首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Cytochalasins enhanced surfactant secretion from primary cultures of [3H]choline-labeled type II epithelial cells from the rat. Cytochalasins A, B, C, D and dihydrocytochalasin B enhanced secretion of phosphatidyl-[3H]choline ([3H]PC) in a dose-dependent manner with EC50 values of 1, 2, 0.5, 0.1 and 1 μM for cytochalasins A, B, C, D and dihydrocytochalasin B, respectively. Only cytochalasin A caused significant cytotoxicity as determined by release of the intracellular enzyme lactate dehydrogenase (EC 1.1.1.17). Dose responses of surfactant release induced by cytochalasins B, C and D were biphasic; maximal release was observed between 0.1–1.0 μM for cytochalasins C and D between 1 and 10 μM for cytochalasin B. Secretion decreased toward control levels at concentrations of cytochalasin above these maximal concentrations. Increased rates of [3H]PC release were noted between 1 and 3 h after exposure to cytochalasin D. Increased rates of surfactant release induced by cytochalasin D were additive to release induced by the β-adrenergic agonist, terbutaline, or forskolin, although cytochalasin D had no direct effect on cytosolic cyclic AMP levels. Changes in cell shape and microfilament organization were observed by phase-contrast microscopy and fluorescence microscopy using rhodamine-conjugated phalloidin after exposure of the isolated type II cells to cytochalasin D. Disruption of microfilaments associated with lamellar bodies of the purified type II cells occurred after treatment with cytochalasin D. Cytochalasin D augmented surfactant release from purified type II cells and disrupted the microfilament structure of those cells, supporting the hypothesis that alterations in microfilaments are associated with surfactant release.  相似文献   

2.
Three new cytochalasans, named cytochalasins Z1, Z2 and Z3, were isolated from the wheat culture of Pyrenophora semeniperda, a fungus proposed to biologically control grass weeds. Other cytochalasins isolated from the same organic extract were identified as the already known cytochalasins F, T, deoxaphomin and cytochalasins B, the latter being produced in very large amounts. All three new cytochalasins were characterized as 24-oxa[14]cytochalasans by extensive use of NMR and MS techniques. Cytochalasins Z1 and Z2 proved to be structurally related to cytochalasin T, whereas cytochalasin Z3 was related to cytochalasin B. When assayed on wheat and tomato seedlings, cytochalasin Z3, in comparison to the new cytochalasins, cytochalasin B, its 21,22-dihydroderivative, cytochalasin F and deoxaphomin showed a remarkable ability to inhibit root elongation. The possibility of using these metabolites in biological control strategies is discussed.  相似文献   

3.
All of the common cytochalasins activate superoxide anion release and exocytosis of beta-N-acetylglucosaminidase and lysozyme from guinea-pig polymorphonuclear leukocytes (neutrophils) incubated in a buffered sucrose medium. Half-maximal activation of both processes is produced by approx. 0.2 microM cytochalasin A, C greater than 2 microM cytochalasin B greater than or equal to 4-5 microM cytochalasin D, E. While maximal rates of O2- release and extents of exocytosis require extracellular calcium (1-2 mM), replacing sucrose with monovalent cation chlorides is inhibitory to neutrophil activation by cytochalasins. Na+, K+ or choline inhibit either cytochalasin B- or E-stimulated O2- production with IC50 values of 5-10 mM and inhibition occurs whether Cl-, NO3- or SCN- is the anion added with Na+ or K+. Release of beta-N-acetylglucosaminidase in control or cytochalasin B-stimulated cells is inhibited by NaCl(IC50 approximately 10 mM), while cytochalasin E-stimulated exocytosis is reduced less and K+ or choline chloride are ineffective in inhibiting either cytochalasin B- or E-stimulated exocytosis. Release of beta-glucuronidase, myeloperoxidase or acid phosphatase from neutrophils incubated in buffered sucrose is not stimulated by cytochalasin B. Stimulation of either O2- or beta-N-acetylglucosaminidase release by low concentrations of cytochalasin A is followed by inhibition of each at higher concentrations. It appears that all cytochalasins can activate both NAD(P)H oxidase and selective degranulation of neutrophils incubated in salt-restricted media and that differential inhibition of these two processes by monovalent cations and/or anions is produced at some step(s) subsequent to cytochalasin interaction with the cell.  相似文献   

4.
The mechanisms operative in the inhibition by cytochalasins of human peripheral blood T lymphocytic rosette formation with sheep erythrocytes remain obscure in the light of the multiplicity of biologic effects of cytochalasins. Moreover, we have shown the existence of three distinct classes of cytochalasin-binding sites (H-, M-, and L-sites) in such lymphocytes (J. Biol. Chem. 256:1290-1300, 1981). We have, therefore, explored the mechanism of rosette inhibition and present evidence that shows: a) Inhibition of rosetting is not caused by inhibition of glucose transport in lymphocytes; b) cytochalasin binding to the H- and M-sites, both integral plasma membrane proteins, is not involved in the effect; c) nonspecific partitioning of cytochalasins in the plasma membrane lipids of lymphocytes appears unlikely to explain the effect; d) evidence presented in this paper strongly suggests that cytochalasin binding to the actin associated L-site mediates the inhibition of rosetting. We conclude that cytoskeletal microfilaments play a critical role in the normal functioning of cell surface receptors for binding to sheep erythrocytes.  相似文献   

5.
The action of cytochalasins, actin-disrupting agents on human Kv1.5 channel (hKv1.5) stably expressed in Ltk cells was investigated using the whole cell patch-clamp technique. Cytochalasin B inhibited hKv1.5 currents rapidly and reversibly at +60 mV in a concentration-dependent manner with an IC50 of 4.2 µM. Cytochalasin A, which has a structure very similar to cytochalasin B, inhibited hKv1.5 (IC50 of 1.4 µM at +60 mV). Pretreatment with other actin filament disruptors cytochalasin D and cytochalasin J, and an actin filament stabilizing agent phalloidin had no effect on the cytochalasin B-induced inhibition of hKv1.5 currents. Cytochalasin B accelerated the decay rate of inactivation for the hKv1.5 currents. Cytochalasin B-induced inhibition of the hKv1.5 channels was voltage dependent with a steep increase over the voltage range of the channel's opening. However, the inhibition exhibited voltage independence over the voltage range in which channels are fully activated. Cytochalasin B produced no significant effect on the steady-state activation or inactivation curves. The rate constants for association and dissociation of cytochalasin B were 3.7 µM/s and 7.5 s–1, respectively. Cytochalasin B produced a use-dependent inhibition of hKv1.5 current that was consistent with the slow recovery from inactivation in the presence of the drug. Cytochalasin B (10 µM) also inhibited an ultrarapid delayed rectifier K+ current (IK,ur) in human atrial myocytes. These results indicate that cytochalasin B primarily blocks activated hKv1.5 channels and endogenous IK,ur in a cytoskeleton-independent manner as an open-channel blocker. voltage-gated K+ channel; heart; open channel block  相似文献   

6.
Cytochalasins are microfilament-active mould metabolites, widely utilized to study the involvement of the actin cytoskeleton in cellular processes as well as in genotoxicity and cell kinetic research. In this study we have investigated whether multidrug-resistance phenotypes, caused by overexpression of the ATP-binding-cassette transporter proteins P-glycoprotein (P-gp) or multidrug-resistance-associated protein (MRP), influence the microfilament-depolymerizing effect of cytochalasins. Using four well-characterized multidrug-resistance cell models, we have shown that both the microfilament-disrupting (phalloidine staining) and the cytotoxic (MTT-assay) activity of cytochalasins are reduced in parallel with increased P-gp expression and restorable by P-gp-modulating agents. This also applied to the cytochalasin D-mediated induction of polykaryons (microscopic evaluation) which arise as a consequence of impaired cytokinesis but unaffected karyokinesis. The reduced cellular activity of cytochalasins in P-gp-positive cell lines was correlated with decreased intracellular accumulation ([3H]cytochalasin B accumulation) which was also restorable by P-gp modulators. Moreover, the dose-dependent inhibition of P-gp photoaffinity labeling ([3H]azidopine) suggested cytochalasins as P-gp-binding agents. In contrast, MRP overexpression had no effect on either cytochalasin microfilament activity or cytotoxicity. In conclusion, data indicate that the microfilament-destructive effects of cytochalasins are impaired due to a reduction of the intracellular cytochalasin accumulation by P-gp but not by MRP. Results are discussed with regard to P-gp as a resistance factor when cytochalasins are utilized to study microfilament dynamics, cell cycle kinetics or chromosomal damage. Moreover, the polykaryon-inducing activity of cytochalasin D is suggested as a specific indicator for a P-gp-mediated multidrug-resistance phenotype and the reversing potency of chemosensitizers.  相似文献   

7.
Actions of cytochalasins on polymorphonuclear leucocytes of guinea pig peritoneal exudates have been studied. When the leucocytes were treated with cytochalasin E, complete disappearance of pseudopods was observed during a time, which would be related with the inhibition of particle ingestion. Intracellular granules migrated to the cell periphery in ectoplasma and were afterwards excluded from the cells. Later, formation of cytoplasmic protuberations with irregular shapes and variable diameters (“zeiosis”) and of large vacuoles were observed. Similar changes were also observed in monocytes. These morphological changes were accompanied with metabolic alterations which mimicked those observed during phagocytosis: appearance of cyanide-insensitive respiration, stimulation of hexose monophosphate oxidative pathway and release of superoxide anions and lysosomal enzymes into suspending medium. Other members of the cytochalasin family, cytochalasin C and D, similarly induced release of superoxide anions, whereas cytochalasin A and B had no such effect on leucocytes. Cytochalasin E seemed to have dual effects on leucocytes, namely, (1) inhibition of cytokinesis which is a common effect of the cytochalasin family; and (2) triggering of metabolic changes and degranulation which are characteristics of phagocytotic process.  相似文献   

8.
In purified human peripheral blood lymphocytes, low (0.01–10 μM) concentrations of cytochalasins A B, E and D (CA, CB, CD, CE) produced marked augmentation of transport and metabolic responses to phytohemagglutinin (PHA) and concanavalin A (ConA) including effects on DNA synthesis, cAMP accumulation, phosphatidylinositol turnover and sodium-dependent amino acid transport. At high concentrations (10–100 μM) these same responses were inhibited. Cytochalasin effects were minimal or absent if lectin was not present indicating that these agents are acting by modulating the action of the lectin rather than through a direct effect on cell metabolism. Using [125I]ConA, the number of lectin molecules bound per cell was shown not to be altered by the cytochalasins. Taken together with the previously reported effects of the cytochalasins on calcium uptake in lectin stimulated lymphocytes, these observations suggest that microfilaments (or related cytochalasin sensitive structures) play an important role in the modulation of lymphocyte activation.  相似文献   

9.
The role of the cellular cytoskeletal system of microtubules and microfilaments on gonadotropin-stimulated progesterone production by isolated rat luteal cells has been investigated. Exposure of luteal cells to human choriogonadotropin resulted in a stimulation of cyclic AMP (4-7-fold) and progesterone (3-4-fold) responses.l Incubation of cells with the microfilament modifier cytochalasin B inhibited the gonadotropin-induced steroidogenesis in a dose- and time-dependent manner. The effect of cytochalasin B on basal production of steroid was less pronounced. Cytochalasin B also inhibited the accumulation of progesterone in response to lutropin, cholera enterotoxin, dibutyryl cyclic AMP and 8-bromo cyclic AMP. The inhibition of steroidogenesis by cytochalasin B was not due to (a) inhibition of 125I-labelled human choriogonadotropin binding to luteal cells, (b) inhibition of gonadotropin-stimulated cyclic AMP formation or (c) a general cytotoxic effect and/or inhibition of protein biosynthesis. Cytochalasin D, like cytochalasin B, inhibited gonadotropin- and 8-bromo cyclic AMP-stimulated steroidogenesis. Although cytochalasin B also blocked the transport of 3-O-methyl-glucose into luteal cells, cytochalasin D was without such an effect. Increasing glucose concentration in the medium, or using pyruvate as an alternative energy source, failed to reverse the inhibitory effect of cytochalasin B. The anti-microtubular agent colchicine failed to modulate synthesis and release of progesterone by luteal cells in response to human choriogonadotropin. These studies suggest that the cellular microfilaments may be involved in the regulation of gonadotropin-induced steroidogenesis. In contrast, microtubules appear to be not directly involved in this process.  相似文献   

10.
Cytochalasins have been used extensively to probe the role of F-actin in different aspects of cellular function. Most of the data obtained are interpreted on the basis of the well-established depolymerizing effects of cytochalasins on F-actin preparations in vitro. However, some evidence indicates that, in intact cells, different cytochalasins can have varying effects on cell morphology and F-actin content and organization. To examine this problem in more detail, we analyzed the effects of cytochalasins on the cell morphology of and F-actin content and organization in Ehrlich ascites tumor (EAT) cells. After a 3-min exposure to 0.5 microM cytochalasin D, B, or E, F-actin content was equally reduced in all cases and this correlated with a reduction in the amount of cortical F-actin associated with the EAT cell membrane. However, only with CE was cell morphology markedly altered, with the appearance of numerous blebs. At 10 microM, blebbing was present in all conditions and the organization of cortical F-actin was disrupted. F-actin content, however, was not further reduced by this higher concentration and in CD it was identical to control levels. Exposure of EAT cells to similar concentrations of cheatoglobosin C, an analog of the cytochalasins that has little to no affinity for F-actin, resulted in a loss of F-actin content, a reduction in F-actin fluorescence, but no change in cell morphology, including a complete lack of bleb formation. Myosin II immunoreactivity, concentrated in the cortical cytoplasm colocalized with F-actin and in an area associated with the Golgi, was reduced by the high-dose cytochalasin. These results demonstrate that caution must be exercised in the use of cytochalasins to probe the role of F-actin in cellular function and that several parameters must be analyzed to obtain an accurate assessment of the effect of cytochalasin on the actin filament system.  相似文献   

11.
The dose-related inhibition by colchicine of both lysosomal enzyme release and microtubule assembly was studied in human polymorphonuclear leukocytes (PMN) exposed to the nonphagocytic stimulus, zymosan-treated serum (ZTS). Cells were pretreated with colchicine (60 min, 37 degrees C) with or without cytochalasin B (5 microng/ml, 10 min) and then stimulated with ZTS (10%). Microtubule numbers in both cytochalasin B- treated and untreated PMN were increased by stimulation and depressed below resting levels in a dose-response fashion by colchicine concentrations above 10(-7) M. These concentrations also inhibited enzyme release in a dose-response fashion although the inhibition of microtubule assembly was proportionately greater than the inhibition of enzyme release. Other aspects of PMN morphology were affected by colchicine. Cytochalasin B-treated PMN were rounded, and in thin sections the retracted plasma membrane appeared as invaginations oriented toward centrally located centrioles. Membrane invaginations were restricted to the cell periphery in cells treated with inhibitory concentrations of colchicine, and the centrioles and Golgi apparatus were displaced from their usual position. After stimulation and subsequent degranulation, the size and number of membrane invaginations greatly increased. They remained peripheral in cells pretreated with greater than 10(-7) M colchicine but were numerous in the pericentriolar region in cells treated with less than 10(-7) M. Similarly, untreated PMN that were permitted to phagocytose immune precipitates had many phagosomes adjacent to the centriole. After colchicine treatment, phagosomes were distributed randomly, without any preferential association with the centrioles. These data suggest that microtubules are involved in maintaining the internal organization of cells and the topologic relationships between organelles and the plasma membrane.  相似文献   

12.
The ability of cytochalasin to influence the stimulation of murine B lymphocytes through surface immunoglobulin was assessed during short term cultures. Modest doses of anti-immunoglobulin alone did not stimulate proliferation of mouse spleen cells at 2 days. Cytochalasin B alone also had no effect. However, anti-immunoglobulin in combination with cytochalasin B stimulated substantial proliferation as judged by [3H]thymidine incorporation. Cytochalasins A, E, and D, and dihydrocytochalasin B were all effective in promoting B cell proliferation. Spleen cells from xid-defective (CBA/N X DBA/2)F1 male mice failed to proliferate in response to anti-immunoglobulin plus cytochalasin, suggesting that this treatment affects the same subset of B cells as anti-immunoglobulin plus B cell growth factor. Moreover, proliferation that was stimulated by anti-immunoglobulin plus cytochalasin B was not affected by T cell depletion. Cytochalasin may circumvent the need for, or replace, a second signal for proliferation.  相似文献   

13.
Numerous forms of cytochalasins have been identified and, although they share common biological activity, they may differ considerably in potency. We investigated the effects of cytochalasins A, B, C, D, E, H and J and dihydrocytochalasin B in an ideal experimental system for cell motility, the giant internodal cells of the characean alga Nitella pseudoflabellata. Cytochalasins D (60 microM) and H (30 microM) were found to be most suited for fast and reversible inhibition of actin-based motility, while cytochalasins A and E arrested streaming at lower concentrations but irreversibly. We observed no clear correlation between the ability of cytochalasins to inhibit motility and the actual disruption of the subcortical actin bundle tracks on which myosin-dependent motility occurs. Indeed, the actin bundles remained intact at the time of streaming cessation and disassembled only after one to several days' treatment. Even when applied at concentrations lower than that required to inhibit cytoplasmic streaming, all of the cytochalasins induced reorganization of the more labile cortical actin filaments into actin patches, swirling clusters or short rods. Latrunculins A and B arrested streaming only after disrupting the subcortical actin bundles, a process requiring relatively high concentrations (200 microM) and very long treatment periods of >1 d. Latrunculins, however, worked synergistically with cytochalasins. A 1 h treatment with 15 nM latrunculin A and 4 microM cytochalasin D induced reversible fragmentation of subcortical actin bundles and arrested cytoplasmic streaming. Our findings provide insights into the mechanisms by which cytochalasins and latrunculins interfere with characean actin to inhibit motility.  相似文献   

14.
The effect of cytochalasin A and B, colchicine and vinblastine on tumor cell killing by macrophages activated in vitro with lymphocyte mediators was examined. Both cytochalasins reversibly inhibited the killing of tumor cells by activated macrophages. Kinetic studies with cytochalasin B suggested that this drug exerts its effect on an early step of the cytotoxic process. Additional studies revealed that the drug inhibited the binding of tumor cells by activated macrophages.Colchicine inhibited both the binding and the killing of tumor cells by activated macrophages, whereas its structural analogue, lumicolchicine, had no effect on either macrophage function.Vinblastine also inhibited the binding and killing of tumor cells. However, this drug no longer inhibited tumor cell binding at low concentrations (<10?6M) that still inhibited tumor cell killing. Further, vinblastine inhibited tumor cell killing when added late to an ongoing cytolytic reaction.These results suggest that the cytochalasins, colchicine and vinblastine inhibit macrophage mediated cytotoxicity by preventing intimate contact between the effector macrophages and their targets. In addition, vinblastine also appears to inhibit a later step of the cytolytic process, possibly the secretion of a cytotoxic macrophage product.  相似文献   

15.
The participation of both microtubules and microfilaments in granulosa cell steroidogenesis was assessed by monitoring the effects of colchicine (0-250 microM) and/or cytochalasin B (0-10 micrograms/ml) or dihydrocytochalasin B (0-2.0 micrograms/ml) on cellular morphology and production of progestins during 24 h of culture. Both colchicine and the cytochalasins increased granulosa cell production of progesterone and of 20 alpha-hydroxy-pregn-4-en-3-one (20 alpha-OH-progesterone) in a dose-dependent manner. The largest increase in steroidogenesis (about 2- to 3-fold) was observed at 4-250 microM colchicine and at 2-10 micrograms/ml cytochalasin. Those concentrations of the inhibitors of microtubule or microfilament polymerization that stimulated basal progestin production also markedly influenced cell spreading. Whereas cells cultured for 24 h in medium alone became very flattened with numerous cytoplasmic extensions, those cultured with colchicine (0.2-250 microM) or cytochalasin (0.4-2 micrograms/ml) were much less spread and progressively became more rounded and regular in outline. These changes in cell morphology were reflected by decreases in the mean area occupied by the cells on the culture surface of up to 60-65% and reductions in mean contour index values from 5.7 +/- 0.1 (control) to 3.9 +/- 0.1 (250 microM colchicine), 4.2 +/- 0.1 (2 micrograms/ml cytochalasin B), or 4.1 +/- 0.1 (2 micrograms/ml dihydrocytochalasin B). Cultures containing both colchicine and cytochalasin B exhibited a greater steroidogenic response than that elicited by either inhibitor alone. For example, granulosa cell progesterone production was stimulated almost 2-fold by 4 microM colchicine or 2 microM/ml cytochalasin B, but 5.5-fold by 4 microM colchicine plus 2 micrograms/ml cytochalasin B.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
To compare the effects of cytochalasins on the cellular level with those on the molecular level, 24 cytochalasins, 20 natural compounds and 4 derivatives, were used. The following effects were tested for each of 24 cytochalasins; (a) four high dose (2-20 muM) effects on the cellular level: rounding up of fibroblastic cells, contraction of actin cables, formation of hairy filaments containing actin, and inhibition of lymphocyte capping; (b) a low dose (0.2-2 muM) effect: inhibition of membrane ruffling; and (c) two in vitro effects: an inhibition of actin filament elongation (the high affinity effect [low dose effect] in vitro) and an effect on viscosity of actin filaments(the low affinity effect [high dose effect] in vitro). These results indicated that there are almost the same hierarchic orders of relative effectiveness of different cytochalasins between low and high dose effects and between cellular and molecular effects. From the data obtained with the 24 cytochalasins, we have calculated correlation coefficients of 0.87 and 0.79 between an effect in vivo, inhibition of capping, and an effect in vitro, inhibition of actin filament elongation, as well as between inhibition of capping and another effect in vitro, effect on viscosity of actin filaments, respectively. Furthermore, a correlation coefficient between the high affinity effect and the low affinity effect determined in vitro was calculated to be 0.90 from the data obtained in this study. The strong positive correlation among low and high dose effects in vivo and those in vitro suggests that most of the effects caused by a cytochalasin, irrespective of doses or affected phenomena, might be attributed to the interaction between the drug and the common target protein, actin. In the course of the immunofluorescence microscope study on cytochalasin-treated cells using actin antibody, we have found that aspochalasin D, a 10-isopropylcytochalasin, strongly induced the formation of rodlets containing actin in the cytoplasm of the treated fibroblasts. In contrast, the other cytochalasins, including cytochalasin B, cytochalasin C, cytochalasin D, and cytochalasin H, were found to induce the formation of nuclear rodlets. Both cytoplasmic and nuclear rodlets found in the cytochalasin-treated cells were similar in ultrastructures to those induced by 5 to 10 percent (vol/vol) dimethyl sulfoxide in the same type of cells.  相似文献   

17.
Disruption of filamentous actin inhibits human macrophage fusion.   总被引:5,自引:0,他引:5  
The foreign body reaction to implanted biomaterials, characterized by the presence of macrophages and foreign body giant cells (FBGC), can result in structural and functional failure of the implant. Recently, we have shown that interleukin-4 and interleukin-13 can independently induce human macrophage fusion to form FBGC via a macrophage mannose receptor (MR) -mediated pathway. The MR is believed to mediate both endocytosis of glycoproteins and phagocytosis of microorganisms, which bear terminal mannose, fucose, N-acetylglucosamine, or glucose residues. Polarization of microfilaments to closely apposed macrophage membranes as observed with fluorescence confocal microscopy led us to ask whether MR-mediated fusion occurred via a filamentous actin-dependent pathway. Cytochalasins B and D and latrunculin-A, agents that disrupt microfilaments, inhibited macrophage fusion in a concentration-dependent manner. The concentrations of cytochalasins D and B that inhibited fusion did not significantly decrease macrophage adhesion, spreading, or motility but did inhibit internalization of Candida albicans during interleukin-13-enhanced, MR-mediated phagocytosis. Very low concentrations of cytochalasin B (< 2 microM) induced a slight enhancement of macrophage fusion. Taken together, the results of this study suggest that cytokine-induced, MR-mediated macrophage fusion requires an intact F-actin cytoskeleton and that the mechanism of fusion is similar to phagocytosis.--DeFife, K. M., Jenney, C. R., Colton, E., Anderson, J. M. Disruption of filamentous actin inhibits human macrophage fusion.  相似文献   

18.
One hundred isolates of 27 species belonging to 13 genera of dematiaceous hyphomycetes were screened for production of cytochalasins C, D and E. Only two isolates ofBipolaris neergaardii and one isolate ofPhoma herbarum produced cytochalasins C and D. Also, cytochalasin E was produced by two isolates ofAlternaria chlamydospora, and one isolate ofCochliobolus tuberculatus. This is the first report about the production of cytochalasins C, D and E by these species of dematiaceous hyphomycetes.  相似文献   

19.
Differences in cell morphology, concanavalin A-induced receptor redistributions, and the cooperativity of the inhibition of 5'-nucleotidase (AMPase) by concanavalin A (Con A) have been investigated in ascites sublines of the 13762 rat mammary adenocarcinoma cells treated with microfilament- and microtubule-perturbing drugs. By scanning electron microscopy MAT-C1 cells exhibit a highly irregular surface, covered with microvilli extending as branched structures from the cell body. MAT-A, MAT-B, and MAT-B1 cells have a more normal appearance, with unbranched microvilli, ruffles, ridges, and blebs associated closely with the cell body. MAT-C cells have an intermediate morphology. Treatment of MAT-A, MAT-B, or MAT-B1 cells with Con A causes rapid redistribution of Con A receptors. Both cytochalasins and colchicine cause alternations in the receptor redistributions. Receptors on MAT-C1 cells are highly resistant to redistribution, even in the presence of cytoskeletal perturbant drugs. The cooperativity of the inhibition of AMPase by Con A was investigated in MAT-A and MAT-C1 cells. Untreated cells exhibit no cooperativity. If either subline is treated with colchicine, cytochalasin B or D, or dibucaine, cooperativity is observed. Lumicolchicine has no effect. Theophylline or dibutyryl cyclic AMP prevents the effects of either colchicine or cytochalasin. The concentration required for half-maximal induction of cooperativity is 0.3--0.4 microM for both colchicine and cytochalasin D, which is in the appropriate range for specific microtubule and microfilament disruptions. The effectiveness of the cytochalasins (E greater than D greater than B) is consistent with their known effects on microfilaments. No direct correlation was observed between the induction of cooperativity and drug-induced changes in Con A receptor redistribution or cell morphology. The morphology of MAT-A cells is grossly altered by cytochalasins or dibucaine and somewhat less by colchicine. MAT-C1 cells exhibit more minor alterations in morphology as a result of these drug treatments. The results of this study indicate that the inhibition of AMPase, which is a Con A receptor, is a different process from the redistribution of the bulk of the Con A receptors, possibly short range membrane interactions rather than global effects on the cell.  相似文献   

20.
Cytochalasins are a group of fungal secondary metabolites with diverse structures and bioactivities, including cytochalasin E produced by Aspergillus clavatus, which is a potent anti-angiogenic agent. Here, we report the identification and characterization of the cytochalasin gene cluster from A. clavatus NRRL 1. As a producer of cytochalasin E and K, the genome of A. clavatus was analyzed and the ∼30 kb ccs gene cluster was identified based on the presence of a polyketide synthase–nonribosomal peptide synthetases (PKS–NRPS) and a putative Baeyer–Villiger monooxygenase (BVMO). Deletion of the central PKS–NRPS gene, ccsA, abolished the production of cytochalasin E and K, confirming the association between the natural products and the gene cluster. Based on bioinformatic analysis, a putative biosynthetic pathway is proposed. Furthermore, overexpression of the pathway specific regulator ccsR elevated the titer of cytochalasin E from 25 mg/L to 175 mg/L. Our results not only shed light on the biosynthesis of cytochalasins, but also provided genetic tools for increasing and engineering the production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号