首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present study, we attempted to clarify the role of nitric oxide (NO) and its release during the ischemia-reperfusion rat testis. Eight-week-old male Sprague-Dawley rats were divided into seven groups: age-matched control rats, ischemia (30 minutes)-reperfusion (30 minutes) rats without NG-nitro-L-arginine methyl ester (L-NAME) and L-arginine (L-Arg) treatment, ischemia (30 minutes)-reperfusion (30 minutes) rats treated with L-NAME (10, 30, and 100 mg/kg), ischemia-reperfusion rats treated with L-Arg (10 and 30 mg/kg). Sixty minutes prior to induction of ischemia, L-NAME or L-Arg was administrated intraperitoneally. Real-time monitoring of blood flow and NO release were measured simultaneously with a laser Doppler flowmeter and an NO-selective electrode, respectively. NO2-NO3 and malonaldehyde (MDA) concentrations were measured in the experimental testes. Furthermore, we investigated possible morphological changes in the testis. Clamping of the testicular artery decreased blood flow to 5–20% of the basal level measured before clamping. Immediately following clipping of the artery, NO release rapidly increased. After removing the clip, NO release gradually returned to the basal level. This phenomenon was enhanced by treatment with L-Arg and inhibited by treatment with L-NAME. NO2-NO3 concentrations were increased by treatment with L-Arg and decreased by treatment with L-NAME, while MDA concentrations were increased by treatment with L-NAME and were decreased by treatment with L-Arg. In histological studies, the ischemia-reperfusion caused infiltration of leukocytes and a rupture of microvessels in the testis. Our data suggest that NO has cytoprotective effects on ischemia-reperfusion injury in the rat testis.  相似文献   

2.
Possible modulation of Brewer's yeast-induced nociception by centrally (icv) administered nitric oxide (NO) modulators, viz., NO synthase (NOS) inhibitors, NO precursor, donors, scavengers and co-administration of NO donor (SIN-1) with NOS inhibitor (L-NAME) and NO scavenger (Hb) was investigated in rats. Administration of NOS inhibitors and NO scavenger Hb increased the pain threshold capacity significantly, whereas NO donors SIN-1, SNP and NO precursor L-arginine were found to be hyperalgesic. D-arginine, the inactive isomer of L-arginine and methylene blue, inhibitor of soluble guanylate cyclase failed to alter the nociceptive behaviour in rats. Co-administration of SIN-1 with L-NAME and Hb found to increase the nociceptive threshold. The results indicate, that centrally administered NO modulators alter the nociceptive transmission induced by Brewer's yeast in rats.  相似文献   

3.
Zajac JM  Latapie JP  Francés B 《Peptides》2000,21(8):1209-1213
This study examined the ability of the anti-opioid Neuropeptide FF (NPFF) to modify the endogenous activity of nitric oxide (NO). Antinociceptive and hypothermic effects of 1DMe (D.Tyr-Leu-(n.Me)Phe-Gln-Pro-Gln-Arg-Phe-NH(2)), an NPFF agonist, and of L-NAME (N(omega)nitro-L-arginine methyl ester), an inhibitor of nitric oxide synthase, were investigated in mice. Intraperitoneal (i.p.) injection of L-NAME induced, in the hot plate test, a dose-dependent antinociception not reversed by naloxone, an opioid antagonist, but inhibited by L-Arg, the NO synthesis precursor. Intracerebroventricular (i.c.v.) injections of 1DMe inhibit the antinociceptive activity of L-NAME in a dose-dependent manner. On the contrary, L-NAME markedly potentiated hypothermia induced by 1DMe injected in the third ventricle. These data show that Neuropeptide FF receptors exert a dual effect on endogenous NO functions and could modulate pain transmission independently of opioids.  相似文献   

4.
The objective of this study was to assess the effects of nitric oxide (NO) on heparin-induced capacitation in vitro of fresh bull sperm, through the addition of Nω-nitro-l-arginine methyl ester (L-NAME, a NO-synthesis inhibitor) and l-arginine (L-Arg, a NO-synthesis precursor) to the capacitation medium. In Experiment 1, different concentrations of L-NAME (0.1, 1, 10 mM) and of L-Arg (10 mM) were added to the capacitation medium. Sperm motility and vigor were subjectively appraised using direct light microscopy; sperm membrane integrity was examined using a 2% Trypan blue solution while the concentration of nitrate/nitrite (NO3/NO2) was determined by using the Griess method over a 5 h capacitation period. The addition of 10 mM L-NAME has inhibited NO synthesis, sperm progressive motility, sperm vigor and sperm membrane integrity (P < 0.05) as compared to control. The addition of 10 mM L-Arg to the capacitation medium increased all variables evaluated in comparison to the control (P < 0.05). In Experiment 2, mitochondrial activity was assessed through the MTT test (3-(4,5-dimetylthiazol-2-yl)-2,5-diphenyltetrazolium bromide), and sperm capacitation was assessed through the test of penetration in homologous oocytes after addition of the 10 mM L-NAME, and of the 10 mM L-Arg. The addition of 10 mM L-NAME caused mitochondrial activity (40%) and the percentage of oocytes penetrated (77%) to decrease in relation to the control (P < 0.05). After addition of 0.6 mM L-Arg + 10 mM L-NAME, partial reversal of mitochondrial activity did occur (only 20%). The addition of 10 mM L-Arg increased the percentage of oocytes penetrated as compared to control (21%) (P < 0.05). These results indicate that: (1) NO is involved in control of progressive sperm motility, vigor, membrane integrity, and mitochondrial activity along the period of heparin-induced capacitation of fresh bovine sperm via NOS/NO; (2) adequate L-Arg/NO concentrations into the capacitation medium can potentiate heparin action or act independently for increasing the number or the quality of capacitated sperm.  相似文献   

5.
Role of nitric oxide (NO) in regulating the reproductive functions at hypothalamo-hypophysealovarian axis in Japanese quail was studied. In first experiment, metabolites of NO, i.e. nitrite and nitrate (NO2 and NO3) were estimated together in hypothalamus, serum and ovarian follicles of good and poor layers. In the second experiment, different NO modulators such as L-arginine (L-Arg), sodium nitroprusside (SNP) and N(G)-nitro-L-arginine methyl ester, HCl (L-NAME) were administered to the birds. In the first experiment, significantly higher (P < 0.01) NO2 and NO3 levels in serum, hypothalamus and largest (F1) ovarian follicles were observed in good layers as compared to poor layers. Higher (P < 0.05) NO2 and NO3 concentration was observed in F1 follicles than smaller follicles (F2) only in good layers. The NO2 and NO3 concentration was significantly reduced (P < 0.05) in post ovulatory follicles (POFs) in comparison to F1 and F2 follicles. In the second experiment, the serum NO2 and NO3 concentrations were higher (P < 0.05) in the SNP, lower (P < 0.05) in the L-Name group and unchanged in the L-Arg treated group in comparison to control group. compared to control, L-Arg and SNP increased (P < 0.05) the hypothalamic NO2 and NO3 concentration where as L-NAME reduced (P < 0.05) these levels. The NO2 and NO3 concentration was increased (P < 0.05) as the follicle size increased and it was significantly reduced (P < 0.05) in POFs. The higher (P < 0.05) follicular NO2 and NO3 concentration was observed in L-Arg group in comparison to control group. Egg production was also found to be higher (P < 0.05) in L-Arg group whereas it was not different (P > 0.05) in SNP and L-NAME treated groups. The yolk weight and yolk to albumin ratio was reduced (P < 0.05) in L-NAME group in comparison to control group. It may be concluded from the present study that NO plays a key role in regulating follicular development, ovulatory mechanisms and egg production in Japanese quail.  相似文献   

6.
In the experiments on the 20–25-day-old and adult rabbits, effects of tonic pain focus (a subcutaneous injection of formalin into leg dorsal surface) on behavioral and electrophysiological characteristics of acute pain were studied. The effect of the 40–60-min-long tonic pain was seen as a decrease of defensive reaction threshold and an increase of inhibitory effect of brain rewarding zones on evoked potential recorded in thalamus parafascicular complex in response to a nociceptive electrocutaneous stimulation in narcotized rabbits. The changes observed were biphasic and coincided in time with an enhancement of the earlier described [26] specific behavioral responses to formalin injection. It is established that the effect of tonic pain is more expressed by its intensity and duration in the 20–25-day-old than in adult rabbits.  相似文献   

7.
Jiao J  Wang H  Lou W  Jin S  Fan E  Li Y  Han D  Zhang L 《Experimental cell research》2011,(17):2548-2553

Objectives

Our purpose was to investigate the role of the nitric oxide (NO) signaling pathway in the regulation of ciliary beat frequency (CBF) in mouse nasal and tracheal epithelial cells.

Methods

We studied the effects of the NO donor l-arginine (L-Arg) and specific inhibitors of the NO signaling pathway on CBF of both nasal and tracheal epithelial cells by using high-speed digital microscopy. We also examined eNOS, sGC β, PKG I and acetylated α tubulin expression in native mouse nasal and tracheal epithelium using immunohistochemical methods.

Results

L-Arg significantly increased CBF of cultured nasal and tracheal epithelial cells, and the effects were blocked by pretreatment with NG-nitro-l-arginine methyl ester (L-NAME), a NOS inhibitor, with LY-83583, a sGC inhibitor, or with KT-5823, a PKG inhibitor. Positive immunostaining for NO signaling molecules including eNOS, sGC β and PKG I was observed in either nasal or tracheal ciliated epithelium.

Conclusion

NO plays a role in regulating CBF of mouse respiratory epithelial cells via a eNOS–NO–sGC β–cGMP–PKG I pathway.  相似文献   

8.
Nitric oxide (NO) and somatostatin (SS) are two important mediators of the exocrine and endocrine pancreas, exerting opposite effects on this organ. There is strong evidence suggesting an interaction between pancreatic NO and SS. The aim of this study was to determine whether L-arginine (L-Arg), the substrate for NO synthase (NOS), and Nomega-nitro-L-arginine methyl ester (L-NAME), a NOS inhibitor, regulate pancreatic somatostatin-like immunoreactivity (SSLI) content and the SS mechanism of action in pancreatic acinar cell membranes. L-Arg (150 mg/kg, intraperitoneally (i.p.)), L-NAME (50 mg/kg, i.p.) or L-NAME plus L-Arg were injected twice daily at 8 h intervals for 8 days. L-Arg decreased pancreatic SSLI content as well as the number of SS receptors in pancreatic acinar cell membranes whereas L-NAME increased both parameters. The stable SS analogue SMS 201-995 induced a significantly lower inhibition of forskolin-stimulated adenylyl cyclase activity in pancreatic acinar cell membranes from L-Arg-treated rats whereas an increased inhibition was observed in pancreatic acinar membranes from L-NAME-treated rats. These results indicate that the NO system may contribute to the regulation of the pancreatic somatostatinergic system.  相似文献   

9.
The L-arginine/nitric oxide (NO)/cyclic guanosine monophosphate (cGMP) pathway is known to be involved in central and peripheral nociceptive processes. This study evaluated the rhythmic pattern of the L-arginine/NO/cGMP pathway using the mouse visceral pain model. Experiments were performed at six different times (1, 5, 9, 13, 17, and 21 h after light on) per day in male mice synchronized to a 12 h:12 h light-dark cycle. Animals were injected s.c. with saline, 2 mg/kg L-arginine (a NO precursor), 75 mg/kg L-N(G)-nitroarginine methyl ester (L-NAME, a NOS inhibitor), 40 mg/kg methylene blue (a soluble guanylyl cyclase and/or NOS inhibitor), or 0.1 mg/kg sodium nitroprusside (a nonenzymatic NO donor) 15 min before counting 2.5 mg/kg (i.p.) p-benzoquinone (PBQ)-induced abdominal constrictions for 15 min. Blood samples were collected after the test, and the nitrite concentration was determined in serum samples. L-arginine or L-NAME caused both antinociception and nociception, depending on the circadian time of their injection. The analgesic effect of methylene blue or sodium nitroprusside exhibited significant biological time-dependent differences in PBQ-induced abdominal constrictions. Serum nitrite levels also displayed a significant 24 h variation in mice injected with PBQ, L-NAME, methylene blue, or sodium nitroprusside, but not saline or L-arginine. These results suggest that components of L-arginine/NO/cGMP pathway exhibit biological time-dependent effects on visceral nociceptive process.  相似文献   

10.
Volgin  D. V.  Seredenko  M. M.  Vasilenko  D. A.  Volgina  A. V. 《Neurophysiology》2000,32(6):360-367
We studied the dynamics of modifications of the respiratory activity generated by semi-isolated medullo-spinal preparations (SIMSP) of 3- to 4-day-old rats related to a drop in the pH of superfusing solution from 7.4 to 7.0. Reactions were recorded in the norm and under conditions of preliminary applications of a noncompetitive blocker of NMDA receptors, ketamine; an inhibitor of nitric oxide synthase (NOS), NG-nitro-L-arginine methyl ester (L-NAME); a substrate for NO synthesis, L-arginine; or an exogenous NO donor, sodium nitroprusside (SN). Under control conditions, test applications of the solution with pH 7.0 resulted in a significant increase in the frequency of inspiratory discharges (ID) recorded from the phrenic nerve and drops in their amplitude and integral intensity. Such SIMSP extracellular acidification-induced responses were inhibited in a dose-dependent manner by ketamine and L-NAME (the effect of the latter was more intensive). The effects of agents increasing the NO level in the tissues were not uniform: L-arginine potentiated an increase in the ID frequency related to application of the acidified solution, while SN inhibited such a reaction. Our findings allow us to suppose that the stimulating influences of the pH-sensitive chemoreceptor structures of the ventrolateral medulla (VLM) on the activity of the medullary respiratory generator of early postnatal rats are realized with the involvement of NMDA receptors of excitatory amino acids and the process of enzyme-mediated NO production. It seems probable that endogenous synthesis of NO in VLM structures mediates and potentiates the effect of activation of the NMDA receptors on the medullary generator of the respiratory rhythm.  相似文献   

11.
12.
睫状神经营养因子对NO引起海马神经元毒性反应的影响   总被引:2,自引:0,他引:2  
Chen XQ  Chen ZY  Lu CL  He C  Wang CH  Bao X 《生理学报》1999,51(5):501-507
本研究采用原代培养大鼠海马神经元,观察睫状神经营养因子(ciliary neurotrophic factor,CNTF)对NO引起细胞毒性反应的影响。NO供体硝普钠与S-亚硝基-乙酰青霉胺,NOS底物L-Arg及钙载体ionomycin,均可引起海马神经元存活率下降,LDH漏出增加;提前24h给予不同浓度CNTF,均能提高神经元的存活率,减少LDH漏出,其作用呈剂量依赖性。  相似文献   

13.
一氧化氮合酶抑制剂L-NAME对大鼠脑缺血耐受诱导的影响   总被引:6,自引:0,他引:6  
Liu HQ  Li WB  Feng RF  Li QJ  Chen XL  Zhou AM  Zhao HG  Ai J 《生理学报》2003,55(2):219-224
采用大鼠四血管闭塞全脑缺血耐受模型和脑组织切片形态学方法,观察应用一氧化氮合酶(NOS)抑制剂L—NAME对大鼠海马CAl区脑缺血耐受(BIT)诱导的影响,在整体水平探讨一氧化氮(NO)在BIT诱导中的作用。54只Wistar大鼠凝闭双侧推动脉后分为6组:(1)假手术组(n=6);分离双侧颈总动脉,但不阻断脑血流;(2)损伤性缺血组(n=6):全脑缺血10min;(3)预缺血 损伤性缺血组(n=6):脑缺血预处理(CIP)3min,再灌注72h后行全脑缺血10min;(4)L—NAME组;分别于CIP前1h和后1、12及36h腹腔注射L—NAME(5mg/kg),每个时间点6只动物,其余步骤同预缺血 损伤性缺血组;(5)L—NAME L—精氨酸组(n=6):于CIP前1h腹腔注射L—NAME(5mg/kg)和L—精氨酸(300mg/kg),其它步骤同L—NAME组;(6)L—NAME 损伤性缺血组(n=6):于腹腔注射L—NAME(5mg/kg)72h后行全脑缺血10min。实验结果表明,(1)单纯10min全脑缺血可使海马CAl区组织学分级增加(表明损伤加重),神经元密度降低(P<0.01);(2)预缺血 损伤性缺血组的海马CAl区组织学分级、神经元密度与假手术组相比,无显著性差别(P>0.05);(3)L—NAME组中,应用L—NAME后海马CAl区组织学分级增加,神经元密度降低,与预缺血 损伤性缺血组相比有显著性差异(P<0.05),表明L—NAME可阻断CIP对神经元的保护作用;(4)L—NAME L—精氨酸组与L—NAME组相比,海马CAl区组织损伤明显减轻(P<0.05),但与预缺血 损伤性缺血组相比仍有显著性差别(P<0.05),提示L-精氨酸可部分逆转L—NAME的作用;(5)L—NAME 损伤性缺血组的组织学表现与损伤性缺血组相同(P>0.05)。这些结果表明,在整体情况下N0参与BIT的诱导。与CIP前1h及后1、12h给予L—NAME组相比,CIP后36h给予L—NAME对CIP保护作用的阻断效应明显减弱,提示N0在CIP后较早阶段即开始参与BIT的诱导。  相似文献   

14.
一氧化氮抑制AngⅡ介导的心肌肥大反应的信号机制   总被引:12,自引:0,他引:12  
Liu PQ  Lu W  Pan JY 《生理学报》2002,54(3):213-218
本文主要利用培养的新生大鼠心肌细胞,从细胞学及分子生物学角度研究一氧化氮(NO)信号系统在AngⅡ介导的心肌肥大反应中的作用及机制。实验以心肌细胞蛋白合成速率、心房钠尿肽(ANP)的表达作为心肌肥大反应的指标,以硝酸盐及亚硝酸盐含量反映心肌细胞NO水平,以免疫印迹法测定MKP-1蛋白表达,以RT-PCR测定eNOS mRNA水平。结果发现:(1)L-精氨酸(L-Arg)10,100μmol/L分别增加心肌细胞NO水平16%及31%,L-Arg(100μmol/L)还可增加心肌细胞eNOS mRNA表达,其作用可被NOS抑制剂L-NAME所抑制;(2)L-Arg(100μmol/L)可降低AngⅡ(0.1μmol/L)诱导的心肌细胞ANP mRNA表达水平和蛋白合成速率,而在L-Arg处理之前用针对MKP-1的反义寡核苷酸转染心肌细胞,蛋白合成速率明显增加,可取消L-Arg的抑制作用,甚至超过AngⅡ组;(3)L-Arg(100μmol/L)明显增加MKP-1蛋白表达,比对照组增加225%,NOS抑制剂L-NAME及蛋白激酶G(PKG)抑制剂KT-5823皆可抑制L-Arg诱导的MKP-1蛋白表达,分别抑制88%、83%,而AngⅡ能增加L-Arg诱导的MKP-1的表达,较对照组增加365%,增强了L-Arg的作用。以上结果表明,NO抑制AngⅡ介导心肌肥大反应的机制可能是通过激活PKG,促进MKP-1的表达,从而增加MAPK去磷酸化实现的。  相似文献   

15.
Despite evidence which supports a neurotransmitter-like role for nitric oxide (NO) in the CNS, relatively little is known regarding mechanisms which control NO formation within CNS neurons. In this study, isolated nerve endings (synaptosomes) from rat cerebral cortex were used to ascertain whether NO can autoregulate its own formation within neurons through feedback inhibition of the NO biosynthetic enzyme nitric oxide synthase (NOS). Under the conditions described here, N-nitro-l-arginine methyl ester-sensitive conversion ofl-[3H]arginine intol-[3H]citrulline (i.e., NOS activity) was found to be highly calcium-dependent and strongly inhibited (up to 60 percent) by NO donors, including sodium nitroprusside, hydroxylamine and nitroglycerin. The inhibitory effect of sodium nitroprusside was concentration-dependent (IC50100 M) and prevented by the NO scavenger oxyhemoglobin.l-Citrulline, the other major end-product from NOS, had no apparent effect on synaptosomal NOS activity. Taken together, these results indicate that neuronal NOS can be inhibited by NO released from exogenous donors and, therefore, may be subject to end-product feedback inhibition by NO that is formed locally within neurons or released from proximal cells.  相似文献   

16.
The L‐arginine/nitric oxide (NO)/cyclic guanosine monophosphate (cGMP) pathway is known to be involved in central and peripheral nociceptive processes. This study evaluated the rhythmic pattern of the L‐arginine/NO/cGMP pathway using the mouse visceral pain model. Experiments were performed at six different times (1, 5, 9, 13, 17, and 21 h after light on) per day in male mice synchronized to a 12 h:12 h light‐dark cycle. Animals were injected s.c. with saline, 2 mg/kg L‐arginine (a NO precursor), 75 mg/kg L‐NG‐nitroarginine methyl ester (L‐NAME, a NOS inhibitor), 40 mg/kg methylene blue (a soluble guanylyl cyclase and/or NOS inhibitor), or 0.1 mg/kg sodium nitroprusside (a nonenzymatic NO donor) 15 min before counting 2.5 mg/kg (i.p.) p‐benzoquinone (PBQ)‐induced abdominal constrictions for 15 min. Blood samples were collected after the test, and the nitrite concentration was determined in serum samples. L‐arginine or L‐NAME caused both antinociception and nociception, depending on the circadian time of their injection. The analgesic effect of methylene blue or sodium nitroprusside exhibited significant biological time‐dependent differences in PBQ‐induced abdominal constrictions. Serum nitrite levels also displayed a significant 24 h variation in mice injected with PBQ, L‐NAME, methylene blue, or sodium nitroprusside, but not saline or L‐arginine. These results suggest that components of L‐arginine/NO/cGMP pathway exhibit biological time‐dependent effects on visceral nociceptive process.  相似文献   

17.

Background

Dietary supplementation with methyl donors can influence the programming of epigenetic patterns resulting in persistent alterations in disease susceptibility and behavior. However, the dietary effects of methyl donors on pain have not been explored. In this study, we evaluated the effects of dietary methyl donor content on pain responses in mice.

Methods

Male and female C57BL/6J mice were treated with high or low methyl donor diets either in the perinatal period or after weaning. Mechanical and thermal nociceptive sensitivity were measured before and after incision.

Results

Mice fed high or low methyl donor diets displayed equal weight gain over the course of the experiments. When exposed to these dietary manipulations in the perinatal period, only male offspring of dams fed a high methyl donor diet displayed increased mechanical allodynia. Hindpaw incision in these animals caused enhanced nociceptive sensitization, but dietary history did not affect the duration of sensitization. For mice exposed to high or low methyl donor diets after weaning, no significant differences were observed in mechanical or thermal nociceptive sensitivity either at baseline or in response to hindpaw incision.

Conclusions

Perinatal dietary factors such as methyl donor content may impact pain experiences in later life. These effects, however, may be specific to sex and pain modality.  相似文献   

18.
It is commonly believed thatthe activity of NO synthase (NOS) solely controls NO production fromits substrates, L-Arg and O2. The Michaelis-Menten constant(Km) of NOS forL-Arg is in the micromolarrange; cellular levels of L-Argare much higher. However, evidence strongly suggests that cellularsupply of L-Arg may becomelimiting and lead to reduced NO and increased superoxide anion(O2·) formation, promotingcardiovascular dysfunction. Uptake ofL-Arg into cells occursprimarily (~85%) through the actions of aNa+-independent, carrier-mediatedtransporter (system y+). We haveexamined the effects of NOS agonists (substance P, bradykinin, and ACh)and NO donors(S-nitroso-N-acetyl-penicillamine and dipropylenetriamine NONOate) on transport ofL-Arg into bovine aorticendothelial cells (BAEC). Our results demonstrate that NOS agonistsincrease y+ transporter activity.A rapidly acting NO donor initially increases L-Arg uptake; however, afterlonger exposure, L-Arg uptake is suppressed. Exposure of BAEC withoutL-Arg to substance P and aCa2+ ionophore (A-23187) increasedO2· formation, which was blockedwith concurrent presence ofL-Arg or the NOS antagonistN-nitro-L-arginine methyl ester.We conclude that factors including NO itself controly+ transport function and theproduction of NO and O2·.

  相似文献   

19.
Separate and combined effects of nitrate (NaNO3) and L-arginine as potential sources of nitric oxide (NO) on the content of endogenous NO in roots of wheat (Triticum aestivum L.) seedlings and on their heat resistance were studied. Both agents increased the seedling resistance to the damaging heating; the effect was maximal at 20 mM NaNO3 or 5 mM L-arginine. The treatment with L-arginine elevated the NO content in the roots within the first 2 h of the treatment. Nitrate caused a stronger and longer rise in nitric oxide. Activity of nitrate reductase considerably (2–3 times) increased in the roots exposed to nitrate. The augmentation in the nitric oxide level caused by nitrate or L-arginine was prevented by the root pretreatment with an inhibitor of nitrate reductase (sodium tungstate) or an inhibitor of animal NO-synthase—NG-nitro-L-arginine methyl ester (L-NAME). Upon the combined treatment with NaNO3 and L-arginine, the nitrateinduced stimulation of the nitrate reductase activity, NO level in the roots, and seedling heat resistance were less pronounced than after separate application. In the presence of L-NAME, the negative influence of L-arginine on nitrate effects was markedly attenuated. The plant exposure to nitrate or L-arginine increased the activities of antioxidant enzymes (superoxide dismutase, catalase, and guaiacol peroxidase). A mixture of NaNO3, and L-arginine caused weaker effects. It was suggested that nitrate-dependent and arginine-dependent pathways of NO formation are antagonistic to each other in wheat roots.  相似文献   

20.
应激状态下NO的胃粘膜保护作用及其与壁细胞泌酸的关系   总被引:4,自引:0,他引:4  
目的:探讨应激状态下一氧化氮(NO)的胃粘膜保护作用及其与壁细胞泌酸的关系.方法:采用水浸-束缚应激(WRS)方法制备应激性溃疡(SU)动物模型,检测胃粘膜溃疡指数(UI)、胃粘膜NO含量和壁细胞H ,K -ATPase活性,观察L-硝基精氨酸甲酯(L-NAME)和L-精氨酸(L-Arg)对应激后大鼠壁细胞H ,K -ATPase活性及胃粘膜损伤的影响.结果:L-NAME(20 mg·kg-1)可使胃粘膜NO含量减少(P<0.01),壁细胞H ,K -AT-Pase活性增加(P<0.05),并加重应激所致的胃粘膜损伤;L-Arg(300 mg·kg-1)则使胃粘膜NO含量增加(P<0.01),壁细胞H ,K -ATPase活性下降(P<0.05),减轻应激所致胃粘膜损伤.结论:NO对应激状态下大鼠胃粘膜具有保护作用,其机制与抑制壁细胞H ,K -ATPase活性有关.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号