首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The use of a divalent effector molecule improves bispecific antibody (bsMAb) pretargeting by enabling the cross-linking of monovalently bound bsMAb on the cell surface, thereby increasing the functional affinity of a bsMAb. In this work, it was determined if a bsMAb with divalency for the primary target antigen would improve bsMAb pretargeting of a divalent hapten. The pretargeting of a (99m)Tc-labeled divalent DTPA-peptide, IMP-192, using a bsMAb prepared by chemically coupling two Fab' fragments, one with monovalent specificity to the primary target antigen, carcinoembryonic antigen (CEA), and to indium-loaded DTPA [DTPA(In)], was compared to two other bsMAbs, both with divalency to CEA. One conjugate used the whole anti-CEA IgG, while the other used the anti-CEA F(ab')(2) fragment to make bsMAbs that had divalency to CEA, but with different molecular weights to affect their pharmacokinetic behavior. The rate of bsMAb blood clearance was a function of molecular weight (IgG x Fab' < F(ab')(2) x Fab' < Fab' x Fab' conjugate). The IgG x Fab' bsMAb conjugate had the highest uptake and longest retention in the tumor. However, when used for pretargeting, the F(ab')(2) x Fab' conjugate allowed for superior tumor accretion of the (99m)Tc-IMP-192 peptide, because its more rapid clearance from the blood enabled early intervention with the radiolabeled peptide when tumor uptake of the bsMAb was at its peak. Excellent peptide targeting was also seen with the Fab' x Fab' conjugate, albeit tumor uptake was lower than with the F(ab')(2) x Fab' conjugate. Because the IgG x Fab' bsMAb cleared from the blood so slowly, when the peptide was given at the time of its maximum tumor accretion, the peptide was captured predominantly by the bsMAb in the blood. Several strategies were explored to reduce the IgG x Fab' bsMAb remaining in the blood to take advantage of its 3-4-fold higher tumor accretion than the other bsMAb conjugates. A number of agents were tested, including those that could clear the bsMAb from the blood (e.g., galactosylated or nongalactosylated anti-id antibody) and those that could block the anti-DTPA(In) binding arm [e.g., DTPA(In), divalent-DTPA(In) peptide, and DTPA coupled to bovine serum albumin (BSA) or IgG]. When clearing agents were given 65 h after the IgG x Fab' conjugate (time of maximum tumor accretion for this bsMAb), (99m)Tc-IMP-192 levels in the blood were significantly reduced, but a majority of the peptide localized in the liver. Increasing the interval between the clearing agent and the time the peptide was given to allow for further processing of the bsMAb-clearing agent complex did not improve targeting. At the dose and level of substitution tested, galacosylated BSA-DTPA(In) was cleared too quickly to be an effective blocking agent, but BSA- and IgG-DTPA(In) conjugates were able to reduce the uptake of the (99m)Tc-IMP-192 in the blood and liver. Tumor/nontumor ratios compared favorably for the radiolabeled peptide using the IgG x Fab'/blocking agent combination and the F(ab')(2) x Fab' (no clearing/blocking agent), and peptide uptake 3 h after the blocking agent even exceeded that of the F(ab')(2) x Fab'. However, this higher level of peptide in the tumor was not sustained over 24 h, and actually decreased to levels lower than that seen with the F(ab')(2) x Fab' by this time. These results demonstrate that divalency of a bsMAb to its primary target antigen can lead to higher tumor accretion by a pretargeted divalent peptide, but that the pharmacokinetic behavior of the bsMAb also needs to be optimized to allow for its clearance from the blood. Otherwise, blocking agents will need to be developed to reduce unwanted peptide uptake in normal tissues.  相似文献   

2.
Rapid and efficient delivery of radioactive metal complexes to the cell interior would enable novel applications in medical imaging and radiotherapy. Membrane permeant peptide conjugates incorporating HIV-1 Tat transactivation protein sequences (GRKKRRQRRR) and an appropriate peptide-based motif (epsilon-KGC) that provides an N(3)S donor core for chelating technetium and rhenium were synthesized. Oxotechnetium(V) and oxorhenium(V) Tat-peptide complexes were prepared by facile transchelation reactions with permetalates, tin(II) chloride and sodium glucoheptonate. RP-HPLC showed two major [(99m)Tc]Tat-peptide species (4) that differed in retention time by approximately 2 min corresponding to two [Re]Tat-peptide species (7) shown to have identical mass, consistent with formation of two isomers, likely the oxo-metal diastereomers. [(99m)Tc]Tat-peptides were stable to transchelation in vitro. In human Jurkat cells, [(99m)Tc]Tat-peptide 4 showed concentrative cell accumulation (30-fold greater than extracellular concentration) and rapid uptake kinetics (t(1/2) < 2 min) in a diastereomeric-comparable manner. Paradoxically, uptake was enhanced in 4 degrees C buffer compared to 37 degrees C, while depolarization of membrane potential as well as inhibition of microtubule function and vesicular trafficking showed no inhibitory effect. Cells preloaded with 4 showed rapid washout kinetics into peptide-free solution. Modification of [(99m)Tc]Tat-peptide by deletion of the N-terminus Gly with or without biotinylation minimally impacted net cell uptake. In addition, the C-terminus thiol of the prototypic Tat-peptide was labeled with fluorescein-5-maleimide to yield conjugate 8. Fluorescence microscopy directly localized conjugate 8 to the cytosol and nuclei (possibly nucleolus) of human Jurkat, KB 3-1 and KB 8-5 tumor cells. Preliminary imaging studies in mice following intravenous administration of prototypic [(99m)Tc]Tat-peptide 4 showed an initial whole body distribution and rapid clearance by both renal and hepatobiliary excretion. Analysis of murine blood in vivo and human serum ex vivo revealed >95% intact complex, while murine urine in vivo showed 65% parent complex. Thus, these novel Tat-peptide chelate conjugates, capable of forming stable [Tc/Re(V)]complexes, rapidly translocate across cell membranes into intracellular compartments and can be readily derivatized for further targeted applications in molecular imaging and radiotherapy.  相似文献   

3.
This report describes a novel ternary ligand system composed of a phenylhydrazine, a crown ether-containing dithiocarbamate (DTC), and a PNP-type bisphosphine (PNP). The combination of three different ligands with (99m)Tc results in cationic (99m)Tc-diazenido complexes, [(99m)Tc(NNAr)(DTC)(PNP)]+, with potential radiopharmaceuticals for heart imaging. Synthesis of cationic (99m)Tc-diazenido complexes can be accomplished in two steps. For example, the reaction of phenylhydrazine with (99m)TcO4- at 100 degrees C in the presence of excess stannous chloride and 1,2-diaminopropane-N,N,N',N'-tetraacetic acid (PDTA) results in the [(99m)Tc(NNPh)(PDTA)n] intermediate, which then reacts with sodium N-(dithiocarbamato)-2-aminomethyl-15-Crown-5 (L4) and N,N-bis[2-(bis(3-ethoxypropyl)phosphino)ethyl]ethoxyethylamine (PNP6) at 100 degrees C for 15 min to give the complex, [(99m)Tc(NNPh)(L4)(PNP6)]+ in high yield (>90%). Cationic complexes [(99m)Tc(NNPh)(DTC)(PNP)]+ are stable for > or = 6 h. Their composition was determined to be 1:1:1:1 for Tc:NNPh:DTC:PNP using the mixed-ligand experiments on the tracer ((99m)Tc) level and was further confirmed by the ESI-MS spectral data of a model compound [Re(NNPh)(L4)(L6)]+. It was found that both DTCs and bisphosphines have a significant impact on the lipophilicity of their cationic (99m)Tc-diazenido complexes. Results from a (99m)Tc-labeling efficiency experiment showed that 4-hydrazinobenzoic acid (HYBA) might be useful as a bifunctional coupling agent for (99m)Tc-labeling of small biomolecules. However, the (99m)Tc-labeling efficiency of HYBA is much lower than that of 6-hydrazinonicotinic acid (HYNIC) with tricine and trisodium triphenylphosphine-3,3',3'-trisulfonate (TPPTS) as coligands.  相似文献   

4.
A DTPA-folate conjugate was radiolabeled with (99m)Tc by stannous chloride reduction of [(99m)Tc]sodium pertechnetate in an aqueous solution of DTPA-folate. The radiochemical purity of the product consistently exceeded 97%, as assessed by thin-layer chromatography employing conditions analogous to those for radiochemical quality control of the radiopharmaceutical [(99m)Tc]DTPA. HPLC demonstrated that the radiolabeled product resulted from the intact DTPA-folate conjugate and not unconjugated DTPA. The ability of [(99m)Tc]DTPA-folate to target folate receptors in vivo was assessed in biodistribution studies with athymic mice bearing subcutaneous folate-receptor-positive human KB cell tumors. As an internal control, previously studied [(111)In]DTPA-folate was coinjected with the [(99m)Tc]DTPA-folate, along with varying amounts of DTPA-folate (0.38 mg/kg, 1.6 mg/kg, or 14 mg/kg). At each DTPA-folate dose, [(99m)Tc]DTPA-folate exhibited tumor uptake comparable to that of the coadministered [(111)In]DTPA-folate, with radiotracer levels declining at the higher DTPA-folate doses due to competitive receptor binding of the unlabeled conjugate. Tumor uptake of both tracers was also competitively blocked by preadministered folic acid dihydrate (2.9 mg/kg). Tumor-to-background tissue contrast obtained with [(99m)Tc]DTPA-folate was generally similar to that obtained with [(111)In]DTPA-folate. The (99m)Tc-labeled DTPA-folate conjugate may have utility as a targeted radiopharmaceutical for imaging neoplastic tissues known to overexpress the folate receptor.  相似文献   

5.
This report describes the (99m)Tc labeling of a HYNIC-conjugated vitronectin receptor antagonist (SQ168 = [2-[[[5-[carboonyl]-2-pyridinyl]hydrazono]methyl]benzenesulfonic acid]-Glu(cyclo[Lys-Arg-Gly-Asp-D-Phe])-cyclo[Lys-Arg-Gly-Asp-D-Phe]). The ternary ligand complex [(99m)Tc(SQ168)(tricine)(TPPTS)] (RP593) was prepared using a non-SnCl(2)-containing formulation. The corresponding (99)Tc analogue, [(99)Tc]RP593, was also prepared and characterized by HPLC and LC-MS. A HPLC concordance experiment using RP593 and [(99)Tc]RP593 showed that the same technetium complex was prepared at both the tracer and macroscopic levels. The LC-MS data is completely consistent with the 1:1:1:1 composition for Tc:SQ168:tricine:TPPTS and provides direct evidence that the two radiometric peaks in the radio-HPLC chromatogram of RP593 are indeed due to the resolution of diastereomers. In an in vitro receptor binding assay, [(99)Tc]RP593 was shown to have comparable binding affinity for the vitronectin receptor to that of SQ168 itself.  相似文献   

6.
A HYNIC-conjugated chemotactic peptide (fMLFK-HYNIC) was labeled with (99m)Tc using tricine and TPPTS as coligands. The combination of fMLFK-HYNIC, tricine, and TPPTS with (99m)Tc produced a ternary ligand complex [(99m)Tc(fMLFK-HYNIC)(tricine)(TPPTS)] (RP463). RP463 was synthesized either in two steps, in which the binary ligand complex [(99m)Tc(fMLFK-HYNIC)(tricine)(2)] (RP469) was formed first and then reacted with TPPTS, or in one step by direct reduction of [(99m)Tc]pertechnetate with stannous chloride in the presence of fMLFK-HYNIC, tricine, and TPPTS. The radiolabeling yield for RP463 was usually >/=90% using 10 microg of fMLFK-HYNIC and 100 mCi of [(99m)Tc]pertechnetate. Unlike RP469, which decomposed rapidly in the absence of excess tricine coligand, RP463 was stable in solution for at least 6 h. [(99)Tc]RP463 was prepared and characterized by HPLC and electrospray mass spectrometry. In an in vitro assay, [(99)Tc]RP463 showed an IC(50) of 2 nM against binding of [(3)H]fMLF to receptors on PMNs. [(99)Tc]RP463 also induces effectively the superoxide release of polymorphonuclear leukocytes (PMNs) with an EC(50) value of 0.2 +/- 0.2 nM. The localization of RP463 in the infection foci was assessed in a rabbit infection model. RP463 was cleared from the blood faster than RP469 and was excreted mainly through the renal system. As a result of rapid blood clearance and increased uptake, the target-to-background ratios continuously increased from 1.5 +/- 0.2 at 15 min postinjection to 7.5 +/- 0.4 at 4 h postinjection. Visualization of the infected area could be as early as 2 h. A transient decrease in white blood cell count of 35% was observed during the first 30 min after injection of the HPLC-purified RP463 in the infected rabbit. This suggests that future research in this area should focus on developing highly potent antagonists for chemotactic peptide receptor or other receptors on PMNs and monocytes.  相似文献   

7.
In our efforts to develop a novel class of SPECT imaging agents based on nonsteroidal androgen receptor (AR) antagonists, we have synthesized N-cyclopentadienyltricarbonyltechnetium-N-[4-nitro-3-trifluoromethyl-phenyl] carboxamide (NF(99m)Tc), an analog of the AR antagonist ligand flutamide. NF(99m)Tc was obtained in 82% yield from the reaction of N-[4-nitro-3-trifluoromethyl-phenyl]-ferrocenecarboxamide (NFFe) with fac-[(99m)Tc(H(2)O)(3)(CO)(3)](+) in DMF-water at pH 1 and at 150 °C for 1 h. The corresponding Re analog was also prepared. In vitro assays demonstrated high stability of NF(99m)Tc under physiological conditions, buffer and blood. The tissue biodistribution in mature male Wistar rats showed a significant selective uptake by prostate but this uptake was not blocked by an excess of testosterone acetate. A higher uptake by lung tissues was observed.  相似文献   

8.
A Tc-99m-labeled long chain fatty acid derivative for myocardial imaging   总被引:3,自引:0,他引:3  
C-11- and I-123-labeled long chain fatty acid derivatives have been reported as useful radiopharmaceuticals for the estimation of myocardial fatty acid metabolism. We have reported that Tc-99m-labeled N-[[[(2-mercaptoethyl)amino]carbonyl]methyl]-N-(2-mercaptoethyl)-6-aminohexanoic acid ([(99m)Tc]MAMA-HA), a medium chain fatty acid derivative, is metabolized by beta-oxidation in the liver and that the MAMA ligand is useful for attaching to the omega-position of fatty acid derivatives as a chelating group for Tc-99m. On the basis of these findings, we focused on developing a Tc-99m-labeled long chain fatty acid derivative that reflected fatty acid metabolism in the myocardium. In this study, we synthesized a dodecanoic acid derivative, MAMA-DA, and a hexadecanoic acid derivative, MAMA-HDA, and performed radiolabeling and biodistribution studies. [(99m)Tc]MAMA-DA and [(99m)Tc]MAMA-HDA were prepared using a ligand-exchange reaction. Biodistribution studies were carried out in normal mice and rats. Then, a high initial uptake of Tc-99m was observed, followed by a rapid clearance from the heart. The maximum heart/blood ratio was 3.6 at 2 min postinjection of [(99m)Tc]MAMA-HDA. These kinetics were similar to those with postinjection of p-[(125)I]iodophenylpentadecanoic acid. Metabolite analysis showed [(99m)Tc]MAMA-HDA was metabolized by beta-oxidation in the body. In conclusion, [(99m)Tc]MAMA-HDA is a promising compound as a long chain fatty acid analogue for estimating beta-oxidation of fatty acid in the heart.  相似文献   

9.
This report describes the (99m)Tc labeling of a hydrazinonicotinamide (HYNIC)-conjugated LTB(4) receptor antagonist (SG380). The ternary ligand technetium complex [(99m)Tc(SG38)(tricine)(TPPTS)] (RP517) was prepared using a non-SnCl(2)-containing formulation ((2001) J. Pharm. Sci. 90, 114-123). Unlike other HYNIC-conjugated small biomolecules, SG380 is lipophilic and has low solubility in the kit matrix. Using a combination of a solubilizing agent (Lysolecithin) and a cosolvent (ethanol), we have developed a new formulation for routine preparation of RP517. Using this formulation, RP517 can be prepared in high radiochemical purity (RCP > 90%) and remains stable in the kit matrix for at least 6 h. We also prepared the corresponding (99)Tc analogue, [(99)Tc]RP517. An HPLC concordance experiment using RP517 and [(99)Tc]RP517 showed that the same technetium complex was prepared at both the tracer and macroscopic levels. The LC-MS data are completely consistent with the 1:1:1:1 composition for Tc:SG380:tricine:TPPTS.  相似文献   

10.
Starting from the tripodal ligand 2,2',2' '-nitrilotris(ethanethiol) (NS(3)) and isocyanides (CNR) as co-ligands, neutral mixed-ligand technetium(III) complexes of the general formulation [Tc(NS(3))(CNR)] have been synthesized and characterized. The (99)Tc complexes can be( )()obtained by a two-step reduction/substitution procedure starting from [TcO(4)](-) via the phosphine-containing precursor complex [Tc(NS(3))(PMe(2)Ph)]. As shown by X-ray structural analyses, the complexes adopt a nearly ideal trigonal-bipyramidal geometry with the trigonal plane formed by the three thiolate sulfurs of the tripodal ligand. The central nitrogen atom of the chelate ligand and the monodendate isocyanides occupy the apical positions. The no-carrier-added preparation of the corresponding (99m)Tc complexes was performed by a one-step procedure starting from (99m)[TcO(4)](-) with stannous chloride as reducing agent. Biodistribution studies in the rat demonstrated for the nonpolar, lipophilic compounds a significant initial brain uptake. In vitro challenge experiments with glutathione clearly indicated that no transchelation reaction occurs. Furthermore, there were no indications for reoxidation of Tc(III) to Tc(V) species or pertechnetate. We propose this type of complexes as a useful tool in the design of lipophilic (99m)Tc or (186)Re/(188)Re radiopharmaceuticals.  相似文献   

11.
The organometallic precursor (NEt(4))(2)[ReBr(3)(CO)(3)] was reacted with bidendate dithioethers (L) of the general formula H(3)C-S-CH(2)CH(2)-S-R (R = -CH(2)CH(2)COOH, CH(2)-C&tbd1;CH) and R'-S-CH(2)CH(2)-S-R' (R' = CH(3)CH(2)-, CH(3)CH(2)-OH, and CH(2)COOH) in methanol to form stable rhenium(I) tricarbonyl complexes of the general composition [ReBr(CO)(3)L]. Under these conditions, the functional groups do not participate in the coordination. As a prototypic representative of this type of Re compounds, the propargylic group bearing complex [ReBr(CO(3))(H(3)C-S-CH(2)CH(2)-S-CH(2)C&tbd1;CH)] Re2 was studied by X-ray diffraction analysis. Its molecular structure exhibits a slightly distorted octahedron with facial coordination of the carbonyl ligands. The potentially tetradentate ligand HO-CH(2)CH(2)-S-CH(2)CH(2)-S-CH(2)CH(2)-OH was reacted with the trinitrato precursor [Re(NO(3))(3)(CO)(3)](2-) to yield a cationic complex [Re(CO)(3)(HO-CH(2)CH(2)-S-CH(2)CH(2)-S-CH(2)CH(2)-OH)]NO(3) Re8 which shows the coordination of one hydroxy group. Re8 has been characterized by correct elemental analysis, infrared spectroscopy, capillary electrophoresis, and X-ray diffraction analysis. Ligand exchange reaction of the carboxylic group bearing ligands H(3)C-S-CH(2)CH(2)-S-CH(2)CH(2)-COOH and HOOC-CH(2)-S-CH(2)CH(2)-S-CH(2)-COOH with (NEt(4))(2)[ReBr(3)(CO)(3)] in water and with equimolar amounts of NaOH led to complexes in which the bromide is replaced by the carboxylic group. The X-ray structure analysis of the complex [Re(CO)(3)(OOC-CH(2)-S-CH(2)CH(2)-S-CH(2)-COOH)] Re6 shows the second carboxylic group noncoordinated offering an ideal site for functionalization or coupling a biomolecule. The no-carrier-added preparation of the analogous (99m)Tc(I) carbonyl thioether complexes could be performed using the precursor fac-[(99m)Tc(H(2)O)(3)(CO)(3)](+), with yields up to 90%. The behavior of the chlorine containing (99m)Tc complex [(99m)TcCl(CO)(3)(CH(3)CH(2)-S-CH(2)CH(2)-S-CH(2)CH(3))] Tc1 in aqueous solution at physiological pH value was investigated. In saline, the chromatographically separated compound was stable for at least 120 min. However, in chloride-free aqueous solution, a water-coordinated cationic species Tc1a of the proposed composition [(99m)Tc(H(2)O)(CO)(3)(CH(3)CH(2)-S-CH(2)CH(2)-S-CH(2)CH(3))](+) occurred. The cationic charge of the conversion product was confirmed by capillary electrophoresis. By the introduction of a carboxylic group into the thioether ligand as a third donor group, the conversion could be suppressed and thus the neutrality of the complex preserved. Biodistribution studies in the rat demonstrated for the neutral complexes [(99m)TcCl(CO)(3)(CH(3)CH(2)-S-CH(2)CH(2)-S-CH(2)CH(3))] Tc1 and [(99m)TcCl(CO)(3)(CH(2)-S-CH(2)CH(2)-S-CH(2)-C&tbd1;CH)] Tc2 a significant initial brain uptake (1.03 +/- 0.25% and 0.78 +/- 0.08% ID/organ at 5 min. p.i.). Challenge experiments with glutathione clearly indicated that no transchelation reaction occurs in vivo.  相似文献   

12.
Liu M  Xu W  Xu LJ  Zhong GR  Chen SL  Lu WY 《Bioconjugate chemistry》2005,16(5):1126-1132
(99m)Technetium-labeled diethylenetriamine pentaacetic acid-polyethylene glycol-folate (DTPA-PEG-folate) was synthesized and tested as a radiopharmaceutical agent, which targeted the lymphatic system with metastatic tumor. Folic acid was reacted with H2N-PEG-NH2 to yield H2N-PEG-folate. After purification by anion-exchange chromatography, the product was reacted with cyclic DTPA. By removal of unreacted DTPA by size-exclusion chromatography, DTPA-PEG-Folate was obtained. Fluorescein-5-isothiocyanate (FITC)-labeled DTPA-PEG-folate and DTPA-PEG-OCH3 were prepared via a dicyclohexylcarbodiimide-mediated coupling. In vitro competitive binding test showed that the uptake of [125I] folic acid was inhibited by DTPA-PEG-folate and the 50% inhibitory concentration was 4.37 pmol/L (R2 = 0.9922). The relative affinity of DTPA-PEG-FITC was 0.18 for human folate receptor comparing with folic acid. In cultured tumor cells, uptake of fluorescence-labeled DTPA-PEG-folate was found to increase significantly in folate-deficient medium compared with that of untargeted DTPA-PEG-OCH3 and FITC-ethylenediamine. The competition with free folic acid blocked the cell uptake of DTPA-PEG-folate. These results confirmed the DTPA-PEG-folate entered into KB cells through the folate receptor endocytosis pathway in vitro. The radiolabeled yield of [(99m)Tc] DTPA-PEG-folate was in excess of 98%, and specific activities of 7.4 kBq (0.2 microCi/microg) were achieved. After subcutaneous injection, [(99m)Tc] DTPA-PEG-folate exhibited an initial increase and successive decline of accumulation in popliteal nodes in normal Wistar rats. Expect for the kidney, uptake by other tissues was rather low. In a normal rabbit imagine study, the lymphatic vessels were readily visualized by single-photon-emission computed tomography following subcutaneous injection of [(99m)Tc] DTPA-PEG-folate. In conclusion, the [(99m)Tc] DTPA-PEG-folate conjugate may have a potential as a lymphatic tumor-targeted radiopharmaceutical.  相似文献   

13.
A new biomolecule labeling method that utilizes the [(99m)Tc(N)(PNP)](2+) metal fragment is presented. Thus, a series of nitrido mixed-ligand M(V) complexes (M = (99m)Tc, (99g)Tc, Re), [M(N)(Ln)(PNP)], where Ln is the dianionic form of a dithiolate or substituted-dithiolate ligand and PNP is an aminodiphosphine, is described. (99m)Tc complexes can be prepared using either a two-step or a three-step procedure starting from generator-eluted pertechnetate through a prereduced mixture of [(99m)Tc(N)]-containing species, followed by sequential or contemporary addition of the relevant dithiolate and aminodiphosphine. The reactions of 2,3-dimercaptopropionic acid (H(2)L1) with [Tc(N)(PNP)](2+) were investigated in detail. It was found that this bidentate ligand coordinated the metal fragment through the [S(-),S(-)] donor atom pair, to yield neutral mixed-ligand complexes [(99m)Tc(N)(L1)(PNP)] in high specific activity. The additional carboxylic functional group was not involved in metal coordination, thus remaining available for conjugation to target-specific molecules. Dithiolates incorporating pendant functional group(s) gave rise to a 1:1 diastereoisomeric mixture of syn-[M(N)(Ln)(PNP)] and anti-[M(N)(Ln)(PNP)] derivatives, depending on the relative orientation of the dithiolate substituent(s) with respect to the terminal nitrido group, and no isomeric conversion was detected. (99m)Tc species had been proven to be identical with the (99g)Tc complexes prepared at the macroscopic level by comparison of the corresponding radiometric and UV/vis HPLC profiles. Challenge experiments with cysteine or glutathione indicated that these physiological agents had no effect on the stability of this class of mixed-ligand (99m)Tc-complexes. Biodistribution studies in rats of selected (99m)Tc-complexes showed a rapid clearance from the blood and tissues after 60 min pi.  相似文献   

14.
This work describes the use of 3-hydroxy-4-pyridinone ligands for binding the [M(CO)(3)](+) core (M = Re, Tc) in the context of preparing novel Tc(I) and Re(I) glucose conjugates. Five pyridinone ligands bearing pendent carbohydrate moieties, HL(1-5), were coordinated to the [M(CO)(3)](+) core on the macroscopic scale (M = Re) and on the tracer scale (M = (99m)Tc, (186)Re). On the macroscopic scale the complexes, ReL(1-5)(CO)(3)(H(2)O), were thoroughly characterized by mass spectrometry, IR spectroscopy, UV-visible spectroscopy, elemental analysis, and 1D/2D NMR spectroscopy. Characterization confirmed the bidentate coordination of the pyridinone and the pendent nature of the carbohydrate and suggests the presence of a water molecule in the sixth coordination site. In preliminary biological evaluation, both the ligands and complexes were assessed as potential substrates or inhibitors of hexokinase, but showed no activity. Labeling via the [(99m)Tc(CO)(3)(H(2)O)(3)](+) precursor gave the tracer species (99m)TcL(1-5)(CO)(3)(H(2)O) in high radiochemical yields. Similar high radiochemical yields when labeling with (186)Re were facilitated by in situ preparation of the [(186)Re(CO)(3)(H(2)O)(3)](+) species in the presence of HL(1-5) to give (186)ReL(1-5)(CO)(3)(H(2)O). Stability challenges, incubating (99m)TcL(1-5)(CO)(3)(H(2)O) in the presence of excess cysteine and histidine, confirmed complex stability up to 24 h.  相似文献   

15.
Radio-LC-MS for the characterization of 99mTc-labeled bioconjugates   总被引:1,自引:0,他引:1  
This report describes the first example of using radio-LC-MS for determining the composition of (99m)Tc radiopharmaceuticals at the tracer level. The in-line radiometric detector is a useful addition to a standard LC-MS and provides direct correlation between the MS data and the radioactive species in a radiopharmaceutical kit. Complexes [(99m)Tc(HYNICtide)(tricine)(L)] (RP444, L = TPPTS; RP445, L = TPPDS; and RP446, L = TPPMS) were prepared using a decayed generator eluant. All the ternary ligand (99m)Tc complexes show the expected monoprotonated molecular ions, (M + 1)(+), and diprotonated molecular ions, (M + 2)(2+). The LC-MS spectral data support the proposed structure and are consistent with those obtained for their corresponding (99)Tc analogues. Ternary ligand complexes [(99m)Tc(HYNICtide)(tricine)(L)] (L = ISONIC-HE and ISONIC-Sorb) are neutral, and the molecular weights are also lower than that of RP444. Using a fresh generator eluant (24 h prior elution), only 1-2 mCi of (99m)Tc [(7 x 10(-)(12))-(1.5 x 10(-)(11)) mol of technetium complex] are required to obtain a reasonably clean mass spectrum. Radio-LC-MS is a quick and accurate analytical tool for characterization of (99m)Tc radiopharmaceuticals at the tracer level.  相似文献   

16.
This report describes biodistribution characteristics of three ternary ligand complexes [(99m)Tc(SQ168)(tricine)(L)] (SQ168 = [2-[[[5-[carboonyl]-2-pyridinyl]hydrazono]methyl]-benzenesulfonic acid]-Glu(cyclo{Lys-Arg-Gly-Asp-d-Phe})-cyclo{Lys-Arg-Gly-Asp-d-Phe}; L = TPPTS (trisodium triphenylphosphine-3,3',3' '-trisulfonate), ISONIC (isonicotinic acid) and PDA (2,5-pyridinedicarboxylic acid)) in athymic nude mice bearing MDA-MB-435 human breast cancer xenografts. Ternary ligand complexes [(99m)Tc(SQ168)(tricine)(L)] (L = TPPTS, ISONIC and PDA) were prepared and were analyzed by a reversed HPLC method. Surprisingly, coligands have little impact on log P values of their ternary ligand (99m)Tc complexes even though HPLC retention times suggest that [(99m)Tc(SQ168)(tricine)(PDA)] and [(99m)Tc(SQ168)(tricine)(ISONIC)] are more hydrophilic than [(99m)Tc(SQ168)(tricine)(TPPTS)]. The results from biodistribution studies indicated that excretion kinetics of the (99m)Tc-labeled cyclic RGDfK dimer can be modified by the choice of coligand. The fact that all three radiotracers show high tumor uptake during the 2 h study period suggests that the coligand has minimal effect on the tumor targeting capability of the (99m)Tc-labeled cyclic RGDfK dimer. Results from the blocking experiment suggest that the tumor localization of the (99m)Tc-labeled cyclic RGDfK dimer is integrin alpha(v)beta(3)-mediated. On the basis of their liver uptake and tumor/liver ratios, we believe that PDA has the advantage over TPPTS and ISONIC for the (99m)Tc-labeling of HYNIC-biomolecule conjugates.  相似文献   

17.
Jia B  Shi J  Yang Z  Xu B  Liu Z  Zhao H  Liu S  Wang F 《Bioconjugate chemistry》2006,17(4):1069-1076
This report describes the evaluation of biodistribution properties of three radiotracers, [(99m)Tc(SQ168)(EDDA)], [(99m)Tc(SQ168)(tricine)(PDA)], and [(99m)Tc(SQ168)(tricine)(TPPTS)] (SQ168 = [2-[[[5-[carboonyl]-2-pyridinyl]hydrazono]methyl]benzenesulfonic acid]-Glu(cyclo{Lys-Arg-Gly-Asp-d-Phe})-cyclo{Lys-Arg-Gly-Asp-d-Phe}; EDDA = ethylenediamine-N,N'-diacetic acid; PDA = 2,5-pyridinedicarboxylic acid; TPPTS = trisodium triphenylphosphine-3,3',3' '-trisulfonate), and their potential to image the glioma integrin alpha(v)beta(3) expression in BALB/c nude mice bearing the U87MG human glioma xenografts. It was found that all three radiotracers were able to localize in glioma tumors with a relatively high tumor uptake and long tumor retention time by binding to the integrin alpha(v)beta(3) expressed on both tumor cells and endothelial cells of tumor neovasculature. It seems that the coligand has minimal effect on integrin alpha(v)beta(3) targeting capability of the (99m)Tc-labeled RGDfK dimer, but it has a significant impact on their biodistribution properties. For example, the complex [(99m)Tc(SQ168)(tricine)(TPPTS)] has the lowest liver uptake and the highest metabolic stability in normal BALB/c nude mice. Results from SPECT imaging studies show that the glioma tumors can be clearly visualized with all three radiotracers at 4 h postinjection. Among the three radiotracers evaluated in this study, [(99m)Tc(SQ168)(tricine)(TPPTS)] has the best imaging quality and is a promising candidate for more preclinical evaluations in the future.  相似文献   

18.
Radiolabeling of biologically active molecules with the [(99m)Tc(CO)(3)](+) unit has been of primary interest in recent years. With this in mind, we herein report symmetric (L(1)) and asymmetric (L(2)-L(5)) pyrazolyl-containing chelators that have been evaluated in radiochemical reactions with the synthon [(99m)Tc(H(2)O)(3)(CO)(3)](+) (1a). These reactions yielded the radioactive building blocks [(99m)Tc(CO)(3)(k(3)-L)](+) (L = L(1)-L(5), 2a-6a), which were identified by RP-HPLC. The corresponding Re surrogates (2-6) allowed for macroscopic identification of the radiochemical conjugates. Complexes 2a-6a, with log P(o/w) values ranging from -2.35 to 0.87, were obtained in yields of > or =90% using ligand concentrations in the 10(-5-)10(-4) M range. Challenge studies with cysteine and histidine revealed high stability for all of these radioactive complexes, and biodistribution studies in mice indicated a fast rate of blood clearance and high rate of total radioactivity excretion, occurring primarily through the renal-urinary pathway. Based on the framework of the asymmetric chelators, the novel bifunctional ligands 3,5-Me(2)-pz(CH(2))(2)N((CH(2))(3)COOH)(CH(2))(2)NH(2) (L(6)) and pz(CH(2))(2)N((CH(2))(3)COOH)(CH(2))(2)NH(2) (L(7)) have been synthesized and their coordination chemistry toward (NEt(4))(2)[ReBr(3)(CO)(3)] (1) has been explored. The resulting complexes, fac-[Re(CO)(3)(k(3)-L)]Br (L(6)(7), L(7)(8)), contain tridentate ancillary ligands that are coordinated to the metal center through the pyrazolyl and amine nitrogen atoms, as observed for the other related building blocks. L(6) and L(7) were coupled to a glycylglycine ethyl ester dipeptide, and the resulting functionalized ligands were used to prepare the model complexes fac-[Re(CO)(3)(kappa(3)-3,5-Me(2)-pz(CH(2))(2)N(glygly)(CH(2))(2)NH(2))](+) (9/9a) and fac-[Re(CO)(3)(kappa(3)-pz(CH(2))(2)N(CH(2))(3)(glygly)(CH(2))(2)NH(2))](+) (10/10a) (M = Re, (99m)Tc). These small conjugates have been fully characterized and are reported herein. On the basis of the in vitro/in vivo behavior of the model complexes (2a-6a, 9a, 10a), we chose to evaluate the in vitro/in vivo biological behavior of a new tumor-seeking Bombesin pyrazolyl conjugate, [(L(6))-G-G-G-Q-W-A-V-G-H-L-M-NH(2)], that has been labeled with the [(99m)Tc(CO)(3)](+) metal fragment. Stability, in vitro cell binding assays, and pharmacokinetics studies in normal mice are reported herein.  相似文献   

19.
Two prototype phosphine-containing HYNIC chelators, HYNIC-Kp-DPPB and HYNIC-Ko-DPPB (HYNIC = 6-hydrazinonicotinamide; K = lysine; and DPPB = diphenylphosphine-benzoic acid), have been synthesized and characterized by NMR ((1)H, (13)C, and (31)P) and LC-MS. Macrocyclic (99m)Tc complexes, [(99m)Tc(HYNIC-Ko-TPPB)(tricine)] and [(99m)Tc(HYNIC-Kp-DPPB)(tricine)], were prepared by reacting the phosphine-containing HYNIC chelator with (99m)TcO(4)(-) in the presence of excess tricine and stannous chloride. Results from this study clearly demonstrated that both HYNIC-Kp-DPPB and HYNIC-Ko-DPPB are able to form highly stable macrocyclic (99m)Tc complexes, [(99m)Tc(HYNIC-Ko-TPPB)(tricine)] and [(99m)Tc(HYNIC-Kp-DPPB)(tricine)], when tricine is used as the coligand. Radio-HPLC data suggest that the complex [(99m)Tc(HYNIC-Kp-DPPB)(tricine)] exists as only one detectable isomer in solution while the complex [(99m)Tc(HYNIC-Ko-DPPB)(tricine)] has three isomers. It was also found that three isomers of [(99m)Tc(HYNIC-Ko-DPPB)(tricine)] interconvert at elevated temperatures, suggesting that the presence of these isomers might be due conformational changes in the macrocyclic Tc chelate. The LC-MS data for both macrocyclic (99m)Tc complexes are completely consistent with the proposed composition. The phosphine-containing HYNIC chelators described in this study may have the potential as bifunctional chelators for (99m)Tc labeling of small biomolecules.  相似文献   

20.
To enable concurrent whole body scintigraphy and direct imaging of subcellular localization of permeation peptides, dual-labeled Tat-peptides useful for both radiometric analysis and fluorescence microscopy are desired for molecular imaging applications. Thus, novel dual-labeled D-Tat-peptides comprising Tat-basic domain (hgrkkrrqrrrgc), C-terminus conjugated with fluorescein-5-maleimide (FM) and N-terminus chelated with [(99m)Tc(CO)(3)] via histidine coordination, were synthesized and characterized. In human Jurkat cells, radiotracer uptake and washout studies revealed concentration-dependent accumulation of the dual-labeled Tat-peptide within cells. Subcellular localization of Tat-peptide was confirmed by fluorescence microscopy using an analogous [Re(CO)(3)] dual-labeled Tat-peptide. As seen with C-terminus single-labeled Tat-peptides, localization to the nucleoli was observed with the dual-labeled Tat-peptide, suggesting that the mechanism of Tat-peptide uptake and localization was not dependent on free peptide termini at either end. In Balb/c mice, biodistribution studies performed with the dual-labeled Tat-peptide showed fluorescence intensity by microscopic analysis that visually confirmed and correlated directly with scintigraphic and radiometric data. Of note, following intravenous administration, little brain penetration of these permeation sequences was observed in vivo. His[(99m)Tc(CO)(3)]-, DTPA[(99m)Tc(CO)(3)]-, and epsilon-lys-gly-cys[(99m)Tc(O)]-labeled Tat-peptides showed significant pharmacokinetic differences in liver and kidney depending on labeling strategy, indicating that Tat-peptide biodistribution can be impacted by the chelation moiety coordinated with (99m)Tc. Thus, we have shown that dual-labeled (99m)Tc-tricarbonyl Tat-peptide-FM conjugates can be conveniently synthesized and enable direct comparison of quantitative radiometric and qualitative fluorescence data both in vitro as well as in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号