首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

There is considerable interest in the high-throughput discovery and genotyping of single nucleotide polymorphisms (SNPs) to accelerate genetic mapping and enable association studies. This study provides an assessment of EST-derived and resequencing-derived SNP quality in maritime pine (Pinus pinaster Ait.), a conifer characterized by a huge genome size (∼23.8 Gb/C).

Methodology/Principal Findings

A 384-SNPs GoldenGate genotyping array was built from i/ 184 SNPs originally detected in a set of 40 re-sequenced candidate genes (in vitro SNPs), chosen on the basis of functionality scores, presence of neighboring polymorphisms, minor allele frequencies and linkage disequilibrium and ii/ 200 SNPs screened from ESTs (in silico SNPs) selected based on the number of ESTs used for SNP detection, the SNP minor allele frequency and the quality of SNP flanking sequences. The global success rate of the assay was 66.9%, and a conversion rate (considering only polymorphic SNPs) of 51% was achieved. In vitro SNPs showed significantly higher genotyping-success and conversion rates than in silico SNPs (+11.5% and +18.5%, respectively). The reproducibility was 100%, and the genotyping error rate very low (0.54%, dropping down to 0.06% when removing four SNPs showing elevated error rates).

Conclusions/Significance

This study demonstrates that ESTs provide a resource for SNP identification in non-model species, which do not require any additional bench work and little bio-informatics analysis. However, the time and cost benefits of in silico SNPs are counterbalanced by a lower conversion rate than in vitro SNPs. This drawback is acceptable for population-based experiments, but could be dramatic in experiments involving samples from narrow genetic backgrounds. In addition, we showed that both the visual inspection of genotyping clusters and the estimation of a per SNP error rate should help identify markers that are not suitable to the GoldenGate technology in species characterized by a large and complex genome.  相似文献   

2.
Many candidate gene association studies have evaluated incomplete, unrepresentative sets of single nucleotide polymorphisms (SNPs), producing non-significant results that are difficult to interpret. Using a rapid, efficient strategy designed to investigate all common SNPs, we tested associations between schizophrenia and two positional candidate genes: ACSL6 (Acyl-Coenzyme A synthetase long-chain family member 6) and SIRT5 (silent mating type information regulation 2 homologue 5). We initially evaluated the utility of DNA sequencing traces to estimate SNP allele frequencies in pooled DNA samples. The mean variances for the DNA sequencing estimates were acceptable and were comparable to other published methods (mean variance: 0.0008, range 0-0.0119). Using pooled DNA samples from cases with schizophrenia/schizoaffective disorder (Diagnostic and Statistical Manual of Mental Disorders edition IV criteria) and controls (n=200, each group), we next sequenced all exons, introns and flanking upstream/downstream sequences for ACSL6 and SIRT5. Among 69 identified SNPs, case-control allele frequency comparisons revealed nine suggestive associations (P<0.2). Each of these SNPs was next genotyped in the individual samples composing the pools. A suggestive association with rs 11743803 at ACSL6 remained (allele-wise P=0.02), with diminished evidence in an extended sample (448 cases, 554 controls, P=0.062). In conclusion, we propose a multi-stage method for comprehensive, rapid, efficient and economical genetic association analysis that enables simultaneous SNP detection and allele frequency estimation in large samples. This strategy may be particularly useful for research groups lacking access to high throughput genotyping facilities. Our analyses did not yield convincing evidence for associations of schizophrenia with ACSL6 or SIRT5.  相似文献   

3.
Quantitative determination of the allele frequency of single-nucleotide polymorphism (SNP) in pooled DNA samples is a promising approach to clarify the relationships between SNPs and diseases. Here, we present such a simple, accurate, and inexpensive method for quantitative determining the allele frequency in pooled DNA samples. Three steps of DNA pooling, PCR amplification and sequencing are involved in this assay. Although direct determination of the allele frequency from the two allele-specific fluorescence intensities is possible, correction for differential response of alleles is important. We explored the effect of differential response of alleles on test statistics and provide a solution to this problem based on heterozygous fluorescence intensities. We demonstrate the accuracy and reliability of this assay on pooled DNA samples with pre-determined allele frequencies from 7.1% to 53.9%. The accuracy of allele frequency measurements is high, with a correlation coefficient of r2 = 0.997 between measured and known frequencies. We believe that by providing a means for SNP genotyping up to hundreds of samples simultaneously, inexpensively, and reproducibly, this method is a powerful strategy for detecting meaningful polymorphic differences in candidate gene association studies.  相似文献   

4.
A new MALDI-TOF based mini-sequencing assay for genotyping of SNPS   总被引:6,自引:2,他引:4       下载免费PDF全文
A new MALDI-TOF based mini-sequencing assay termed VSET was developed for genotyping of SNPs. In this assay, specific fragments of genomic DNA containing the SNP site(s) are first amplified, followed by mini-sequencing in the presence of three ddNTPs and the fourth nucleotide in the deoxy form. In this way, the primer is extended by only one base from one allele, while it is typically extended by two bases from another allele. The products are then analyzed using MALDI-TOF mass spectrometry. The genotype of the SNP site is identified based on the number of nucleotides added. This assay has been examined using both synthetic and genomic DNA samples. In addition, multiplexed assays were successfully performed to genotype four SNP sites in a single tube. The main aspect of this assay is that it can overcome the key problems associated with the currently used mini-sequencing methods. First, it significantly reduces the stringent high-resolution and extensive desalting requirements that are essential to the pinpoint assay. Second, it avoids the long extension problem associated with the PROBE assay.  相似文献   

5.

Background

Genome-wide association studies of pooled DNA samples were shown to be a valuable tool to identify candidate SNPs associated to a phenotype. No such study was up to now applied to childhood allergic asthma, even if the very high complexity of asthma genetics is an appropriate field to explore the potential of pooled GWAS approach.

Methodology/Principal Findings

We performed a pooled GWAS and individual genotyping in 269 children with allergic respiratory diseases comparing allergic children with and without asthma. We used a modular approach to identify the most significant loci associated with asthma by combining silhouette statistics and physical distance method with cluster-adapted thresholding. We found 97% concordance between pooled GWAS and individual genotyping, with 36 out of 37 top-scoring SNPs significant at individual genotyping level. The most significant SNP is located inside the coding sequence of C5, an already identified asthma susceptibility gene, while the other loci regulate functions that are relevant to bronchial physiopathology, as immune- or inflammation-mediated mechanisms and airway smooth muscle contraction. Integration with gene expression data showed that almost half of the putative susceptibility genes are differentially expressed in experimental asthma mouse models.

Conclusion/Significance

Combined silhouette statistics and cluster-adapted physical distance threshold analysis of pooled GWAS data is an efficient method to identify candidate SNP associated to asthma development in an allergic pediatric population.  相似文献   

6.
The quantification of single nucleotide polymorphism (SNP) allele frequencies in pooled DNA samples using real time PCR is a promising approach for large-scale diagnostics and genotyping. The limits of detection (LOD) and limits of quantification (LOQ) for mutant SNP alleles are of particular importance for determination of the working range, which, in the case of allele-specific real time PCR, can be limited by the variance of calibration data from serially diluted mutant allele samples as well as by the variance of the 100% wild-type allele samples (blank values). In this study, 3σ and 10σ criteria were applied for the calculation of LOD and LOQ values. Alternatively, LOQ was derived from a 20% threshold for the relative standard deviation (%RSD) of measurements by fitting a curve for the relationship between %RSD and copy numbers of the mutant alleles. We found that detection and quantification of mutant alleles were exclusively limited by the variance of calibration data since the estimated LODcalibration (696 in 30000000 copies, 0.0023%), LOQ20%RSD (1470, 0.0049%) and LOQcalibration (2319, 0.0077) values were significantly higher than the LODblank (130, 0.0004%) and LOQblank (265, 0.0009%) values derived from measurements of wild-type allele samples. No significant matrix effects of the genomic background DNA on the estimation of LOD and LOQ were found. Furthermore, the impact of large genome sizes and the general application of the procedure for the estimation of LOD and LOQ in quantitative real time PCR diagnostics are discussed.  相似文献   

7.
Power to detect risk alleles using genome-wide tag SNP panels   总被引:1,自引:0,他引:1       下载免费PDF全文
Advances in high-throughput genotyping and the International HapMap Project have enabled association studies at the whole-genome level. We have constructed whole-genome genotyping panels of over 550,000 (HumanHap550) and 650,000 (HumanHap650Y) SNP loci by choosing tag SNPs from all populations genotyped by the International HapMap Project. These panels also contain additional SNP content in regions that have historically been overrepresented in diseases, such as nonsynonymous sites, the MHC region, copy number variant regions and mitochondrial DNA. We estimate that the tag SNP loci in these panels cover the majority of all common variation in the genome as measured by coverage of both all common HapMap SNPs and an independent set of SNPs derived from complete resequencing of genes obtained from SeattleSNPs. We also estimate that, given a sample size of 1,000 cases and 1,000 controls, these panels have the power to detect single disease loci of moderate risk (λ ~ 1.8–2.0). Relative risks as low as λ ~ 1.1–1.3 can be detected using 10,000 cases and 10,000 controls depending on the sample population and disease model. If multiple loci are involved, the power increases significantly to detect at least one locus such that relative risks 20%–35% lower can be detected with 80% power if between two and four independent loci are involved. Although our SNP selection was based on HapMap data, which is a subset of all common SNPs, these panels effectively capture the majority of all common variation and provide high power to detect risk alleles that are not represented in the HapMap data.  相似文献   

8.
Single-nucleotide polymorphisms (SNPs) are considered useful polymorphic markers for genetic studies of polygenic traits. A new practical approach to high-throughput genotyping of SNPs in a large number of individuals is needed in association study and other studies on relationships between genes and diseases. We have developed an accurate and high-throughput method for determining the allele frequencies by pooling the DNA samples and applying a DNA microarray hybridization analysis. In this method, the combination of the microarray, DNA pooling, probe pair hybridization, and fluorescent ratio analysis solves the dual problems of parallel multiple sample analysis, and parallel multiplex SNP genotyping for association study. Multiple DNA samples are immobilized on a slide and a single hybridization is performed with a pool of allele-specific oligonucleotide probes. The results of this study show that hybridization of microarray from pooled DNA samples can accurately obtain estimates of absolute allele frequencies in a sample pool. This method can also be used to identify differences in allele frequencies in distinct populations. It is amenable to automation and is suitable for immediate utilization for high-throughput genotyping of SNP.  相似文献   

9.
Reliable detection of large deletions from cell-free fetal DNA (cffDNA) in maternal plasma is challenging, especially when both parents have the same deletion owing to a lack of specific markers for fetal genotyping. In order to evaluate the efficacy of a non-invasive prenatal diagnosis (NIPD) test to exclude α-thalassemia major that uses SNPs linked to the normal paternal α-globin allele, we established a novel protocol to reliably detect paternal SNPs within the (−−SEA) breakpoints and performed evaluation of the diagnostic potential of the protocol in a total of 67 pregnancies, in whom plasma samples were collected prior to invasive obstetrics procedures in southern China. A group of nine SNPs identified within the deletion breakpoints were scanned to select the informative SNPs in each of the 67 couples DNA by multiplex PCR based mini-sequencing technique. The paternally inherited SNP allele from cffDNA was detected by allele specific real-time PCR. A protocol for reliable detection of paternal SNPs within the (−−SEA) breakpoints was established and evaluation of the diagnostic potential of the protocol was performed in a total of 67 pregnancies. In 97% of the couples one or more different SNPs within the deletion breakpoint occurred between paternal and maternal alleles. Homozygosity for the (−−SEA) deletion was accurately excluded in 33 out of 67 (49.3%, 95% CI, 25.4–78.6%) pregnancies through the implementation of the protocol. Protocol was completely concordant with the traditional reference methods, except for two cases that exhibited uncertain results due to sample hemolysis. This method could be used as a routine NIPD test to exclude gross fetal deletions in α-thalassemia major, and could further be employed to test for other diseases due to gene deletion.  相似文献   

10.
Biallelic marker, most commonly single nucleotide polymorphism (SNP), is widely utilized in genetic association analysis, which can be speeded up by estimating allele frequency in pooled DNA instead of individual genotyping. Several methods have shown high accuracy and precision for allele frequency estimation in pools. Here, we explored PCR restriction fragment length polymorphism (PCR–RFLP) combined with microchip electrophoresis as a possible strategy for allele frequency estimation in DNA pools. We have used the commercial available Agilent 2100 microchip electrophoresis analysis system for quantifying the enzymatically digested DNA fragments and the fluorescence intensities to estimate the allele frequencies in the DNA pools. In this study, we have estimated the allele frequencies of five SNPs in a DNA pool composed of 141 previously genotyped health controls and a DNA pool composed of 96 previously genotyped gastric cancer patients with a frequency representation of 10–90% for the variant allele. Our studies show that accurate, quantitative data on allele frequencies, suitable for investigating the association of SNPs with complex disorders, can be estimated from pooled DNA samples by using this assay. This approach, being independent of the number of samples, promises to drastically reduce the labor and cost of genotyping in the initial association analysis.  相似文献   

11.
We have developed a locus-specific DNA target preparation method for highly multiplexed single nucleotide polymorphism (SNP) genotyping called MARA (Multiplexed Anchored Runoff Amplification). The approach uses a single primer per SNP in conjunction with restriction enzyme digested, adapter-ligated human genomic DNA. Each primer is composed of common sequence at the 5′ end followed by locus-specific sequence at the 3′ end. Following a primary reaction in which locus-specific products are generated, a secondary universal amplification is carried out using a generic primer pair corresponding to the oligonucleotide and genomic DNA adapter sequences. Allele discrimination is achieved by hybridization to high-density DNA oligonucleotide arrays. Initial multiplex reactions containing either 250 primers or 750 primers across nine DNA samples demonstrated an average sample call rate of ~95% for 250- and 750-plex MARA. We have also evaluated >1000- and 4000-primer plex MARA to genotype SNPs from human chromosome 21. We have identified a subset of SNPs corresponding to a primer conversion rate of ~75%, which show an average call rate over 95% and concordance >99% across seven DNA samples. Thus, MARA may potentially improve the throughput of SNP genotyping when coupled with allele discrimination on high-density arrays by allowing levels of multiplexing during target generation that far exceed the capacity of traditional multiplex PCR.  相似文献   

12.
Xiao M  Latif SM  Kwok PY 《BioTechniques》2003,34(1):190-197
Strategies for identifying genetic risk factors in complex diseases by association studies require the comparison of allele frequencies of numerous SNPs between affected and control populations. Theoretically, hundreds of thousands of SNP markers across the genome will have to be genotyped in these studies. Genotyping SNPs one sample at a time is extremely costly and time consuming. To streamline whole genome association studies, some have proposed to screen SNPs by pooling the DNA samples initially for allele frequency determination and perform individual genotyping only when there is a significant discrepancy in allele frequencies between the affected and control populations. Here we describe a new method for determining the allele frequency of SNPs in pooled DNA samples using a two-color primer extension assay with real-time monitoring of fluorescence polarization (named kinetic FP-TDI assay). By comparing the ratio of the rate of incorporation of the two allele-specific dye-terminators, one can calculate the relative amounts of each allele in the pooled sample. The accuracy of allele frequency determination with pooled samples is within 3.3 +/- 0.8% of that determined by genotyping individual samples that make up the pool.  相似文献   

13.
Positional cloning of genes underlying complex diseases, such as type 2 diabetes mellitus (T2DM), typically follows a two-tiered process in which a chromosomal region is first identified by genome-wide linkage scanning, followed by association analyses using densely spaced single nucleotide polymorphic markers to identify the causal variant(s). The success of genome-wide single nucleotide polymorphism (SNP) detection has resulted in a vast number of potential markers available for use in the construction of such dense SNP maps. However, the cost of genotyping large numbers of SNPs in appropriately sized samples is nearly prohibitive. We have explored pooled DNA genotyping as a means of identifying differences in allele frequency between pools of individuals with T2DM and unaffected controls by using Pyrosequencing technology. We found that allele frequencies in pooled DNA were strongly correlated with those in individuals (r=0.99, P<0.0001) across a wide range of allele frequencies (0.02-0.50). We further investigated the sensitivity of this method to detect allele frequency differences between contrived pools, also over a wide range of allele frequencies. We found that Pyrosequencing was able to detect an allele frequency difference of less than 2% between pools, indicating that this method may be sensitive enough for use in association studies involving complex diseases where a small difference in allele frequency between cases and controls is expected.  相似文献   

14.
Detecting alleles that confer small increments in susceptibility to disease will require large-scale allelic association studies of single-nucleotide polymorphisms (SNPs) in candidate, or positional candidate, genes. However, current genotyping technologies are one to two orders of magnitude too expensive to permit the analysis of thousands of SNPs in large samples. We have developed and thoroughly validated a highly accurate protocol for SNP allele frequency estimation in DNA pools based upon the SNaPshot (Applied Biosystems) chemistry adaptation of primer extension. Using this assay, we were able to estimate the difference in allele frequencies between pooled cases and controls (Delta) with a mean error of 0.01. Moreover, when we genotyped seven different SNPs in a single multiplex reaction, the results were similar, with a mean error for Delta of 0.008. The assay performed well for alleles of low frequency alleles (f approximately 0.05) and was accurate even with relatively poor quality DNA template extracted from mouthwashes. Our assay conditions are generalisable, universal, robust and, therefore, for the first time, permit high-throughput association analysis at a realistic cost.  相似文献   

15.
General cognitive ability ( g ), which refers to what cognitive abilities have in common, is an important target for molecular genetic research because multivariate quantitative genetic analyses have shown that the same set of genes affects diverse cognitive abilities as well as learning disabilities. In this first autosomal genome-wide association scan of g , we used a two-stage quantitative trait locus (QTL) design with pooled DNA to screen more than 500 000 single nucleotide polymorphisms (SNPs) on microarrays, selecting from a sample of 7000 7-year-old children. In stage 1, we screened for allele frequency differences between groups pooled for low and high g . In stage 2, 47 SNPs nominated in stage 1 were tested by individually genotyping an independent sample of 3195 individuals, representative of the entire distribution of g scores in the full 7000 7-year-old children. Six SNPs yielded significant associations across the normal distribution of g , although only one SNP remained significant after a false discovery rate of 0.05 was imposed. However, none of these SNPs accounted for more than 0.4% of the variance of g , despite 95% power to detect associations of that size. It is likely that QTL effect sizes, even for highly heritable traits such as cognitive abilities and disabilities, are much smaller than previously assumed. Nonetheless, an aggregated 'SNP set' of the six SNPs correlated 0.11 ( P  < 0.00000003) with g . This shows that future SNP sets that will incorporate many more SNPs could be useful for predicting genetic risk and for investigating functional systems of effects from genes to brain to behavior.  相似文献   

16.

Background

Single nucleotide polymorphisms (SNPs) have been used extensively in genetics and epidemiology studies. Traditionally, SNPs that did not pass the Hardy-Weinberg equilibrium (HWE) test were excluded from these analyses. Many investigators have addressed possible causes for departure from HWE, including genotyping errors, population admixture and segmental duplication. Recent large-scale surveys have revealed abundant structural variations in the human genome, including copy number variations (CNVs). This suggests that a significant number of SNPs must be within these regions, which may cause deviation from HWE.

Results

We performed a Bayesian analysis on the potential effect of copy number variation, segmental duplication and genotyping errors on the behavior of SNPs. Our results suggest that copy number variation is a major factor of HWE violation for SNPs with a small minor allele frequency, when the sample size is large and the genotyping error rate is 0∼1%.

Conclusions

Our study provides the posterior probability that a SNP falls in a CNV or a segmental duplication, given the observed allele frequency of the SNP, sample size and the significance level of HWE testing.  相似文献   

17.
SNP2CAPS: a SNP and INDEL analysis tool for CAPS marker development   总被引:7,自引:0,他引:7  
With the influx of various SNP genotyping assays in recent years, there has been a need for an assay that is robust, yet cost effective, and could be performed using standard gel-based procedures. In this context, CAPS markers have been shown to meet these criteria. However, converting SNPs to CAPS markers can be a difficult process if done manually. In order to address this problem, we describe a computer program, SNP2CAPS, that facilitates the computational conversion of SNP markers into CAPS markers. 413 multiple aligned sequences derived from barley ESTs were analysed for the presence of polymorphisms in 235 distinct restriction sites. 282 (90%) of 314 alignments that contain sequence variation due to SNPs and InDels revealed at least one polymorphic restriction site. After reducing the number of restriction enzymes from 235 to 10, 31% of the polymorphic sites could still be detected. In order to demonstrate the usefulness of this tool for marker development, we experimentally validated some of the results predicted by SNP2CAPS.  相似文献   

18.

Background  

Single nucleotide polymorphisms (SNPs) are DNA sequence variations, occurring when a single nucleotide – adenine (A), thymine (T), cytosine (C) or guanine (G) – is altered. Arguably, SNPs account for more than 90% of human genetic variation. Our laboratory has developed a highly redundant SNP genotyping assay consisting of multiple probes with signals from multiple channels for a single SNP, based on arrayed primer extension (APEX). This mini-sequencing method is a powerful combination of a highly parallel microarray with distinctive Sanger-based dideoxy terminator sequencing chemistry. Using this microarray platform, our current genotype calling system (known as SNP Chart) is capable of calling single SNP genotypes by manual inspection of the APEX data, which is time-consuming and exposed to user subjectivity bias.  相似文献   

19.
Identifying the genetic variation underlying complex disease requires analysis of many single nucleotide polymorphisms (SNPs) in a large number of samples. Several high-throughput SNP genotyping techniques are available; however, their cost promotes the use of association screening with pooled DNA. This protocol describes the estimation of SNP allele frequencies in pools of DNA using the quantitative sequencing method Pyrosequencing (PSQ). PSQ is a relatively recently described high-throughput method for genotyping, allele frequency estimation and DNA methylation analysis based on the detection of real-time pyrophosphate release during synthesis of the complementary strand to a PCR product. The protocol involves the following steps: (i) quantity and quality assessment of individual DNA samples; (ii) DNA pooling, which may be undertaken at the pre- or post-PCR stage; (iii) PCR amplification of PSQ template containing the variable sequence region of interest; and (iv) PSQ to determine the frequency of alleles at a particular SNP site. Once the quantity and quality of individual DNA samples has been assessed, the protocol usually requires a few days for setting up pre-PCR pools, depending on sample number. After PCR amplification, preparation and analysis of PCR amplicon by PSQ takes 1 h per plate.  相似文献   

20.
The identification of quantitative trait loci (QTLs) of small effect size that underlie complex traits poses a particular challenge for geneticists due to the large sample sizes and large numbers of genetic markers required for genomewide association scans. An efficient solution for screening purposes is to combine single nucleotide polymorphism (SNP) microarrays and DNA pooling (SNP-MaP), an approach that has been shown to be valid, reliable and accurate in deriving relative allele frequency estimates from pooled DNA for groups such as cases and controls for 10K SNP microarrays. However, in order to conduct a genomewide association study many more SNP markers are needed. To this end, we assessed the validity and reliability of the SNP-MaP method using Affymetrix GeneChip® Mapping 100K Array set. Interpretable results emerged for 95% of the SNPs (nearly 110000 SNPs). We found that SNP-MaP allele frequency estimates correlated 0.939 with allele frequencies for 97605 SNPs that were genotyped individually in an independent population; the correlation was 0.971 for 26 SNPs that were genotyped individually for the 1028 individuals used to construct the DNA pools. We conclude that extending the SNP-MaP method to the Affymetrix GeneChip® Mapping 100K Array set provides a useful screen of >100000 SNP markers for QTL association scans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号