首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The strain Pseudomonas sp. strain ADP is able to degrade atrazine as a sole nitrogen source and therefore needs a single source for both carbon and energy for growth. In addition to the typical C source for Pseudomonas, Na2-succinate, the strain can also grow with phenol as a carbon source. Phenol is oxidized to catechol by a multicomponent phenol hydroxylase. Catechol is degraded via the ortho pathway using catechol 1,2-dioxygenase. It was possible to stimulate the strain in order to degrade very high concentrations of phenol (1,000 mg/liter) and atrazine (150 mg/liter) simultaneously. With cyanuric acid, the major intermediate of atrazine degradation, as an N source, both the growth rate and the phenol degradation rate were similar to those measured with ammonia as an N source. With atrazine as an N source, the growth rate and the phenol degradation rate were reduced to ~35% of those obtained for cyanuric acid. This presents clear evidence that although the first three enzymes of the atrazine degradation pathway are constitutively present, either these enzymes or the uptake of atrazine is the bottleneck that diminishes the growth rate of Pseudomonas sp. strain ADP with atrazine as an N source. Whereas atrazine and cyanuric acid showed no significant toxic effect on the cells, phenol reduces growth and activates or induces typical membrane-adaptive responses known for the genus Pseudomonas. Therefore Pseudomonas sp. strain ADP is an ideal bacterium for the investigation of the regulatory interactions among several catabolic genes and stress response mechanisms during the simultaneous degradation of toxic phenolic compounds and a xenobiotic N source such as atrazine.  相似文献   

2.
Arthrobacter nicotinovorans HIM was isolated directly from an agricultural sandy dune soil 6 months after a single application of atrazine. It grew in minimal medium with atrazine as sole nitrogen source but was unable to mineralize 14C-ring-labelled atrazine. Atrazine was degraded to cyanuric acid. In addition to atrazine the bacterium degraded simazine, terbuthylazine, propazine, cyanazine and prometryn but was unable to grow on terbumeton. When added to soil, A. nicotinovorans HIM did enhance mineralization of 14C-ring-labelled atrazine and simazine, in combination with naturally occurring cyanuric acid degrading microbes resident in the soil. Using PCR, the atrazine-degradation genes atzABC were identified in A. nicotinovorans HIM. Cloning of the atzABC genes revealed significant homology (>99%) with the atrazine degradation genes of Pseudomonas sp. strain ADP. The atrazine degradation genes were held on a 96 kbp plasmid.  相似文献   

3.
4.
Pseudomonas sp. strain ADP uses the herbicide atrazine as the sole nitrogen source. We have devised a simple atrazine degradation assay to determine the effect of other nitrogen sources on the atrazine degradation pathway. The atrazine degradation rate was greatly decreased in cells grown on nitrogen sources that support rapid growth of Pseudomonas sp. strain ADP compared to cells cultivated on growth-limiting nitrogen sources. The presence of atrazine in addition to the nitrogen sources did not stimulate degradation. High degradation rates obtained in the presence of ammonium plus the glutamine synthetase inhibitor MSX and also with an Nas(-) mutant derivative grown on nitrate suggest that nitrogen regulation operates by sensing intracellular levels of some key nitrogen-containing metabolite. Nitrate amendment in soil microcosms resulted in decreased atrazine mineralization by the wild-type strain but not by the Nas(-) mutant. This suggests that, although nitrogen repression of the atrazine catabolic pathway may have a strong impact on atrazine biodegradation in nitrogen-fertilized soils, the use of selected mutant variants may contribute to overcoming this limitation.  相似文献   

5.
Arthrobacter aurescens TC1 metabolizes diverse s-triazine ring compounds   总被引:7,自引:0,他引:7  
Arthrobacter aurescens strain TC1 was isolated without enrichment by plating atrazine-contaminated soil directly onto atrazine-clearing plates. A. aurescens TC1 grew in liquid medium with atrazine as the sole source of nitrogen, carbon, and energy, consuming up to 3,000 mg of atrazine per liter. A. aurescens TC1 is metabolically diverse and grew on a wider range of s-triazine compounds than any bacterium previously characterized. The 23 s-triazine substrates serving as the sole nitrogen source included the herbicides ametryn, atratone, cyanazine, prometryn, and simazine. Moreover, atrazine substrate analogs containing fluorine, mercaptan, and cyano groups in place of the chlorine substituent were also growth substrates. Analogs containing hydrogen, azido, and amino functionalities in place of chlorine were not growth substrates. A. aurescens TC1 also metabolized compounds containing chlorine plus N-ethyl, N-propyl, N-butyl, N-s-butyl, N-isobutyl, or N-t-butyl substituents on the s-triazine ring. Atrazine was metabolized to alkylamines and cyanuric acid, the latter accumulating stoichiometrically. Ethylamine and isopropylamine each served as the source of carbon and nitrogen for growth. PCR experiments identified genes with high sequence identity to atzB and atzC, but not to atzA, from Pseudomonas sp. strain ADP.  相似文献   

6.
阿特拉津降解菌SA1的分离鉴定及其降解特性研究   总被引:4,自引:0,他引:4  
为进行阿特拉津(AT)污染的生物修复,从AT降解混合菌群中,经长期的交替液体摇瓶培养和平板划线分离,筛选到一株能完全降解AT的菌株SA1。经生理生化特征及16S rDNA序列分析,将该菌鉴定为假单胞菌属(Pseudomonas sp.)。与已报道的AT降解菌Pseudomonas sp.ADP不同,SA1能以AT为唯一碳源、氮源和能源生长,培养基中添加铵盐不抑制SA1的降解功能,而添加葡萄糖时,累积的氰尿酸会被快速降解。SA1生长的最适温度为37℃,最适pH值为7.0。SA1的静息细胞在10℃~40℃或pH值4~11时均能高效降解AT,比ADP降解具有更广的pH和温度范围,表明SA1降解菌株具有广阔的应用前景。SA1中AT降解基因为保守的atzABCD,并含有IS1071的tnpA基因片段,传代过程中降解基因会以一定频率丢失。  相似文献   

7.
Cyanuric acid hydrolase (AtzD) from Pseudomonas sp. strain ADP was purified to homogeneity. Of 22 cyclic amides and triazine compounds tested, only cyanuric acid and N-methylisocyanuric acid were substrates. Other cyclic amidases were found not to hydrolyze cyanuric acid. Ten bacteria that use cyanuric acid as a sole nitrogen source for growth were found to contain either atzD or trzD, but not both genes.  相似文献   

8.
Dechlorination of Atrazine by a Rhizobium sp. Isolate   总被引:4,自引:0,他引:4       下载免费PDF全文
A Rhizobium sp. strain, named PATR, was isolated from an agricultural soil and found to actively degrade the herbicide atrazine. Incubation of PATR in a basal liquid medium containing 30 mg of atrazine liter(sup-1) resulted in the rapid consumption of the herbicide and the accumulation of hydroxyatrazine as the only metabolite detected after 8 days of culture. Experiments performed with ring-labeled [(sup14)C]atrazine indicated no mineralization. The enzyme responsible for the hydroxylation of atrazine was partially purified and found to consist of four 50-kDa subunits. Its synthesis in PATR was constitutive. This new atrazine hydrolase demonstrated 92% sequence identity through a 24-amino-acid fragment with atrazine chlorohydrolase AtzA produced by Pseudomonas sp. strain ADP.  相似文献   

9.
阿特拉津降解菌株的分离、鉴定和工业废水生物处理试验   总被引:1,自引:0,他引:1  
用液体无机盐培养基富集培养法和无机盐平板直接分离法, 从生产阿特拉津的农药厂的废水和污泥混合物中分离到13个能以阿特拉津为唯一氮源生长的细菌菌株。通过16S rRNA基因序列分析, 11个菌株被鉴定为Arthrobacter spp., 2个菌株被鉴定为Pseudomonas spp.。对阿特拉津降解活力最高的Arthrobacter sp. AD30和Pseudomonas sp. AD39的降解基因组成和降解特性进行了详细研究。降解基因的PCR扩增表明, AD30和AD39都含有trzN-atzBC基因, 能将有毒的阿特拉津降解成无毒的氰尿酸。降解实验表明, 向阿特拉津浓度为200 mg/L的无机盐培养基中分别接种等量的AD30、AD39和这两个菌株的混合菌液, 30°C振荡培养48 h以后, 阿特拉津去除率分别为92.5%、97.9%和99.6%, 表明混合菌的降解效果好于单菌。用AD30和AD39的混合菌液接种阿特拉津浓度为176 mg/L的工业废水, 30°C振荡培养72 h以后, 99.1%的阿特拉津被去除, 表明混合菌株在阿特拉津工业废水的生物处理中有很好的应用潜力。  相似文献   

10.
阿特拉津降解菌株的分离和鉴定   总被引:28,自引:0,他引:28  
从农药厂废水中分离到6株能以除草剂阿特拉津为唯一氮源生长的细菌,即假单胞菌(Pseudomonas spp,.)AD1,AD2和AD6,土壤杆菌(Agrobacterium sp.)AD4,黄单胞菌(Xanthomonas sp.)AD5,欧氏菌(Erwinia sp.)AD7,AD1菌株能使无机盐培养基中的0.3g/L阿特拉津在72h内降解99.9%,当以AD1,AD2,AD4,AD5,AD6和AD7菌株的总DNA为模板进行PCR扩增时,除AD2菌株以外,均得到了与献报道的假单胞菌ADP菌株的阿特拉津氯水解酶基因(atzA)同源的PCR产物。  相似文献   

11.
AIMS: To isolate and characterize atrazine-degrading bacteria in order to identify suitable candidates for potential use in bioremediation of atrazine contamination. METHODS AND RESULTS: A high efficiency atrazine-degrading bacterium, strain AD1, which was capable of utilizing atrazine as a sole nitrogen source for growth, was isolated from industrial wastewater. 16S rDNA sequencing identified AD1 as an Arthrobacter sp. The atrazine chlorohydrolase gene (atzA) isolated from strain AD1 differed from that found in the Pseudomonas sp. ADP by only one nucleotide. However, it was found located on the bacterial chromosome rather than on plasmids as previously reported for other bacteria. CONCLUSIONS: Atrazine chlorohydrolase gene, atzA, either encoded by chromosome or plasmid, is highly conserved. SIGNIFICANCE AND IMPACT OF THE STUDY: Comparison analysis of atrazine degradation gene structure and arrangement in this and other bacteria provides insight into our understanding of the ecology and evolution of atrazine-degrading bacteria.  相似文献   

12.
The enzymes involved in the degradation of phenol by a new soil bacterium referred as Pseudomonas sp. strain phDV1 were characterized. The key enzyme catalyzing the second step in the phenol degradation meta-cleavage pathway, catechol 2,3-dioxygenase (C23O), was isolated using sucrose density centrifugation and anion exchange chromatography. The purified C23O was detected and identified by absorption spectroscopy and peptide mapping. Further, the Pseudomonas sp. strain phDV1 proteome was monitored under different growth substrate conditions, using glucose or phenol as sole carbon and energy source. Sucrose density centrifugation was used to collect and concentrate the cell fraction exhibiting C23O activity and to reduce the complexity of the total protein mixture. 1-DE Tricine PAGE electrophoresis separation in combination with MALDI-TOF MS was attempted for the identification of the proteins involved in the metabolic pathway. We found a different expression of 19 proteins depending on the growth substrate (phenol or glucose) and 10 were identified as enzymes involved in the phenol degradation.  相似文献   

13.
Lately, there has been a special interest in understanding the role of halophilic and halotolerant organisms for their ability to degrade hydrocarbons. The focus of this study was to investigate the genes and enzymes involved in the initial steps of the benzene degradation pathway in halophiles. The extremely halophilic bacteria Arhodomonas sp. strain Seminole and Arhodomonas sp. strain Rozel, which degrade benzene and toluene as the sole carbon source at high salinity (0.5 to 4 M NaCl), were isolated from enrichments developed from contaminated hypersaline environments. To obtain insights into the physiology of this novel group of organisms, a draft genome sequence of the Seminole strain was obtained. A cluster of 13 genes predicted to be functional in the hydrocarbon degradation pathway was identified from the sequence. Two-dimensional (2D) gel electrophoresis and liquid chromatography-mass spectrometry were used to corroborate the role of the predicted open reading frames (ORFs). ORFs 1080 and 1082 were identified as components of a multicomponent phenol hydroxylase complex, and ORF 1086 was identified as catechol 2,3-dioxygenase (2,3-CAT). Based on this analysis, it was hypothesized that benzene is converted to phenol and then to catechol by phenol hydroxylase components. The resulting catechol undergoes ring cleavage via the meta pathway by 2,3-CAT to form 2-hydroxymuconic semialdehyde, which enters the tricarboxylic acid cycle. To substantiate these findings, the Rozel strain was grown on deuterated benzene, and gas chromatography-mass spectrometry detected deuterated phenol as the initial intermediate of benzene degradation. These studies establish the initial steps of the benzene degradation pathway in halophiles.  相似文献   

14.
Strain YAYA6 was isolated from a mixed microbial community that was growing on atrazine as a sole carbon source and formed quantitative amounts of chloride and nitrate. This strain was identified as a member of the true pseudomonad group (RNA group I) and was given the designation DMS 93-99. The growth yield when atrazine was the sole carbon and nitrogen source was 80 g (dry weight) of cells per mol of atrazine, and the cell doubling time was around 11 h. Approximately 20% of [U-ring 14C]atrazine was mineralized during primary degradation of atrazine. After atrazine disappeared from the culture supernatant, mineralization continued until the level of mineralization was more than 50%. Under different experimental conditions 10% of the atrazine supplied initially was converted to cyanuric acid and < 1% was converted to other s-triazines after prolonged incubation. Degradation proceeded via dechlorination and N-dealkylation. Atrazine was degraded until the concentration was circa 0.1 milligrams/liter. We obtained evidence showing that strain YAYA6 has specific uptake mechanisms for atrazine but less specific degradation mechanisms for s-triazines.  相似文献   

15.
A bacterium that was capable of metabolizing atrazine at very high concentrations (>1,000 ppm) was isolated from a herbicide spill site. The organism was differentiated by observing clearing zones on indicator agar plates containing 1,000 ppm atrazine. Detailed taxonomic studies identified the organism as a Pseudomonas sp., designated ADP, that was dissimilar to currently known species. Pseudomonas sp. strain ADP metabolized atrazine as its sole nitrogen source. Nongrowing suspended cells also metabolized atrazine rapidly; for example, 9 x 10(sup9) cells per ml degraded 100 ppm of atrazine in 90 min. Atrazine was metabolized to hydroxyatrazine, polar metabolites, and carbon dioxide. When uniformly ring-labeled [(sup14)C]atrazine was used, 80% of the radioactivity was liberated as (sup14)CO(inf2). These data indicated the triazine ring was completely mineralized. The isolation and characterization of Pseudomonas sp. strain ADP may contribute to efforts on atrazine bioremediation, particularly in environments containing very high pesticide levels.  相似文献   

16.
Strain DNS10 was the only member that could utilize atrazine as the sole nitrogen source for growth in an atrazine-degrading consortium which was isolated from black soil previously in our laboratory. It belongs to the genus Arthrobacter according to the sequence of 16S rRNA gene and is designated as Arthrobacter sp. DNS10. 16S rRNA gene phylogenetic analysis showed that strain DNS10 was located in a different evolutionary branch comparing with other Arthrobacter sp. atrazine-degrading strains. The degrading genes such as trzN, atzB and atzC harbored in strain DNS10 revealed high sequence similarity with those in Arthrobacter aurescens TC1 and Pseudomonas sp. ADP. These genes enabled the strain DNS10 to decompose atrazine to cyanuric acid. This was further proved by the results that the strain DNS10 (108 CFU mL−1) could degrade the whole atrazine (100 mg L−1) in the medium within 24 h at 30 °C and there was 66.13 ± 2.11 mg L−1 cyanuric acid accumulated at 24 h. These results imply that the strain DNS10 seems to be an excellent atrazine-degrading strain. Furthermore, this paper helps us in the better understanding of the strain evolution by comparing the metabolic ability and gene characteristics of strain DNS10 with other geographically distinct atrazine-degrading strains.  相似文献   

17.
18.
Pseudomonas sp. strain ADP uses the herbicide atrazine as the sole nitrogen source. We have devised a simple atrazine degradation assay to determine the effect of other nitrogen sources on the atrazine degradation pathway. The atrazine degradation rate was greatly decreased in cells grown on nitrogen sources that support rapid growth of Pseudomonas sp. strain ADP compared to cells cultivated on growth-limiting nitrogen sources. The presence of atrazine in addition to the nitrogen sources did not stimulate degradation. High degradation rates obtained in the presence of ammonium plus the glutamine synthetase inhibitor MSX and also with an Nas mutant derivative grown on nitrate suggest that nitrogen regulation operates by sensing intracellular levels of some key nitrogen-containing metabolite. Nitrate amendment in soil microcosms resulted in decreased atrazine mineralization by the wild-type strain but not by the Nas mutant. This suggests that, although nitrogen repression of the atrazine catabolic pathway may have a strong impact on atrazine biodegradation in nitrogen-fertilized soils, the use of selected mutant variants may contribute to overcoming this limitation.  相似文献   

19.
We previously identified a Pseudomonas sp. strain, ADP, which rapidly metabolized atrazine in liquid culture, agar plates, and soils (R. T. Mandelbaum, D. L. Allan, L. P. Wackett, Appl. Environ. Microbiol. 61:1451-1457, 1995). In this study, we report the cloning and partial characterization of a gene region from Pseudomonas sp. strain ADP that encodes atrazine degradation activity. A 22-kb EcoRI genomic DNA fragment, designated pMD1, was shown to encode atrazine dechlorination activity in Escherichia coli DH5 alpha. Atrazine degradation was demonstrated by a zone-clearing assay on agar medium containing crystalline atrazine and by chromatographic methods. A gene conferring the atrazine-clearing phenotype was subsequently subcloned as a 1.9-kb AvaI fragment in pACYC184, designated pMD4, and was expressed in E. coli. This result and random Tn5 mutagenesis established that the 1.9-kb AvaI fragment was essential for atrazine dechlorination. High-pressure liquid and thin-layer chromatographic analyses were used to rigorously establish that E. coli containing pMD4 degraded atrazine and accumulated hydroxyatrazine. Hydroxyatrazine was detected only transiently in E. coli containing pMD1. This is consistent with the idea that hydroxyatrazine is the first metabolite in atrazine degradation by Pseudomonas sp. strain ADP. A 0.6-kb ApaI-PstI fragment from pMD4, containing the putative atrazine chlorohydrolase gene, hybridized to DNA from atrazine-degrading bacteria isolated in Switzerland and Louisiana.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Pseudomonas sp. strain ADP initiates atrazine catabolism via three enzymatic steps, encoded by atzA, -B, and -C, which yield cyanuric acid, a nitrogen source for many bacteria. In-well lysis, Southern hybridization, and plasmid transfer studies indicated that the atzA, -B, and -C genes are localized on a 96-kb self-transmissible plasmid, pADP-1, in Pseudomonas sp. strain ADP. High-performance liquid chromatography analyses showed that cyanuric acid degradation was not encoded by pADP-1. pADP-1 was transferred to Escherichia coli strains at a frequency of 4.7 × 10−2. This suggests a potential molecular mechanism for the dispersion of the atzABC genes to other soil bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号