首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Renal proximal tubular epithelium can regenerate after various insults. To examine whether the tubular repair process is regulated by surrounding peritubular capillaries, we established an in vitro human tubulogenesis model that mimics in vivo tubular regeneration after injury. In this model, HGF, a potent renotropic factor, dose dependently induced tubular structures in human renal proximal tubular epithelial cells cultured in gels. Consistent with regenerating tubular cells after injury, HGF-induced tubular structures expressed a developmental gene, Pax-2, and a mesenchymal marker, vimentin, and formed a lumen with aquaporin-1 expression. Electron microscopic analysis showed the presence of microvilli on the apical site of the lumen, suggesting that these structures are morphologically equivalent to renal tubules in vivo. When cocultured with human umbilical vein endothelial cells (HUVEC), HGF-induced tubular formation was significantly enhanced. This could not be reproduced by the addition of VEGF, basic FGF, or PDGF. Protein array revealed that HUVEC produced various matrix metalloproteinases (MMPs). The stimulatory effects of coculture with HUVEC or HUVEC-derived conditional medium were almost completely abolished by addition of the tissue inhibitor of metalloproteinase (TIMP)-1 or TIMP-2. These data suggest that endothelial cell-derived factors including MMPs play a critical role in tubulogenesis and imply a potential role of peritubular capillary endothelium as a source of factor(s) required for tubular recovery after injury.  相似文献   

2.
Opercular epithelial cells of Fundus heteroclitus were investigated using conventional microelectrodes. The area of interest was the cells lining the inside of the opercular epithelium closest to the gill arches, an area with a high density of chloride cells. Only one cell type could be discerned from the values of 60 opercular cells measured with the opercular epithelium in open circuit conditions. A mean apical voltage of -18.0 +/- 0.6 mV was observed with intracellular values ranging from -10 to -30 mV. The predicted intracellular chloride content was 59 mM/liter. Apical fractional resistance (faR) was 0.78 +/- 0.02. The intracellular potential measurements were typically difficult to maintain for extended periods (longer than 3 min). The opercular cells depolarize with serosal isoproterenol treatment (10(-6) M) corresponding to the increase in opercular transepithelial potential. The opercular cell apical fR decreased with isoproterenol treatment. These data indicate the observed opercular cells were involved in opercular chloride transport.  相似文献   

3.
Summary In order to examine the possibility of parathyroid hormone-mediated ultrastructural rearrangements in target epithelium, isolated canine renal proximal tubular cells were grown on a collagen-coated semipermeable membrane in a defined medium. Scanning and transmission electron microscopy of these monolayers revealed abundant microvilli. Exposure of the proximal tubular cells to parathyroid hormone resulted in a biphasic changes involving: (1) dramatic shortening and rarefaction of microvilli within 1 min; and (2) recovery of microvillar topography after 5 min. A similar shortening of microvilli was observed following exposure to ionomycin, whereas incubation with cyclic AMP resulted in an elongation of microvilli. Parathyroid hormone stimulated cyclic AMP production and increased cytoplasmic free calcium concentration in cultured proximal tubular cells. Pretreatment of cells with a calmodulin inhibitor abolished the effect of parathyroid hormone on brush border topography. Shortening of microvilli was associated with a disappearance of microvillar core filaments. Staining of F-actin with fluoresceinphalloidin showed that parathyroid hormone resulted in fragmentation of stress fibers. It is concluded that parathyroid hormoneinduced cell activation involves cytoplasmic-free calcium, calmodulin, and the cytoskeleton.  相似文献   

4.
Birds are uricotelic and, like humans, maintain high plasma urate concentrations (approximately 300 microM). The majority of their urate waste, as in humans, is eliminated by renal proximal tubular secretion; however, the mechanism of urate transport across the brush-border membrane of the intact proximal tubule epithelium during secretion is uncertain. The dominance of secretory urate transport in the bird provides a convenient model for examining this process. The present study shows that short hairpin RNA interference (shRNAi) effectively knocked down gene expression of multidrug resistance protein 4 (Mrp4; 25% of control) in primary monolayer cultures of isolated chicken proximal tubule epithelial cells (cPTCs). Control and Mrp4-shRNAi-treated cPTCs were mounted in Ussing chambers and unidirectional transepithelial fluxes of urate were measured. To detect nonspecific effects, transepithelial electrical resistance (TER) and sodium-dependent glucose transport (Iglu) were monitored throughout experiments. Knocking down Mrp4 expression resulted in a reduction of transepithelial urate secretion to 35% of control with no effects on TER or Iglu. Although electrical gradient-driven urate transport in isolated brush-border membrane vesicles was confirmed, potassium-induced depolarization of the plasma membrane in intact cPTCs failed to inhibit active transepithelial urate secretion. However, electrical gradient-dependent vesicular urate transport was inhibited by the MRP4 inhibitor MK-571 also known to inhibit active transepithelial urate transport by cPTCs. Based on these data, direct measure of active transepithelial urate secretion in functional avian proximal tubule epithelium indicates that Mrp4 is the dominant apical membrane exit pathway from cell to lumen.  相似文献   

5.
Rats with streptozotocin-induced diabetes mellitus (DM) are resistant to aminoglycoside (AG) nephrotoxicity presumably because of defective transport and accumulation of drug by proximal tubular cells. To test this hypothesis we injected DM rats with saline or with gentamicin, 100, 200, and 400 mg/kg per day for 6 days, to determine if the renal cortical concentration of gentamicin could be raised to toxic levels. Nephrotoxicity was assessed by monitoring for evidence of accelerated lipid peroxidation in the renal cortex, for elevation of the serum creatinine concentration, and for evidence of proximal tubular cell injury and necrosis by light and electron microscopy. At 100 mg/kg per day renal cortical gentamicin was 454 +/- 85 micrograms/g. Except for an increase in renal cortical phospholipids these rats manifested no evidence of accelerated lipid peroxidation or elevation of serum creatinine. At 200 mg/kg per day renal cortical gentamicin rose to 636 +/- 20 micrograms/g. These rats manifested mild functional and morphological evidence of toxicity. At 400 mg/kg renal cortical gentamicin rose to 741 +/- 43 micrograms/g. These rats developed severe nephrotoxic injury as manifested by a marked increase of lipid peroxidation evident by an increase of malondialdehyde from a control level of 0.48 +/- 0.02 to 1.72 +/- 0.12 nmole/mg protein, a shift from unsaturated to saturated fatty acids esterified in renal cortical phospholipids, depression of superoxide dismutase and catalase, and a shift from reduced to oxidized glutathione. The serum creatinine rose from a baseline level of 0.24 +/- 0.01 to 0.46 +/- 0.05 mg/dl. Light and electron microscopy revealed enlarged lysosomes distended with typical myeloid bodies and extensive proximal tubular cell necrosis. These observations provide compelling evidence in support of the view that the resistance of DM rats to AG nephrotoxicity is causally linked to the low rate of drug uptake by renal proximal tubular cells. When the renal cortical concentration reaches a critical level, it elicits a pattern of toxic injury indistinguishable from that of nondiabetic rats. Thus, there is nothing inherent to the diabetic state that prevents AGs from causing their usual adverse effects on the metabolism of renal proximal tubular cells once they gain access in sufficient quantity into these cells.  相似文献   

6.
Norepinephrine alters the transepithelial electrical properties of an open-circuited urinary bladder from the mud puppy, Necturus maculosus. When 10(-5) M norepinephrine is superfused over the serosa of the epithelium, the transepithelial voltage (Vt) and short-circuit current (Isc) increase as the resistance (Rt) decreases. The norepinephrine-mediated changes are reversed by the addition of amiloride (5.10(-5) M) to the mucosal Ringer's solution. The serosal adrenoceptors mediating the Na+ transport are more sensitive to norepinephrine (EC50 = 1.2.10(-6) M) than to epinephrine or isoproterenol. Since the Isc is blocked selectively by the antagonist, phenoxybenzamine, stimulation of active transepithelial Na(+)-flux by catecholamines is mediated by an alpha-adrenoceptor. The apical cell membrane voltage (Va) and fractional resistance (fRa) were recorded using conventional KCl-filled microelectrodes. Untreated tissues have Va close to 0 mV while the basolateral membrane voltage (Vb) is between -85 and -95 mV. About 90% of Rt is apical cell membrane resistance (fRa). When amiloride inhibits sodium transport, Va becomes negative, Vb hyperpolarizes slightly and fRa increases to 97%. On the other hand, if the bladders are treated with norepinephrine, fRa decreases to 79% as Va becomes positive and Vb depolarizes. When Rt changes, the resistance of the paracellular pathway (Rp) is unaltered. Changes in the electrical properties of the tissue appear to be mediated primarily by alterations in Ra. Since the Necturus bladder does not respond to antidiuretic hormone, this study implies that biogenic amines regulate Na+ transport in the epithelium.  相似文献   

7.
Summary A primary culture from rat renal IMCD cells was established to investigate the permeability characteristics of the luminal and contraluminal plasma membranes of the papillary collecting duct in vitro. Freshly isolated IMCD cells were grown on filters in a special “epithelial cell” medium. Confluency was proved with an epithelial volt/ohm meter. After 7 d of culture the transepithelial resistance reached more than 1000 Ω×cm2. A polarization of the cells with regard to a basolateral localization of a lactate efflux system, and an l-alanine transport system was achieved. The hypotonicity-activated release systems for the organic osmolytes sorbitol and betaine were also located basolaterally, whereas taurine, glycerophosphorylcholine, and myo-inositol left the cells at both cell poles but with different capacity. Morphological observations revealed also that the monolayer was well differentiated. Thus, a model of a renal collecting duct epithelium was established which can be used to analyze polarized and differentiated transport processes across the epithelial cells and their plasma membranes.  相似文献   

8.
Stevioside, a non-caloric sweetening agent, is used as a sugar substitute. An influence of stevioside on renal function has been suggested, but little is known about its effect on tubular function. Therefore, the present study was designed to explore the direct effect of stevioside on transepithelial transport of p-aminohippurate (PAH) in isolated S2 segments of rabbit proximal renal tubules using in vitro microperfusion. Addition of stevioside at a concentration of 0.45 mM to either the tubular lumen, bathing medium, or both at the same time had no effect on transepithelial transport of PAH. Similarly, a concentration of 0.70 mM (maximum solubility in the buffer) when present in the lumen, had no effect on PAH transport. However, this concentration in the bathing medium inhibited PAH transport significantly by about 25-35%. The inhibitory effect of stevioside was gradually abolished after it was removed from the bath. Addition of 0.70 mM stevioside to both lumen and bathing medium at the same time produced no added inhibitory effect. Stevioside at this concentration has no effect on Na+/K+-ATPase activity as well as cell ATP content. These findings suggest that stevioside, at a pharmacological concentration of 0.70 mM, inhibits transepithelial transport of PAH by interfering with the basolateral entry step, the rate-limiting step for transepithelial transport. The lack of effect of stevioside on transepithelial transport of PAH on the luminal side and its reversible inhibitory effect on the basolateral side indicate that stevioside does not permanently change PAH transport and should not harm renal tubular function at normal human intake levels.  相似文献   

9.
A chamber design is described which permits isolation of villus or intervillus epithelium from proximal segments of Amphiuma intestine and measurement of the transpithelial potential difference (psi ms) and short-circuit current (Isc) produced by each. In media containing Cl- and 10 mequiv./l HCO3- the villus generated a basal psi ms of 0.8 mV (serosa negative) and Isc of 12 microA/cm2 while the intervillus psi ms and Isc were not different from zero. Acetazolamide altered the villus psi ms by 1.2 mV; the intervillus psi ms by only 0.3 mV. Transepithelial gradients of HCO3- appeared to generate diffusion potentials across the intervillus but not the villus epithelium. The actively transported sugar galactose elevated psi ms by 0.6 +/- 0.1 mV in the intervillus epithelium and by 1.5 +/- 0.2 mV in the villus epithelium for a response ratio (0.6/1.5) = 0.4. The response ratio for valine was 0.3. In contrast, the response ratios for theophylline (0.7) and cyclic AMP (0.7) were significantly higher. These observations indicate that the entire epithelium is responsive to theophylline and cyclic AMP while Na+-dependent solute transport and the basal electrogenic ion transport processes are primarily functions of the cells lining the intestinal villus.  相似文献   

10.
Peritubular membrane potential in kidney proximal tubular cells of spontaneously hypertensive rats (SHR-Okamoto strain adult rats) was measured with conventional 3 mol KCl microelectrodes, in vivo. Peritubular cell membrane potential was not different in SHR (-66.5 ± 0.7 mV) as compared with normotensive control Wistar rats (-67.5 ± 1.2 mV). To test the effects of possible altered sodium membrane transport in SHR on proximal tubule peritubular membrane potential, we allowed SHR and control rats to drink 1% NaCl for two weeks. Again, proximal tubule peritubular membrane potential was not different in SHR on 1% NaCl (-67.0 ± 1.0 mV) as compared with control rats on 1% NaCl (-64.7 ± 1.3 mV). From these results we concluded that peritubular membrane potential in kidney proximal tubular cells of SHR was not different from normotensive Wistar control rats, and if some alteration of sodium transport in kidney proximal tubular cells of SHR could exist, that was not possible to evaluate from the measurements of peritubular membrane potential in kidney proximal tubular cells.  相似文献   

11.
We studied salt and water absorption in isolated rabbit superficial proximal straight tubules perfused and bathed with solutions providing oppositely directed transepithelial anion gradients similar to those which might obtain in vivo. The perfusing solution contained 138.6 mM Cl- 3.8 mM HCO-3 (pH 6.6) while the bathing solution contained 113.6 mM Cl- and 25 mM HCO-3 (pH 7.4); the system was bubbled with 95% O2-5% CO2. At 37 degrees C, net volume absorption (Jv nl min-1 mm-1) was 0.32 +/- 0.03 (SEM); Ve, the transepithelial voltage (millivolts; lumen to bath), was +3.1 +/- 0.2. At 21 degrees C, Ve rose to +3.7 +/- 0.1 and Jv fell to 0.13 +/- 0.01 (significantly different from zero at P less than 0.001); in the presence of 10(-4)M ouabain at 37 degrees C, Ve rose to +3.8 +/- 0.1 and Jv fell to 0.16 +/- 0.01 (P less than 0.001 with respect to zero). In paired experiments, the ouabain- and temperature-insensitive moieties of Jv and Ve became zero when transepithelial anion concentration gradients were abolished. Titrametric determinations net chloride flux at 21 degrees C or at 37 degrees C with 10(-4) M ouabain showed that chloride was the sole anion in an isotonic absorbate. And, combined electrical and tracer flux data indicated that the tubular epithelium was approximately 18 times more permeable to Cl- than to HCO-3. We interpret these results to indicate that, in these tubules, NaCl absorption depends in part on transepithelial anion concentration gradients similar to those generated in vivo and in vitro by active Na+ absorption associated with absorption to anions other than chloride. A quantitative analysis of passive solute and solvent flows in lateral intercellular spaces indicated that fluid absorption occurred across junctional complexes when the osmolality of the lateral intercellular spaces was equal to or slightly less than that of the perfusing and bathing solutions; the driving force for volume flow under these conditions depended on the fact that sigmaHCO3 exceeded sigmaCl.  相似文献   

12.
13.
On the uptake of biotin by the rat renal tubule   总被引:2,自引:0,他引:2  
Little is known of biotin handling by transporting epithelium. Accordingly, we have examined the characteristics of biotin uptake by rat renal tubular epithelium. Renal cortical slices showed concentrative, temperature-sensitive uptake of biotin. Renal brushborder membrane vesicles exhibited an "overshoot" phenomenon with uptake of 1.9 nM biotin in the presence of a 100 mM NaCl gradient. This overshoot was reduced in magnitude with reduction of the sodium gradient to 50 mM. Biocytin significantly reduced uptake by the vesicles. Concentration-dependent studies yielded an apparent transport Km of 200 nM. We conclude that biotin is actively transported by the rat renal proximal tubule by a system which is at least partially Na+ dependent, and shared by biocytin.  相似文献   

14.
The transepithelial voltage (V(t)) of isolated Malpighian tubules of the yellow fever mosquito Aedes aegypti spontaneously oscillates in more than half the tubules. Typically, V(t) decreases and then rises at a frequency of 2 oscillations/min with a duration of 16 s. In 6 isolated perfused tubules studied in detail, V(t) oscillates between 50.5 mV and 15.7 mV in parallel with (1) oscillations of the transepithelial resistance (R(t)) between 7.61 kOmegacm and 3.63 kOmegacm, (2) oscillations of the basolateral membrane voltage of principal cells between -56.7 mV and -72.2 mV, and (3) oscillations of the apical membrane voltage between 107.2 mV and 87.8 mV. The oscillations are dependent on the Cl concentration in the extracellular solutions. As R(t) decreases during the oscillations V(t) goes to the transepithelial equilibrium potential of Cl (E(cl)) indicating transient changes in transepithelial Cl conductance as the mechanism of voltage and resistance oscillations. Since the largest voltage oscillations take place across the whole epithelium and not across cell membranes, oscillating Cl conductances are localized to a single transepithelial Cl diffusion barrier such as the paracellular pathway. This conclusion is supported by the analysis of electrically equivalent circuits that identify the shunt pathway as the site of oscillating Cl conductances.  相似文献   

15.
Isolated epithelia of frog skin were prepared with collagenase, and the cells were punctured with intracellular microelectrodes across their apical (outer) and basolateral (inner) surfaces. Regardless of the route of cell puncture, the intracellular voltage (Vosc) in short- circuited isolated epithelia was markedly negative, averaging -70.4 mV for apical punctures and -91.6 mV for basolateral punctures. As in intact epithelia, amiloride outside caused the Vosc to become more negative (means of -96.7 and -101.8 mV), with a concomitant increase in the resistance of the apical barrier. Increasing the [K)i of the basolateral solution from 2.4 to 8.0 or 14.4 mM caused rapid step depolarization (5-10 s) of the Vosc under transepithelial Na transporting and amiloride-inhibited conditions of Na transport, with the delta Vosc ranging between 23.9 and 68.3 mV per decade change of [K]i. The finding that the Vosc of isolated epithelia of frog skin is independent of the route of cell penetration is consistent with the notion that the cells of the stratified epithelium are electrically coupled (functional syncitium). Moreover, the isolated epithelium can serve as a useful preparation, especially in studies designed to investigate the properties of the basolateral surfaces of cells.  相似文献   

16.
Na-K pump current in the Amphiuma collecting tubule   总被引:4,自引:2,他引:2       下载免费PDF全文
There is strong evidence supporting the hypothesis of an electrogenic Na-K pump in the basolateral membrane of several epithelia. Thermodynamic considerations and results in nonepithelial cells indicate that the current carried by the pump could be voltage dependent. In order to measure the pump current and to determine its voltage dependence in a tight epithelium, we have used the isolated perfused collecting tubule of Amphiuma and developed a technique for clamping the basolateral membrane potential (Vbl) through transepithelial current injection. The transcellular current was calculated by subtracting the paracellular current (calculated from the transepithelial conductance measured in the presence of luminal amiloride) from the total transepithelial current. Basolateral membrane current-voltage (I-V) curves were obtained in conditions where the ratio of the pump current to the total basolateral membrane current had been maximized by loading the cells with Na+ (exposure to low-K+ bath), and by blocking the basolateral K+ conductance with barium. The pump current was defined as the difference of the current across the basolateral membrane measured before and 10-15 s after the addition of strophanthidin (20 microM) to the bath solution. With a bath solution containing 3 mM K+, the pump current was nearly constant in the Vbl range of -20 to -80 mV (52 +/- 5 microA.cm-2 at -60 mV) but showed a marked voltage dependence at higher negative Vbl (pump current decreased to 5 +/- 9 microA.cm-2 at -180 mV). In a 1.0 mM K bath, the shape of the pump I-V curve was similar but the amplitude of the current was decreased (24 +/- 4 microA.cm-2 at -60 mV). In a 0.1 mM K bath, the pump current was not significantly different from 0. Our results indicate that the basolateral Na-K pump generates a current which depends on the extracellular potassium concentration. With physiological peritubular concentration of K+ and in the physiological range of potential, the pump activity, measured as the pump-generated current, was independent of the membrane potential.  相似文献   

17.
Summary Canine tracheal epithelial cells were isolated by enzymatic and mechanical dispersion and cultured on permeable supports. The cells formed confluent monolayers and retained most of the morphologic characteristics of the intact epithelium, including apical microvilli, apical tight junctions, and a moderately interdigitated lateral intercellular space. The cells also retained the functional properties of the epithelium. The monolayer responded to addition of isoproterenol with the characteristic changes in cellular electrical properties expected for stimulation of Cl secretion: isoproterenol increased transepithelial voltage, depolarized apical membrane voltage, and decreased both transepithelial resistance and the ratio of apical-to-basolateral membrane resistance. Examination of the cellular response to ion substitutions and inhibitors of Cl secretion indicate that the cultured monolayers retain the same cellular mechanisms of ion transport as the intact epithelium. Thus, primary cultures of tracheal epithelium may provide a useful preparation for future studies of the mechanism and regulation of Cl secretion by airway epithelia.  相似文献   

18.
The intracellular chloride activity (aiCl), measured with Cl-selective microelectrodes on stimulated rabbit papillary muscles (1 Hz) incubated in serum, was 7.2 +/- 2.2 mM (48 measurements). Under the same condition, on the quiescent muscle, aiCl was 7.5 +/- 2.8 mM (45 measurements). The membrane potential of quiescent papillary muscles and diastolic potential of stimulated papillary muscles were -79.0 +/- 0.7 (50 measurements) and -83.5 +/- 0.5 mV (50 measurements), respectively. The experimental conditions were chosen to reproduce the in vivo conditions where the Cl equilibrium potential is close to the membrane potential or to the diastolic potential. After correcting for cytoplasmic interference (4 mM) on the aiCl measurements, the Cl equilibrium potential (ECl) was -84 mV. In conclusion, the Cl distribution in cardiac cells bathed in serum is passive as for in vivo cardiac cells.  相似文献   

19.
The histological characteristics of the digestive tract and the ultrastructure of mucosal cells of the stomach and intestine of rice field eel, Monopterus albus, are described to provide a basis for future studies on its digestive physiology. The digestive tract of the rice field eel is a long and coiled tube composed of four layers: mucosa, lamina propria‐submucosa, muscularis and serosa. The pharynx and oesophagus mucosa is lined with a stratified epithelium. The stomach includes the cardiac and pyloric portions and the fundus. Many gastric pits are formed by invaginations of the mucosal layer and tubular gastric glands formed by the columnar cells in the fundus. The intestine is separated from the stomach by a loop valve and divided into a proximal portion and a distal portion. The proximal intestinal epithelium consists of columnar cells with microvilli towards the lumen and goblet cells. The enterocytes are joined at the apical surface by the junctional complex, including the evident desmosomas. Numerous lysosomes and some vesicles are evident in the upper cytoplasm of the cells, and a moderate amount of endoplasmic reticulum and lysosomes are scattered in the supranuclear cytoplasm. The epithelium becomes progressively thicker and the folds containing large numbers of goblet cells are fewer and shorter in the distal portion of the intestine. At the ultrastuctural level, the columnar cells of the tubular gastric glands have numerous clear vacuoles and channels. A moderate amount of pepsinogen granules are present in the stomach. The enterocytes of the intestinal mucosa display a moderate amount of endoplasmic reticulum and lysosomes, and long and regular microvilli.  相似文献   

20.
Turtle bladders bathed on both surfaces with identical HCO3-/CO2-rich, Cl--free Na+ media and treated with ouabain and amiloride exhibit a transepithelial potential serosa electronegative to mucosa and a short-circuit current (Isc) which is a measure of the net luminal acidification rate. Addition of calcium ionophore A23187 (10 microM) to the mucosal side of the epithelium rapidly reverses the direction of the potential difference and Isc and decreases tissue resistance. The resulting positive Isc resembles that previously observed in response to isobutylmethylxanthine (IBMX) and cAMP analogs. Reversal of the Isc is enhanced in bladders from severely alkalotic turtles. In contrast, in severely acidotic turtles, ionophore A23187 decreases, but does not reverse, the Isc. The data suggest that, like IBMX and cAMP analogs, the Ca ionophore stimulates an electrogenic alkalinization mechanism, but, unlike the former agents, inhibits the concurrent acidification process as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号