首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Summary A cultivation system is described for cultivatingStreptococcus lactis in continuous culture with complete cell recycle. The aim was to obtain high cell densities for the production of su-peroxide dismutase (SOD) while avoiding the growth inhibiting effects of the lactic acid produced. This type of cultivation was performed both at constant and at increasing dilution rates. Comparisons made include those between cell mass productivity and SOD productivity in recycling cultivations and batch cultivations. In the recycling cultivation at increasing dilution rates a cell mass of 19 g/1 was obtained after 22 h of cultivation and the SOD productivity was 43.103 U/1.h which is four times higher than for batch cultivations. The effect of recyclingS. lactis was also considered and no damage of the microorganisms was observed.  相似文献   

2.
A 30-l hollow fibre reactor with continuous fermentation for cell recycling of Escherichia coli AS 1.183 was used to remove the inhibitory effects on cell growth and extend the fast growth phase to increase the yield of polynucleotide phosphorylase (PNPase) in E. coli cells. When the dilution rate was 1.5 h−1, the cell concentration of E. coli reached 235 g/l (wet wt, 70% moisture content), with PNPase activity above 90 u/g (wet wt). With the dilution rate is 1.0 h−1, the fermentor volumetric productivity of PNPase in a hollow fiber reactor can reach 974 (u/h * l) compared to 20 (u/h * l) in a conventional batch culture.  相似文献   

3.
The lactic acid bacteriumLactobacillus casei ssprhamnosus was cultivated in a system with complete cell recycling in order to obtain information on how this cultivation technique affected the microorganisms. Cultivations at two different glucose concentrations (25 g/L and 50 g/L) were performed. Hollow fiber filters were used for separating the cells from the spent broth. The cell recycling was carried out for 128–135 h. Samples were taken three to four times daily for analysis ofd- andl-lactate, glucose concentration, and cell mass. Protein patterns were studied with two-dimensional electrophoresis. A change in the protein pattern was observed. Dry weight of cell mass of 86 g/L was obtained when cultivated on 50 g glucose/L, which was approximately 15 times more than in the batch culture. The percentage ofd-lactate of the total lactate increased with time; when cultivated on 25 g glucose/L, it increased from 3% to 13%. No racemase was detected by the methods used. The data collected from these two recycling experiments show that this is an efficient way to obtain high cell densities, but that the method can affect the product formation pattern of the microorganism.  相似文献   

4.
The performance of a bioreactor with a microfiltration module for the production of an intracellular enzyme, superoxide dismutase (SOD), by Streptococcus lactis is described. The fermentation system involving the bioreactor enables the continuous removal of metabolites inhibitory for cell growth and the complete recycling of the cells to the bioreactor. In a fed-batch (FB) culture with filtration, in which the main metabolite, lactic acid, in the culture broth was maintained at a low concentration, S. lactis was cultivated to the high concentration of 15.5 g-dry cells/1. The SOD content of the cells remained at almost a constant level throughout the cultivation and the productivity of SOD as well as cells per unit time was 4.3-fold as high as that in the case of a conventional batch culture without filtration. Repeating the FB culture with filtration enhanced the productivities of SOD and cells further, as compared with those in the case of the FB culture with filtration.  相似文献   

5.
Lovastatin, a hypocholesterolemic agent, is a secondary metabolite produced by filamentous microorganism Aspergillus terreus in submerged batch cultivation. Lovastatin production by pellets and immobilized siran cells was investigated in an airlift reactor. The process was carried out by submerged cultivation in continuous mode with the objective of increasing productivity using pellet and siran supported growth of A terreus. The continuous mode of fermentation improves the rate of lovastatin production. The effect of dilution rate and aeration rate were studied in continuous culture. The optimum dilution rate for pellet was 0.02 h−1 and for siran carrier was 0.025 h−1. Lovastatin productivity using immobilized siran carrier (0.0255 g/L/h) was found to be greater than pellets (0.022 g/L/h). The productivity by both modes of fermentation was found higher than that of batch process which suggests that continuous cultivation is a promising strategy for lovastatin production.  相似文献   

6.
Aims: Kluyveromyces lactis was cultured in cheese whey permeate on both batch and continuous mode to investigate the effect of time course and growth rate on β‐galactosidase activity, lactose consumption, ethanol production and protein profiles of the cells. Methods and Results: Cheese whey was the substrate to grow K. lactis as a batch or continuous culture. In order to precise the specific growth rate for maximum β‐galactosidase activity a continuous culture was performed at five dilution (growth) rates ranging from 0·06, 0·09, 0·12, 0·18 to 0·24 h?1. The kinetics of lactose consumption and ethanol production were also evaluated. On both batch and continuous culture a respirofermentative metabolism was detected. The growth stage for maximum β‐gal activity was found to be at the transition between late exponential and entrance of stationary growth phase of batch cultures. Fractionating that transition stage in several growth rates at continuous culture a maximum β‐galactosidase activity at 0·24 h?1 was observed. Following that stage β‐gal activity undergoes a decline which does not correlate to the density of its corresponding protein band on the gel prepared from the same samples. Conclusion: The maximum β‐galactosidase activity per unit of cell mass was found to be 341·18 mmol ONP min?1 g?1 at a dilution rate of 0·24 h?1. Significance and Impact of the Study: The physiology of K. lactis growing in cheese whey permeate can proven useful to optimize the conversion of that substrate in biomass rich in β‐gal or in ethanol fuel. In addition to increasing the native enzyme the conditions established here can be set to increase yields of recombinant protein production based on the LAC4 promoter in K. lactis host.  相似文献   

7.
Summary In cooperation with the company Copersucar (Brazil), several variants of a fermentation system for the continuous production of butanol and acetone from high-test or invert molasses were developed. These fermentation systems involve a relatively economic batch fermentation requiring little investment, using a continuous culture as the inoculation culture, as well as a modern two-stage continuous culture with cell recycling. For example, 13.3 g·1–1 of solvent (acetone and butanol) are produced with a productivity of 3.3 g·1–1 ·h–1 by two-stage continuous molasses fermentation with cell recycling in the second stage. High-test molasses is converted completely into the products. Butanol and acetone production from molasses is economic in Brazil and the construction of a production plant is planned.Offprint requests to: A. S. Afschar  相似文献   

8.
The objectives of these studies were to determine cell yield and fermentation responses of a Salmonella enterica serovar Typhimurium poultry isolate using various dilution rates in steady state continuous culture incubations. S. enterica Typhimurium cells were propagated in continuous cultures with a total volume of 0.50 l of Luria Bertani medium containing 0.1% glucose. Dilution rates from 0.0125 to 1.44/h were used. Cell protein concentration generally increased linearly with increased dilution rate up to a rate of 0.54/h and declined at the higher dilution rates. Glucose consumption gave a similar pattern to cell protein concentration by declining at the three highest dilution rates. Short chain fatty acid production was inconsistently influenced by dilution rate. Acetate, the most predominant fatty acid produced, declined at the higher dilution rates, as did propionate. Ammonia production remained stable at the lowest dilution rates, but increased significantly at a dilution rates above 0.27/h.  相似文献   

9.
The growth behaviour of the thermophilic anaerobic bacterium Thermoanaerobium brockii for the production of its intracellular secondary alcohol dehydrogenase (sADH) has been studied in batch cultures as well as in continuous cultivation with complete cell recycling. In batch culture the maximum specific growth rate, μMAX, was 0·5 h−1, resulting in a cell density of 1·2 g l−1 and an sADH activity of 1·3 units ml−1. Higher glucose concentrations resulted in a decrease in ep cf7 max rs, enzyme productivity as well as biomass yield although an increase in total biomass was achieved. To improve cell density and productivity, continuous culture with complete cell recycling was used, resulting in an increase in cell density by 5 times and in productivity of the sADH by 3 times in comparison to those obtained in batch culture.  相似文献   

10.
Aims: The objective of this study was to examine the effect of dilution rates (Ds, varying from 0·05 to 0·42 h?1) in glucose‐limited continuous culture on cell yield, cell composition, fermentation pattern and ammonia assimilation enzymes of Selenomonas ruminantium strain D. Methods and Results: All glucose‐limited continuous culture experiments were conducted under anaerobic conditions. Except for protein, all cell constituents including carbohydrates, RNA and DNA yielded significant cubic responses to Ds with the highest values at Ds of either 0·10 or 0·20 h?1. At Ds higher than 0·2 h?1, fermentation acid pattern shifted primarily from propionate and acetate to lactate production. Succinate also accumulated at the higher Ds (0·30 and 0·42 h?1). Glucose was most efficiently utilized by S. ruminantium D at 0·20 h?1 after which decreases in glucose and ATP yields were observed. Under energy limiting conditions, glutamine synthetase (GS) and glutamate dehydrogenase (GDH) appeared to be the major enzymes involved in nitrogen assimilation suggesting that other potential ammonia incorporating enzymes were of little importance in ammonia assimilation in S. ruminantium D. GS exhibited lower activities than GDH at all Ds, which indicates that the bacterial growth rate is not a primary regulator of their activities. Conclusions: Studied dilution rates influenced cell composition, fermentation pattern and nitrogen assimilation of S. ruminantium strain D grown in glucose‐limited continuous culture. Significance and Impact of the Study: Selenomonas ruminantium D is an ecologically and evolutionary important bacterium in ruminants and is present under most rumen dietary conditions. Characterizing the growth physiology and ammonia assimilation enzymes of S. ruminantium D during glucose limitation at Ds, which simulate the liquid turnover rates in rumen, will provide a better understanding of how this micro‐organism responds to differing growth conditions.  相似文献   

11.
Clostridium thermocellum is an anaerobic thermophilic bacterium that produces enthanol from cellulosic substrates. When the organism was grown in continuous culture at dilution rates ranging from 0.04 to 0.25 h-1, growth yields on cellobiose were higher than on glucose, and even higher yields were observed on cellotetraose. However, differences in bacterial yield were much greater at slow growth rates, and it appeared that glucose-grown cells had a fourfold higher (0.41 g substrate/g protein/h) maintenance energy requirement than cellobiose-grown cultures. Cellobiose and glucose were co-utilized in dual substrate continuous culture, and this was in contrast to batch culture experiments which indicated that the organism preferred the disaccharide. These experiments demonstrate that carbohydrate utilization patterns in continuous culture are different from those in batch culture and that submaximal growth rates affect substrate preference and bioenergetic parameters. The mechanisms regulating carbohydrate use may be different in batch versus continuous culture.Published with the approval of the Director of the Kentucky Agricultural Experiment Station as journal article no. 95-07-064.  相似文献   

12.
Lipid and docosahexaenoic acid (DHA) accumulation into Schizochytrium G13/2S was studied under batch and continuous culture. Different glucose and glutamate concentrations were supplemented in a defined medium. During batch cultivation, lipid accumulation, 35% total fatty acids (TFA) occurred at the arithmetic growth phase but ceased when cell growth stopped. When continuous culture was performed under different glutamate concentrations, nitrogen-growth-limiting conditions induced the accumulation of 30–28% TFA in Schizochytrium. As the dilution rate decreased from 0.08 to 0.02 h−1, both cell dry weight and TFA content of the cell increased. Under a constant dilution rate of 0.04 h−1, carbon-limiting conditions decreased the TFA to 22%. Fatty acid profile was not affected by the different nutrient concentrations provided during continuous culture. Consequently, lipid accumulation can be induced through the carbon and nitrogen source concentration in the medium to maximise the TFA and subsequently DHA productivity by this microorganism.  相似文献   

13.
Glucose-limited bean cells (Phaseolus vulgaris L.) were grown in a modified bacterial fermentor at a constant pH of 4.8. The cultures were kept in steady state at different specific growth rates varying from 0.00216 h–1 to 0.0106 h–1. Culture conditions are described that are needed to start a continuous culture. First, it was essential to use log-phase cells as starting material. Second, it was important to increase the dilution rate gradually, otherwise cells in the culture aggregated. Cells grown at the highest dilution rate employed contained twice as much protein per gram dry weight as cells grown at the lowest dilution rate. The composition of the cell walls also varied with the dilution rate in contrast to their relatively constant composition when grown in batch culture.  相似文献   

14.
Overproduction of proteinase A by recombinantSaccharomyces cerevisiae was investigated by cultivations in a cell-recycling bioreactor. Memebrane filtration was used to separate cells from the broth. Recycling ratios and dilution rates were varied and the effect on enzyme production was studied both experimentally and by computer simulations. Experiments and simulations showed that cell mass and product concentration were enhanced by high ratios of recycling. Additional simulations showed that the proteinase A concentration decreased drastically at high dilution rates and the optimal volumetric productivities were at high dilution rates just below washout and at high ratios of recycling. Cell-recycling fermentation gave much higher volumetric productivities and stable product concentrations in contrast to simple continuous fermentation.  相似文献   

15.
Production of gramicidin S in batch and continuous culture   总被引:2,自引:0,他引:2  
A mathematical model for the production of gramicidin S in batch and continuous culture is proposed. It is based on the division of the age of a cell into two phases—an immature and a mature one. A nongrowth associated product, such as an antibiotic, is assumed to be produced when the organism is in the older of these two phases, the mature state. The parameters describing the model were evaluated from batch and single stage transient continuous culture of Bacillus brevis, which produces the antibiotic gramicidin S. The predictive value of the model was studied in steady-state single stage continuous culture and in a transient two stage system. Good agreement between the theoretical curves and the experimental results was found in the transient response of both the first and second stage systems, although at high dilution rates (0.34 hr?1) in the first stage, deviations from the predicted response were observed in the second stage. These may have been due to chemostat instability at dilution rates close to washout, lags in cell growth, and a metabolic lag on going from stage one to stage two.  相似文献   

16.
A Tubular Liquid Film Reactor was designed as a model system to transfer a batch culture kinetic to a continuous cascade. Cell density, product formation and substrate consumption rates were followed during fermentation at two dilution rates. In spite of the high dilution rates effective in each segment by itself high cell densities of up to 107 cells/ml were achieved due to cell sedimentation. The model character of the reactor was taken to determine critical values of substrate concentrations that influence production rates and result in an adaptation of metabolism.Abbreviations TLFR tubular liquid film reactor  相似文献   

17.
A selection of mouse hybridoma cell lines showed a variation of approximately two orders of magnitude in intracellular monoclonal antibody contents. The different levels directly influenced apparent specific monoclonal antibody productivity during the death phase but not during the growth phase of a batch culture. The pattern of changes in specific productivity during culture remained basically similar even though at different levels for all cell lines tested. Arresting the cells in the G1 phase using thymidine increased the specific productivity, cell volume and intracellular antibody content but at the same time led to decreased viability. In continuous culture DNA synthesis decreased with decreasing dilution rate though without an accompanying change in cell cycle and cell size distributions. The data shows both the decrease in viability and intracellular antibody content to be important factors which influence the negative association between specific antibody productivity and growth rate. In high cell density perfusion culture, when the cell cycle was prolonged by slow growth, viability was low and dead, but not lysed, cells were retained in the system, the specific antibody productivity was nearly two fold higher than that obtained in either batch or continuous cultures. The results imply that the prolongation of G1 phase and the increase in death rate of cells storing a large amount of antibody together cause an apparent increase in specific antibody productivity.  相似文献   

18.
Escherichia coli JM103[pUC8] was employed as a model to investigate the behavior of a recombinant microbial system harboring a plasmid at high copy numbers. Experiments with batch and continuous cultures of recombinant and plasmid-free cells were conducted in a well-controlled bio-reactor. In batch experiments, plasmid copy number varied typically from an average of 500 during the exponential growth phase to as high as 1250 during the stationary phase. While the segregational plasmid instability was negligible in batch experiments, severe segregational instability occurred in continuous experiments conducted over a range of dilution rates, resulting in complete loss of plasmid-bearing cells from the continuous cultures within few residence times after transition to continuous operation. The profound differences in the specific growth rates and mass yields of the plasmid-free and plasmid-bearing cells resulting from the extra metabolic burden on the plasmid-bearing cells mainly due to excessive plasmid DNA content was the major cause for the plasmid instability. Plasmid multirnerization was detected in batch and continuous cultures and was found to have significant influence on the effective copy number and was partially responsible for the severe segregational instability in continuous cultures. A quasi-steady state representative of plasmid-bearing cells was established in the initial portion of each continuous culture experiment. Due to the profound growth rate differential between the two types of cells, transients of considerable duration were observed in each continuous culture experiment (initiated with a pure culture of plasmid bearing cells) following the slow accumulation of plasmid-free cells near the end of the quasi-steady state. Significant variations in various culture parameters (including a rapid decline in the plasmid-bearing fraction of the total cell population) occurred during this period, leading ultimately to a steady state for a culture dominated entirely by plasmid-free cells. In continuous cultures, plasmid copy number during the quasi-steady states increased with decreasing dilution rate from 50 (at 0.409 h(-1)) to 941 (at 0.233 h(-1)). Production of the plasmid-encoded protein (beta-lactamase) in these experiments was maximized at an intermediate dilution rate, corresponding to an optimum copy number of about 450. A similar optimum copy number was observed in batch cultures. Significant excretion of beta-lactamase was observed at both low and high dilution rates.  相似文献   

19.
Summary A strain of the imperfect fungus Geotrichum candidum was selected for its ability to utilize the low-pH, high biochemical oxygen demand (BOD) waste generated by an Irish malt whiskey distillery. Growth of the organism on this complex medium, in both batch and continuous culture, showed a sequential assimilation of the major components with the most complete carbon assimilation (63.7%) being achieved in batch culture. Optimum temperature for the continuous culture of the organism was found to be 22°C; at this temperature and at a dilution rate of 0.125 h–1 a productivity of 2.24 g l–1 h–1 was obtained. Variations in organism morphology, produced by varying growth rate and nutritional or environmental factors, as well as the potential of the process for the production of single cell protein from carbohydrate-rich waste are discussed.  相似文献   

20.
Flow cytometry has been used to study the contents of macromolecular compounds and light-scatter parameters in batch and continuous cultures of a recombinant Escherichia coli strain that forms protein inclusion bodies. Changes in relative DNA and RNA contents and cell mass as estimated by forward-angle light scatter were detected and tightly correlated in batch culture. In addition, heterogeneity of wide-angle light scatter (WALS), which we related to the presence of cellular inclusion bodies, was observed. In contrast, the relative RNA content and cell mass did not change during continuous culture, and homogeneity of WALS was found. In addition, unexpected changes in relative DNA content were observed after 67 h of culture, indicating a change in bacterial physiology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号