首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Of the basal clades of extant birds (Neornithes) the 'landfowl' or galliforms (Aves, Galliformes) are the most speciose. Cladistic analysis of more than 100 morphological characters coded at the generic level for most putative galliform genera confirms that the megapodes ('mound builders'; Megapodiidae) are the most basal clade within the order. They are followed successively by the curassows, guans and chachalacas (Cracidae), which comprise the sister-group to all other extant Galliformes (i.e. Phasianoidea). Within this large 'phasianoid' clade, analyses suggest that the guineafowl (Numididae) are the most basal taxon, although monophyly of this 'family' is not strictly supported on the basis of the morphological characters employed. An additional major clade within the phasianoid Galliformes is recovered by this analysis, comprising the traditional groupings of New World quails (Odontophoridae) and Old World quails ('Perdicini'), yet only monophyly of the former is supported unambiguously by morphological characters. Relationships within the remainder of the phasianoid taxa, including the grouse (Tetraonidae), turkeys (i.e. Meleagris / Agriocharus spp.) as well as other 'pavonine' galliforms (i.e. peafowl; Pavo , Afropavo , Rheinardia , Argusianus and Polyplectron spp.) remain largely unresolved on the basis of morphological characters, yet monophyly of the major subdivisions is supported here. Although there are a number of important differences, especially with regard to relationships within the nonquail phasianoids, the results of this morphological phylogenetic (cladistic) analysis are broadly congruent both with traditional classifications and existing molecular hypotheses of galliform phylogenetic relationships.  相似文献   

2.
Colours in feathers are produced by pigments or by nanostructurally organized tissues that interact with light. One of the simplest nanostructures is a single layer of keratin overlying a linearly organized layer of melanosomes that create iridescent colours of feather barbules through thin-film interference. Recently, it has been hypothesized that glossy (i.e. high specular reflectance) black feathers may be evolutionarily intermediate between matte black and iridescent feathers, and thus have a smooth keratin layer that produces gloss, but not the layered organization of melanosomes needed for iridescence. However, the morphological bases of glossiness remain unknown. Here, we use a theoretical approach to generate predictions about morphological differences between matte and glossy feathers that we then empirically test. Thin-film models predicted that glossy spectra would result from a keratin layer 110-180 nm thick and a melanin layer greater than 115 nm thick. Transmission electron microscopy data show that nanostructure of glossy barbules falls well within that range, but that of matte barbules does not. Further, glossy barbules had a thinner and more regular keratin cortex, as well as a more continuous underlying melanin layer, than matte barbules. Thus, their quasi-ordered nanostructures are morphologically intermediate between matte black and iridescent feathers, and perceived gloss may be a form of weakly chromatic iridescence.  相似文献   

3.
The phylogenetic relationships, biogeography and classification of, and morpho‐behavioral (M/B) evolution in, gamebirds (Aves: Galliformes) are investigated. In‐group taxa (rooted on representatives of the Anseriformes) include 158 species representing all suprageneric galliform taxa and 65 genera. The characters include 102 M/B attributes and 4452 nucleic acid base pairs from mitochondrial cytochrome b (CYT B), NADH dehydrogenase subunit 2 (ND2), 12S ribosomal DNA (12S) and control region (CR), and nuclear ovomucoid intron G (OVO‐G). Analysis of the combined character data set yielded a single, completely resolved cladogram that had the highest levels of jackknife support, which suggests a need for a revised classification for the phasianine galliforms. Adding 102 M/B characters to the combined CYT B and ND2 partitions (2184 characters) decisively overturns the topology suggested by analysis of the two mtDNA partitions alone, refuting the view that M/B characters should be excluded from phylogenetic analyses because of their relatively small number and putative character state ambiguity. Exclusion of the OVO‐G partition (with > 70% missing data) from the combined data set had no effect on cladistic structure, but slightly lowered jackknife support at several nodes. Exclusion of third positions of codons in an analysis of a CYT B + ND2 partition resulted in a massive loss of resolution and support, and even failed to recover the monophyly of the Galliformes with jackknife support. A combined analysis of putatively less informative, “non‐coding” characters (CYT B/ND2 third position sites + CR +12S + OVO‐G sequences) yielded a highly resolved consensus cladogram congruent with the combined‐evidence cladogram. Traditionally recognized suprageneric galliform taxa emerging in the combined cladogram are: the families Megapodiidae (megapodes), Cracidae (cracids), Numididae (guineafowls), Odontophoridae (New World quails) and Phasianidae (pheasants, pavonines, partridges, quails, francolins, spurfowls and grouse) and the subfamilies Cracinae (curassows, chachalacas and the horned guan), Penelopinae (remaining guans), Pavoninae sensu lato (peafowls, peacock pheasants and argus pheasants), Tetraoninae (grouse) and Phasianinae (pheasants minus Gallus). The monophyly of some traditional groupings (e.g., the perdicinae: partridges/quails/francolins) is rejected decisively, contrasted by the emergence of other unexpected groupings. The most remarkable phylogenetic results are the placement of endemic African galliforms as sisters to geographically far‐distant taxa in Asia and the Americas. Biogeographically, the combined‐data cladogram supports the hypothesis that basal lineages of galliforms diverged prior to the Cretaceous/Tertiary (K‐T) Event and that the subsequent cladogenesis was influenced by the break‐up of Gondwana. The evolution of gamebirds in Africa, Asia and the Americas has a far more complicated historical biogeography than suggested to date. With regard to character evolution: spurs appear to have evolved at least twice within the Galliformes; a relatively large number of tail feathers (≥ 14) at least three times; polygyny at least twice; and sexual dimorphism many times. © The Willi Hennig Society 2006.  相似文献   

4.
JAN DYCK 《Zoologica scripta》1985,14(2):137-154
Existing hypotheses on the evolution of feathers are reviewed with the assumptions that feather evolved from reptilian scales and that pennaceous feathers evolved before downy feathers. Observations with a scanning electron microscope demonstrate that basic to the structure of pennaceous feathers is the lamelliform structure of barbules, the planes of which are oriented at right angles to the plane of the feather vane. Thus the structure of the vane is more open than generally realized. The airtight vane of flight feathers is assumed a later specialization. Most of the existing hypotheses assume that the feather acts as a relatively solid barrier between the skin of the bird and the exterior and they are therefore not in agreement with the actual structure of feathers. A hypothesis is needed which explains the adaptive value of a pennaceous feather being porous. The hypothesis is put foward that feathers evolved due to selection for a water-repellent integument. For purely physical reasons a porous surface repels water drops more strongly than does a solid surface of the same material. Physicists have pointed out that the structure of feathers conforms closely with the theoretical requirements for water-repellency. Possibly feathers started to evolve on reptiles living at the seashore, where the main advantage of increased water-repellency was to reduce cooling from evaporation of water off a wet integument.  相似文献   

5.
The rufous colouring on the feathers of the under parts of adult bearded vultures Gypaetus barbatus , studied by scanning electron microscopy, energy-dispersive X-ray microanalysis and X-ray diffraction analysis, is caused by an external deposit of iron oxide in the ferrihydrite state. Unstained feathers, e.g. in captive birds, are pure white. The feathers of young birds have similar coatings of iron oxide to those of adults, but because the feathers are pigmented pale to dark brown (dependent on age), the rusty colour is partly or totally obscured. The intensity of the colour in adult birds varies between individuals and within individuals with time; the more worn the feathers the more iron oxide they can hold. After heavy rainfall up to 30% of adult birds can become appreciably paler. Birds take about 6 days (range–9 days) to regain normal colouring. Iron oxide accumulates mainly in the axes of shafts and barbs, barbs and barbules and barbules and hamuli, and forms blob-like deposits at the ends of barbs and barbules on the outer layers of feathers. Iron oxide is probably acquired passively when bearded vultures come into contact with deposits in caves and on ledges on cliffs. The colour is then spread by preening. Iron oxide imparts camouflage to adult birds, but also reduces wear on the outer layer of feathers, makes feathers more rigid and probably helps control ectoparasites.  相似文献   

6.
In all owl species, the facial plumage forms a parabolic dish, the facial ruff, which is most conspicuous in the the barn owl (Tyto alba). The center of the ruff is formed by auricular feathers. Such feathers are also found on the preaural flaps which cover the ear openings, and in the region of the beak. In this study, we compare the different types of auricular feathers of the barn owl with contour feathers from the neck. Auricular feathers are characterised by an open vane structure and fewer barbs as compared to contour feathers. Auricular feathers also have fewer distal and proximal barbules than contour feathers. The open vane of the auricular feather results from an acute angle between the barb and the basis of the barbules, and from the extension of the pennula parallel to the barbs. These reductions are differently expressed in the three different types of auricular feathers investigated here and correspond with their function (protecting the ruff from dust).  相似文献   

7.
In this special issue on the Evo-Devo of amniote integuments, Alibardi has discussed the adaptation of the integument to the land. Here we will discuss the adaptation to the sky. We first review a series of fossil discoveries representing intermediate forms of feathers or feather-like appendages from dinosaurs and Mesozoic birds from the Jehol Biota of China. We then discuss the molecular and developmental biological experiments using chicken integuments as the model. Feather forms can be modulated using retrovirus mediated gene mis-expression that mimics those found in nature today and in the evolutionary past. The molecular conversions among different types of integument appendages (feather, scale, tooth) are discussed. From this evidence, we recognize that not all organisms with feathers are birds, and that not all skin appendages with hierarchical branches are feathers. We develop a set of criteria for true avian feathers: 1) possessing actively proliferating cells in the proximal follicle for proximo-distal growth mode; 2) forming hierarchical branches of rachis, barbs, and barbules, with barbs formed by differential cell death and bilaterally or radially symmetric; 3) having a follicle structure, with mesenchyme core during development; 4) when mature, consisting of epithelia without mesenchyme core and with two sides of the vane facing the previous basal and supra-basal layers, respectively; and 5) having stem cells and dermal papilla in the follicle and hence the ability to molt and regenerate. A model of feather evolution from feather bud --> barbs --> barbules --> rachis is presented, which is opposite to the old view of scale plate --> rachis --> barbs --> barbules (Regal, '75; Q Rev Biol 50:35).  相似文献   

8.
The avian subfamily Tetraoninae (grouse and ptarmigan) is a Holarctic group in the order Galliformes distinguished by morphological adaptations to cold environments and behavioral traits associated with elaborate courtship. Here we investigate the relationships of 17 tetraonines and 12 other galliform species using mitochondrial 12S and ND2 sequence data. We found support for the recent phylogenetic classification that separates the genus Dendragapus into two genera, Falcipennis and Dendragapus. In addition, we found support for a tetraonine clade in which the first divergence is between Bonasa umbellus and all others, followed by divergence between a Bonasa bonasia/Bonasa sewerzowi clade and the remaining tetraonines. Falcipennis canadensis is sister to a clade with four Tetrao species, and the genus Centrocercus is sister to a Dendragapus obscurus/Tympanuchus clade. Our data indicate a basal position for Cracidae and Megapodiidae among the five recognized galliform families. We also found strong support for the monophyly of Phasianidae, although the relative positions of Numididae and Odontiphoridae remains unresolved. We use a maximum likelihood approach to infer ages of 37mya for divergence of Numididae and Phasianidae and 28mya for the divergence of Tetraoninae and Meleagris gallopavo. These estimates must be viewed as tentative as they depend on tests of rates of molecular evolution and accurate fossil dates.  相似文献   

9.
10.
We report for the first time the existence of a structural mechanism of feathers different from iridescence that makes plumage conspicuous. By using electron and light microscopy, we show that the mechanism consists of special lengthened and twisted distal barbules that are very susceptible to damage. The dorsal side of these barbules is translucent, which creates a distinctive sheen colouration to feathers that otherwise would be dark. When distal sheen barbules are broken, the black proximal barbules are exposed, thus generating a conspicuous difference between abraded and non-abraded areas. Total and ultraviolet reflectance of sheen (non-abraded) areas are strikingly higher than in abraded areas. We propose that this mechanism represents a case of convergent evolution in species that are limited in developing colourful plumage patches. Future studies should explore the potential of this colour mechanism to act as a signal of individual quality or identity.  相似文献   

11.
鸟类飞羽羽小枝的显微结构比较   总被引:10,自引:0,他引:10  
选择11目20种鸟羽飞羽的400个羽小枝,观察测量其显微结构并摄像,用扫描电镜拍照及SPSS软件统计分析.结果表明:飞羽羽小枝在同种雌、雄之间差异甚小;雉科飞羽羽小枝有形态结构的共同特征.将10目(每目1种)与鸡形目及10目之间的飞羽羽小枝进行比较,发现了羽小枝形态结构的一系列特点,如有钩羽小枝纤毛的长短和粗细不尽相同,羽小钩钩杆膨大,且羽脉上具花纹,而无钩羽小枝无泡状结构等.前述这些特征却有助于区分不同的飞羽羽小枝,并发现飞羽羽小枝在不同目、科间存在错综复杂的关系.  相似文献   

12.
Light interacts with an organism''s integument on a variety of spatial scales. For example in an iridescent bird: nano-scale structures produce color; the milli-scale structure of barbs and barbules largely determines the directional pattern of reflected light; and through the macro-scale spatial structure of overlapping, curved feathers, these directional effects create the visual texture. Milli-scale and macro-scale effects determine where on the organism''s body, and from what viewpoints and under what illumination, the iridescent colors are seen. Thus, the highly directional flash of brilliant color from the iridescent throat of a hummingbird is inadequately explained by its nano-scale structure alone and questions remain. From a given observation point, which milli-scale elements of the feather are oriented to reflect strongly? Do some species produce broader "windows" for observation of iridescence than others? These and similar questions may be asked about any organisms that have evolved a particular surface appearance for signaling, camouflage, or other reasons.In order to study the directional patterns of light scattering from feathers, and their relationship to the bird''s milli-scale morphology, we developed a protocol for measuring light scattered from biological materials using many high-resolution photographs taken with varying illumination and viewing directions. Since we measure scattered light as a function of direction, we can observe the characteristic features in the directional distribution of light scattered from that particular feather, and because barbs and barbules are resolved in our images, we can clearly attribute the directional features to these different milli-scale structures. Keeping the specimen intact preserves the gross-scale scattering behavior seen in nature. The method described here presents a generalized protocol for analyzing spatially- and directionally-varying light scattering from complex biological materials at multiple structural scales.  相似文献   

13.
Avian feathers are a complex evolutionary novelty characterized by structural diversity and hierarchical development. Here, I propose a functionally neutral model of the origin and evolutionary diversification of bird feathers based on the hierarchical details of feather development. I propose that feathers originated with the evolution of the first feather follicle-a cylindrical epidermal invagination around the base of a dermal papilla. A transition series of follicle and feather morphologies is hypothesized to have evolved through a series of stages of increasing complexity in follicle structure and follicular developmental mechanisms. Follicular evolution proceeded with the origin of the undifferentiated collar (stage I), barb ridges (stage II), helical displacement of barb ridges, barbule plates, and the new barb locus (stage III), differentiation of pennulae of distal and proximal barbules (stage IV), and diversification of barbule structure and the new barb locus position (stage V). The model predicts that the first feather was an undifferentiated cylinder (stage I), which was followed by a tuft of unbranched barbs (stage II). Subsequently, with the origin of the rachis and barbules, the bipinnate feather evolved (stage III), followed then by the pennaceous feather with a closed vane (stage IV) and other structural diversity (stages Va-f). The model is used to evaluate the developmental plausibility of proposed functional theories of the origin of feathers. Early feathers (stages I, II) could have functioned in communication, defense, thermal insulation, or water repellency. Feathers could not have had an aerodynamic function until after bipinnate, closed pennaceous feathers (stage IV) had evolved. The morphology of the integumental structures of the coelurisaurian theropod dinosaurs Sinosauropteryx and Beipiaosaurus are congruent with the model's predictions of the form of early feathers (stage I or II). Additional research is required to examine whether these fossil integumental structures developed from follicles and are homologous with avian feathers. J. Exp. Zool. (Mol. Dev. Evol.) 285:291-306, 1999.Copyright 1999 Wiley-Liss, Inc.  相似文献   

14.
Penguins, mostly live in the extremely cold Antarctic, are known to have feathers and down, which are light weight, compact and extremely efficient in preventing heat loss. Nevertheless, the mechanisms of heat transfer through the penguin feathers and down, and how the unique characteristics of penguin feathers and down make them such good thermal insulators are not fully understood. In this paper, an integrated model of heat transfer through the penguin feathers and down is developed and computed using finite volume method, with the geometrical structure of the barbules being considered. Monte-Carlo method is adopted to determine the radiative absorption and emission constant in the integrated model. The effective thermal conductance of penguin feathers and down computed from our model compared well with the experimentally measured value reported in the literature. Three models (penguin model, random fibre model (fibre radius=3microm) and random fibre model (fibre radius=10microm)) are further simulated and compared. Results showed that the relative small radius of the barbules of penguin feather and their geometrical structure are responsible for the reduction of heat loss in cold environment.  相似文献   

15.
A feather from the Eocene Messel Formation, Germany, has been demonstrated to have been originally structurally colored by densely packed sheets of melanosomes similar to modern iridescent feathers exhibiting thin-film diffraction. The fossil itself currently exhibits a silvery sheen, but the mechanism for generating this optical effect was not fully understood. Here we use scanning electron microscopy, electron probe microanalysis, and dual-beam focused ion beam scanning electron microscopy to investigate the source of the silvery sheen that occurs in the apical feather barbules. Focused ion beam scanning electron microscopy provides a powerful tool for studying three-dimensionality of nanostructures in fossils. Use of the method reveals that the flattened apical barbules are preserved almost perfectly, including smooth structural melanosome sheets on the obverse surface of the fossil feather that are identical to those that cause iridescence in modern bird feathers. Most of each apical barbule is preserved beneath a thin layer of sediment. The silvery sheen is generated by incoherent light diffraction between this sediment layer and melanosomes and, although related to the original iridescence of the feather, is not a feature of the feather itself. The reddish and greenish hues frequently exhibited by fossil feathers from the Messel Formation appear to be due to precipitates on the surface of individual melanosomes.  相似文献   

16.
Down feathers are the first feather types that appear in both the phylogenetic and the ontogenetic history of birds. Although it is widely acknowledged that the primary function of downy elements is insulation, little is known about the interspecific variability in the structural morphology of these feathers, and the environmental factors that have influenced their evolution. Here, we collected samples of down and afterfeathers from 156 bird species and measured key morphological characters that define the insulatory properties of the downy layer. We then tested if habitat and climatic conditions could explain the observed between-species variation in down feather structure. We show that habitat has a very strong and clearly defined effect on down feather morphology. Feather size, barbule length and nodus density all decreased from terrestrial toward aquatic birds, with riparian species exhibiting intermediate characters. Wintering climate, expressed as windchill (a combined measure of the ambient temperature and wind speed) had limited effects on down morphology, colder climate only being associated with higher nodus density in dorsal down feathers. Overall, an aquatic lifestyle selects for a denser plumulaceous layer, while the effect of harsh wintering conditions on downy structures appear limited. These results provide key evidence of adaptations to habitat at the level of the downy layer, both on the scale of macro- and micro-elements of the plumage. Moreover, they reveal characters of convergent evolution in the avian plumage and mammalian fur, that match the varying needs of insulation in terrestrial and aquatic modes of life.  相似文献   

17.
Rijke, A.M., Jesser, W.A., Evans, S.W & Bouwman, H. 2000. Water repellency and feather structure of the Blue Swallow Hirundo atrocaerulea. Ostrich 71 (1 & 2): 143–145.

The Blue Swallow is an endangered species in southern Africa and is probably the most endangered passerine. It is restricted to escarpments with grasslands above 1 000 m where mists are frequent. It appears to forage on the wing even in thick mist raising the question of feather wettability in relation to its adaptation. Extensive physical and behaviourial adaptations are known to occur in a wide variety of birds to deal with the problem of shedding water continuously. To study the water repellency and resistance to water penetration of Blue Swallow feathers, we have examined the microscopic structure of head, back, throat, breast and abdominal feathers as well as remiges and tail feathers by transmission light microscopy. The width (2R) and separation (2D) of rami and barbules have been measured and were used to calculate the parameter (R + D)/R that serves as an indicator ofwater shedding potential. For the remiges and tail feathers the values of the (R+D)/R range from 5 to 10 which is comparable to values for other terrestrial birds. However, for body feathers the range is from 10 (head) and 35 (abdomen)-higher than previously observed for any other bird including Swifts, Apodidae. Blue Swallow feathers are thus the most effective feather yet discovered at repelling water drops. The water repellency is highest in those feathers that are relatively shielded From the direct impact of small water drops (throat, breast, abdomen, back). By contrast, the flight feathers must possess a relatively large resistance to water penetration to avoid becoming waterlogged and this is coupled to low (R+D)/R values. Values for the barbules lay between 2 and 6—the same as found for other bird families—supporting an earlier conclusion that they have little direct effect in repelling water.  相似文献   

18.
19.
Feather holes are small (0.5–1?mm in diameter) deformities that appear on the vanes of flight feathers. Such deformities were found in many bird species, including galliforms and passerines. Holey flight feathers may be more permeable to air, which could have a negative effect on their ability to generate aerodynamic forces. However, to date the effects of feather holes on flight performance in birds remained unclear. In this study we investigated the relationship between the number of feather holes occurring in the wing or tail feathers and short term flight performance traits – aerial manoeuvrability, maximum velocity and maximum acceleration – in barns swallows, which are long distance migrating aerial foragers. We measured short-term flight performance of barn swallows in a standardized manner in flight tunnels. We found that acceleration and velocity were significantly negatively associated with the number of holes in the wing flight feathers, but not with those in the tail feathers. In the case of acceleration the negative relationship was sex specific – while acceleration significantly decreased with the number of feather holes in females, there was no such significant association in males. Manoeuvrability was not significantly associated with the number of feather holes. These results are consistent with the hypothesis that feather holes are costly in terms of impaired flight. We discuss alternative scenarios that could explain the observed relationships. We also suggest directions for future studies that could investigate the exact mechanism behind the negative association between the number of feather holes and flight characteristics.  相似文献   

20.
Hummingbirds are perhaps the most exquisite bird species because of their prominent iridescence, created by stacks of melanosomes in the feather barbules. The feather colours crucially depend on the nanoscopic dimensions of the melanosome, and the displayed iridescence can distinctly vary, dependent on the spatial organization of the barbs and barbules. We have taken the genus Coeligena as a model group, with species having feathers that strongly vary in their spatial reflection properties. We studied the feather morphology and the optical characteristics. We found that the coloration of Coeligena hummingbirds depends on both the Venetian-blind-like arrangement of the barbules and the V-shaped, angular arrangement of the barbules at opposite sides of the barbs. Both the nanoscopic and microscopic organization of the hummingbird feather components determine the bird''s macroscopic appearance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号