynamic profile of the porpoise tailstock. Mechanical tests on carcasses demonstrate that when keels are bent, they strain nonuniformly along their lengths, with highest strains just caudal to the dorsal fin and lowest at the insertion of the flukes. Therefore, caudal keels undergo nonuniform longitudinal deformation while maintaining a stable, triangular cross-sectional shape. Polarizing and transmitted light microscopy techniques were used to investigate blubber's 3D fiber architecture along the length of the dorsal keel. The triangular cross-sectional shape of the keel appears to be maintained by structural fibers oriented to act as tensile stays. The construction of the blubber composite is regionally specific :structural fiber densities and diameters are higher in the relatively stiff caudal region of the keel than in the more deformable cranial keel region. The orientations of structural fibers also change along the length of the keel. Cranially, no fibers are oriented along the long axis, whereas a novel population of longitudinally oriented fibers reinforces the keel at the insertion of the flukes. Thus, differences in the distribution and orientation of structural fibers contribute to the regionally specific mechanical properties of the dorsal keel.  相似文献   

14.
The influence of intercellular contacts on the ability of the upper cell surface to adsorb and to phagocytose particles was studied in different types of cultured cells of mouse origin. In cultures of the MPTR strain, cells formed firm contacts which remained unbroken during the epithelial sheet migration into the wound. The contact inhibition of phagocytosis was found in these cultures. The phenomenon involved a low phagocytic activity of the sheet cells which made intercellular contacts in all directions, and of high phagocytic activity of marginal cells which had activity moving free edges. Other epithelial cultures, such as explants of normal kidney and hepatoma 60, behaved similarly. Cultured embryo fibroblasts and hepatoma 22a cells did not form firm intercellular contacts and migrated into the wound one by one. In these cultures most cells had high phagocytic activity. It is suggested that the formation of intercellular contacts alters the upper cell surface ability to adhesion and phagocytosis of particles.  相似文献   

15.
Effects of mechanical forces exerted on mammalian skeletal muscle cells during development were studied using an in vitro model to unidirectionally stretch cultured C2C12 cells grown on silastic membrane. Previous models to date have not studied these responses of the mammalian system specifically. The silastic membrane upon which these cells were grown exhibited linear strain behavior over the range of 3.6-14.6% strain, with a Poisson's ratio of approximately 0.5. To mimic murine in utero long bone growth, cell substrates were stretched at an average strain rate of 2.36%/day for 4 days or 1.77%/day for 6 days with an overall membrane strain of 9.5% and 10.6%, respectively. Both control and stretched fibers stained positively for the contractile protein, alpha-actinin, demonstrating muscle fiber development. An effect of stretch on orientation and length of myofibers was observed. At both strain rates, stretched fibers aligned at a smaller angle relative to the direction of stretch and were significantly longer compared to randomly oriented control fibers. There was no effect of duration of stretch on orientation or length, suggesting the cellular responses are independent of strain rate for the range tested. These results demonstrate that, under conditions simulating mammalian long bone growth, cultured myocytes respond to mechanical forces by lengthening and orienting along the direction of stretch.  相似文献   

16.
Solitary cilia occur in motile as well as in non-motile fibroblasts of the peridontal ligament. The cells which moved with the erupting incisor are bipolar and oriented with their long axes parallel to the tooth surface. In cross section these cells have a flattened appearance. Cilia are localized in close vicinity to the nuclear area and show a definite orientation with respect to the transverse cell axis. The frequency of occurrence of this organelle was estimated from the percentage of diplosomes containing a basal body. Analysis of the composition of the paired structures indicated that at least 70 per cent of the fibroblasts are ciliated. The frequency of cilia in motile fibroblasts does not differ from that in non-motile cells suggesting that the presence of this organelle is not directly associated with cell locomotion.  相似文献   

17.
Fibroblasts are responsible for the synthesis, assembly, deposition, and organization of extracellular matrix molecules, and thus determine the morphology of connective tissues. Deposition of matrix molecules occurs in extracellular compartments, where the sequential stages are under cellular control. Cell orientation/polarity is important in determining how the cell orients these extracytoplasmic compartments and therefore how the matrix is assembled and oriented. However, the control of cell orientation is not understood. Fibroblasts from three tissues with different morphologies were studied to determine whether cells maintained their characteristic phenotype. Fibroblasts from cornea, which in vivo are oriented in orthogonal layers along with their matrix; from tendon, a uniaxial connective tissue, where cells orient parallel to each other; and from dermis, a connective tissue with no apparent cellular orientation, were used to study cell morphology and orientation in three-dimensional collagen gels. The different cells were grown for 3 and 7 days in identical three-dimensional collagen gels with a nonoriented matrix. Confocal fluorescence microscopy demonstrated that corneal fibroblasts oriented perpendicular to one another at 3 days, and after 7 days in hydrated gels these cells formed orthogonal sheets. Tendon fibroblasts were shown by the same methods to orient parallel to one another in bundles at both 3 and 7 days, throughout the depth of the gel. Dermal fibroblasts showed no apparent orientation throughout the hydrated gels at either time point examined. The organization of these different cell types was consistent with their tissue of origin as was the cell structure and polarity. These studies imply that cellular and tissue phenotype is innate to differentiated fibroblasts and that these cells will orient in a tissue-specific manner regardless of the extracellular matrix present.  相似文献   

18.
The surfaces of both stretched and unstretched silk threads from the cobweb weaver, Latrodectus hesperus (Black Widow) have been examined by atomic force microscopy (AFM). AFM images of cobweb scaffolding threads show both unordered and highly ordered regions. Two types of fibers within the threads were observed: thicker (approximately 300 nm in diameter) fibers oriented parallel to the thread axis and thinner (10-100 nm) fibrils oriented across the thread axis. While regions which lacked parallel fibers or fibrils were observed on threads at all strain values, the probability of observing fibers and/or fibrils increased with strain. High-resolution AFM images show that with increasing strain, both mean fiber and fibril diameters decrease and that fibrils align themselves more closely with the thread axis. The observation of fibers and fibrils within the cobweb threads has implications for current models of the secondary and tertiary structure and organization of spider silk.  相似文献   

19.
The dermis of the frog skin (Rana esculenta) displayed a remarkable organization of vertical and horizontal tracts. Vertical thick tracts connected the dermal Stratum spongiosum with the subcutaneous tissue. Horizontal thin tracts were found alongside and contiguous to them. The thick tracts were sheathed by collagen fibrils of the Stratum compactum which were vertically oriented (i.e. parallel to the axes of the tracts) according to the horizontal and orthogonal arrangement of the collagen bundles of the Stratum compactum. The thin tracts devoid of collagenous sheath were formed by clear spaces between superimposed collagen bundles of the dermal Stratum compactum. On vertical sections, the thick tracts were seen to contain fibronectin (FN), detected by indirect immunoperoxidase. Continuous vertical FN lines were centred in these tracts. On horizontal sections, a clear zone around these FN-centred lines was also sheathed by FN. The thick tracts contained flattened pigmentary cells and fibroblasts; these cells were FN-outlined. The thin tracts contained patches of FN and FN-outlined fibroblasts. In culture, in vertical thick tracts, both pigmentary cells and fibroblasts disappeared when antiserum to FN was added to the culture medium. This suggested that thick tracts were pathways allowing pigmentary cells to move upward or downward between their usual upper dermal and lower subcutaneous localizations. Fewer fibroblasts were found in the thin tracts in the presence of antiserum to FN.  相似文献   

20.
This paper presents a new approach to study cell migration. Human tendon fibroblasts were plated on silicone membranes coated with 10 microg/ml ProNectin-F. The silicone surfaces were micro-fabricated with parallel microgrooves, with 10 microm ridge and groove width, and 3 microm groove depth. Fibroblasts grown in the microgrooves had an elongated shape and oriented along the microgroove direction. They also moved along the same direction instead of "random walk" when cells migrate on smooth culture surfaces. In response to TGF-beta1 (5 ng/ml) treatment, these fibroblasts on the microgrooved surfaces were differentiated into myofibroblasts, as judged by an elevated expression of alpha-smooth muscle actin (alpha-SMA), a specific marker for myofibroblasts. Moreover, these myofibroblasts were found to be approximately 30% less motile compared to that of untreated fibroblasts. Thus, use of microgrooved surface may be an effective approach to detect difference in cell motility because cell migration on the microgrooved surface is one dimensional and hence easier to be quantified than two-dimensional random movement on conventional smooth culture surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号