首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
After a meal, the proximal stomach relaxes probably through the activation of nitrergic neurons in the gastric wall. Nitric oxide-induced smooth muscle relaxation involves activation of soluble guanylate cyclase, with cGMP production, which is then degradated by phosphodiesterase-5 (PDE-5). The aim of this study was to investigate the effect of sildenafil, a selective PDE-5 inhibitor, on fasting and postprandial proximal gastric volume and on gastric emptying rates in humans. A gastric barostat was used to study gastric compliance and perception to isobaric distension in healthy subjects before and after placebo (n = 13) or sildenafil, 50 mg (n = 15). In 10 healthy subjects, two gastric barostat studies were performed in randomized order to study the effect of placebo or sildenafil on postprandial gastric relaxation. Similarly, solid and liquid gastric emptying rates were studied in 12 healthy subjects. Sildenafil significantly increased fasting intragastric volume (141 +/- 15 vs. 163 +/- 15 ml, P < 0.05) and volumes of first perception. Sildenafil induced a higher and prolonged gastric relaxation either at 30 min (357 +/- 38 vs. 253 +/- 42 ml, P < 0.05) or 60 min (348 +/- 49 vs. 247 +/- 38 ml, P < 0.05) after the meal. Sildenafil did not alter solid half-emptying time but significantly delayed liquid emptying (43 +/- 4 vs. 56 +/- 4 min, P < 0.01). In conclusion, sildenafil significantly increases postprandial gastric volume and slows liquid emptying rate, confirming that meal-induced accommodation in humans involves the activation of a nitrergic pathway. The effect of sildenafil on gastric fundus suggests a therapeutic potential for phosphodiesterase inhibitors in patients with impaired gastric accommodation.  相似文献   

2.
To clarify the role of GIP (gastric inhibitory polypeptide) as an incretin, we related temporally the gastric emptying of fat, protein and glucose to plasma levels of glucose, GIP and insulin in man. Five healthy volunteers with a multiple lumen duodenal tube ingested a mixed meal with phase-specific markers for the aqueous phase, liquid fat and the solid protein phase. Duodenal passage was determined by intraduodenal infusion of a second set of phase-specific non-absorbable markers. Plasma insulin rose rapidly from a basal value of 59 pM to 300 pM at 60 min, and then declined to reach basal levels after 180 min. By contrast, plasma GIP rose more slowly than insulin, from a basal value of 9.4 pM, and remained elevated, in the range of 14-18 pM, throughout the 240 min observation period. The time course of plasma insulin concentration paralleled gastric emptying of the aqueous phase, containing most of the meal's glucose (r = 0.952, P less than 0.001). The time course of plasma GIP concentrations paralleled the gastric emptying of fat and protein (r = 0.763-0.834; P less than 0.01-0.05). Plasma insulin concentrations showed no correlation to the rate of emptying of fat and protein (r = 0.142-0.420; n.s.) and to plasma levels of GIP (r = 0.365; n.s.). The threshold for plasma glucose at which GIP would exert an incretin effect only reached at one time point, 30 min after ingestion of the meal. Our findings of simultaneously tracked gastric emptying of meal nutrients, hormone release and plasma glucose levels do not support an important physiological role for GIP as an insulinotropic hormone after ingestion of mixed meals in man.  相似文献   

3.
To understand the day-to-day pathophysiology of impaired muscle glycogen storage in type 2 diabetes, glycogen concentrations were measured before and after the consumption of sequential mixed meals (breakfast: 190.5 g carbohydrate, 41.0 g fat, 28.8 g protein, 1253 kcal; lunch: 203.3 g carbohydrate, 48.1 g fat, 44.0 g protein, 1497.5 kcal) by use of natural abundance (13)C magnetic resonance spectroscopy. Subjects with diet-controlled type 2 diabetes (n = 9) and age- and body mass index-matched nondiabetic controls (n = 9) were studied. Mean fasting gastrocnemius glycogen concentration was significantly lower in the diabetic group (57.1 +/- 3.6 vs. 68.9 +/- 4.1 mmol/l; P < 0.05). After the first meal, mean glycogen concentration in the control group rose significantly from basal (97.1 +/- 7.0 mmol/l at 240 min; P = 0.005). After the second meal, the high level of muscle glycogen concentration in the control group was maintained, with a further rise to 108.0 +/- 11.6 mmol/l by 480 min. In the diabetic group, the postprandial rise was markedly lower than that of the control group (65.9 +/- 5.2 mmol/l at 240 min, P < 0.005, and 70.8 +/- 6.7 mmol/l at 480 min, P = 0.01) despite considerably greater serum insulin levels (752.0 +/- 109.0 vs. 372.3 +/- 78.2 pmol/l at 300 min, P = 0.013). This was associated with a significantly greater postprandial hyperglycemia (10.8 +/- 1.3 vs. 5.3 +/- 0.2 mmol/l at 240 min, P < 0.005). Basal muscle glycogen concentration correlated inversely with fasting blood glucose (r = -0.55, P < 0.02) and fasting serum insulin (r = -0.57, P < 0.02). The increment in muscle glycogen correlated with initial increment in serum insulin only in the control group (r = 0.87, P < 0.002). This study quantitates for the first time the subnormal basal muscle glycogen concentration and the inadequate glycogen storage after meals in type 2 diabetes.  相似文献   

4.
Preprocessed fatty foods often contain calories added as a fat emulsion stabilized by emulsifiers. Emulsion stability in the acidic gastric environment can readily be manipulated by altering emulsifier chemistry. We tested the hypothesis that it would be possible to control gastric emptying, CCK release, and satiety by varying intragastric fat emulsion stability. Nine healthy volunteers received a test meal on two occasions, comprising a 500-ml 15% oil emulsion with 2.5% of one of two emulsifiers that produced emulsions that were either stable (meal A) or unstable (meal B) in the acid gastric environment. Gastric emptying and gallbladder volume changes were assessed by MRI. CCK plasma levels were measured and satiety scores were recorded. Meal B layered rapidly owing to fat emulsion breakdown. The gastric half-emptying time of the aqueous phase was faster for meal B (72 +/- 13 min) than for meal A (171 +/- 35 min, P < 0.008). Meal A released more CCK than meal B (integrated areas, respectively 1,095 +/- 244 and 531 +/- 111 pmol.min.l(-1), P < 0.02), induced a greater gallbladder contraction (P < 0.02), and decreased postprandial appetite (P < 0.05), although no significant differences were observed in fullness and hunger. We conclude that acid-stable emulsions delayed gastric emptying and increased postprandial CCK levels and gallbladder contraction, whereas acid-instability led to rapid layering of fat in the gastric lumen with accelerated gastric emptying, lower CCK levels, and reduced gallbladder contraction. Manipulation of the acid stability of fat emulsion added to preprocessed foods could maximize satiety signaling and, in turn, help to reduce overconsumption of calories.  相似文献   

5.
The relationship between the intragastric distribution, dilution, and emptying of meals and satiety was studied using noninvasive magnetic resonance imaging techniques in 12 healthy subjects with four polysaccharide test meals of varying viscosity and nutrient content as follows: 1) low-viscosity nonnutrient, 2) low-viscosity nutrient, 3) high-viscosity nonnutrient, and 4) high-viscosity nutrient. Increasing the nutrient content of the high-viscosity meal delayed gastric emptying from 46 +/- 9 to 76 +/- 6 min (P < 0.004), whereas increasing viscosity had a smaller effect. The volume of secretions within the stomach 60 min after ingestion was higher for the high-viscosity nutrient meal (P < 0.04). A simple model to calculate the total volume of secretion added to the test meal is presented. Color-coded dilution map images showed the heterogeneous process of progressive gastric dilution of high-viscosity meals, whereas low-viscosity meals were uniformly diluted. Fullness was found to be linearly related to total gastric volumes for the nutrient meals (R(2) = 0.98) and logarithmically related for the nonnutrient meals (R(2) = 0.96). Fullness was higher for high- compared with low-viscosity meals (P < 0.02), and with the nutrient meals this was associated with greater antral volumes (P < 0.05).  相似文献   

6.
Gastric emptying is a major determinant of glycemia, gastrointestinal hormone release, and appetite. We determined the effects of different intraduodenal glucose loads on glycemia, insulinemia, glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP) and cholecystokinin (CCK), antropyloroduodenal motility, and energy intake in healthy subjects. Blood glucose, plasma hormone, and antropyloroduodenal motor responses to 120-min intraduodenal infusions of glucose at 1) 1 ("G1"), 2) 2 ("G2"), and 3) 4 ("G4") kcal/min or of 4) saline ("control") were measured in 10 healthy males in double-blind, randomized fashion. Immediately after each infusion, energy intake at a buffet meal was quantified. Blood glucose rose in response to all glucose infusions (P < 0.05 vs. control), with the effect of G4 and G2 being greater than that of G1 (P < 0.05) but with no difference between G2 and G4. The rises in insulin, GLP-1, GIP, and CCK were related to the glucose load (r > 0.82, P < 0.05). All glucose infusions suppressed antral (P < 0.05), but only G4 decreased duodenal, pressure waves (P < 0.01), resulted in a sustained stimulation of basal pyloric pressure (P < 0.01), and decreased energy intake (P < 0.05). In conclusion, variations in duodenal glucose loads have differential effects on blood glucose, plasma insulin, GLP-1, GIP and CCK, antropyloroduodenal motility, and energy intake in healthy subjects. These observations have implications for strategies to minimize postprandial glycemic excursions in type 2 diabetes.  相似文献   

7.
The effects of macronutrients on gastric volume changes, emptying, and gastrointestinal symptoms are incompletely understood. Three liquid meals of 500 ml (fat emulsion, 375 kcal; protein solution, 375 kcal; glucose solution, 400 kcal) were infused into the stomach of 12 healthy volunteers on three occasions. Studies were performed in seated body position using an open-configuration magnetic resonance imaging (MRI) system. MRI imaging sequences, assessing stomach and meal volumes, were performed prior to and at times t = 0, 3, 6, 9, 12, 15, 25, 35, 45, 60, 75, and 90 min after meal administration. Areas under the curve for the early emptying phase (0-15 and 0-45 min) were calculated, and characteristics of the volume curves were analyzed by a gastric emptying model. Gastrointestinal symptoms were assessed by a self-report scale. Initial (t = 0 min) and early postprandial gastric volumes were highest for glucose because of lower initial emptying. However, in the early emptying phase the characteristics of the volume curves for stomach and meal were uniform for all macronutrients. Perceptions of fullness and satiety were linearly associated with postprandial gastric volumes, but not with macronutrient composition. Isovolumic macronutrient meals modulate gastric volume response by initial meal emptying patterns. Macronutrient specific accommodation responses, as shown in barostat studies, are not reflected as gastric volume responses under noninvasive conditions.  相似文献   

8.
To determine whether the metabolism of diet-derived triglycerides (TG) is acutely regulated by the consumption of insulinogenic carbohydrates, we measured the effects of glucose ingestion on oral and intravenous fat tolerance, and on serum triglyceride concentrations obtained during duodenal fat perfusion. Postprandial lipemia was diminished by the ingestion of 50 g (148 +/- 121 mg.dl-1 x 7 h-1 vs 192 +/- 124 mg.dl-1 x 7 h-1, P less than 0.05) and 100 g (104 +/- 106 mg.dl-1 x 7 h-1 vs 171 +/- 104 mg.dl-1 x 7 h-1, P less than 0.05) glucose. Peak postprandial TG concentrations occurred later after meals containing glucose and fat than after meals containing fat alone. This effect could be reproduced when an iso-osmotic quantity of urea was substituted for glucose in the test meal. Starch ingestion had no discernible effect on postprandial lipemia. Intravenous fat tolerance was similar before (4.9 +/- 1.2%.min-1) and 2 h (4.4 +/- 1.3%.min-1) and 4 h (4.8 +/- 1.5%.min-1) after 50 g glucose ingestion. During duodenal fat perfusion, glucose ingestion caused a progressive decrease in plasma triglyceride concentrations. These data suggest that glucose ingestion diminishes postprandial lipemia in a dose-dependent manner, but that this effect is not due to increased clearance of triglyceride from the circulation. The hypotriglyceridemic effects of glucose appear to reflect delayed gastric emptying and decreased hepatic secretion of triglyceride.  相似文献   

9.
Our aim was to measure whole body energy expenditure after a mixed liquid meal, with and without simultaneous propranolol infusion, in patients with cirrhosis. We also wanted to investigate the effect of propranolol on substrate fluxes and oxygen uptake in the tissues drained by the hepatic vein and azygos vein in the postprandial period in these patients. Whole-body oxygen uptake, hepatic blood flow, hepatic venous pressure gradient and net-hepatic fluxes of oxygen, lactate, glucose, glycerol, and free fatty acids (FFA) were measured in 12 patients with alcoholic cirrhosis before and for 2 h after ingestion of a mixed liquid meal (700 kcal). Half of the patients (n = 6) were randomized to a treatment group receiving intravenous infusion of propranolol in combination with the meal. The meal-induced energy expenditure was significantly lower in patients given propranolol [15.0 +/- 18.9 vs. 67.0 +/- 26.1 kJ/120 min (means +/- SD), P < 0.01]. Meal-induced whole body oxygen uptake was lower in patients receiving propranolol (19.2 +/- 38 vs. 135.7 +/- 61 mmol/120 min, P < 0.01), and the meal-induced increase in splanchnic oxygen uptake was nonexistent when propranolol was administered in combination (-13.2 +/- 34.8 vs. 110.4 +/- 34.8 mmol/120 min, P = 0.04). Postprandially, the propranolol group had a tendency toward a reduced splanchnic glucose output, and the FFA uptake was significantly reduced. Propranolol reduces meal-induced whole body oxygen uptake and energy expenditure as well as splanchnic oxygen uptake. The splanchnic reduction in oxygen consumption can explain almost the entire reduction in whole body oxygen consumption.  相似文献   

10.
We investigated the effect of acarbose, an alpha-glucosidase and pancreatic alpha-amylase inhibitor, on gastric emptying of solid meals of varying nutrient composition and plasma responses of gut hormones. Gastric emptying was determined with scintigraphy in healthy subjects, and all studies were performed with and without 100 mg of acarbose, in random order, at least 1 wk apart. Acarbose did not alter the emptying of a carbohydrate-free meal, but it delayed emptying of a mixed meal and a carbohydrate-free meal given 2 h after sucrose ingestion. In meal groups with carbohydrates, acarbose attenuated responses of plasma insulin and glucose-dependent insulinotropic polypeptide (GIP) while augmenting responses of CCK, glucagon-like peptide-1 (GLP-1), and peptide YY (PYY). With mixed meal + acarbose, area under the curve (AUC) of gastric emptying was positively correlated with integrated plasma response of GLP-1 (r = 0.68, P < 0.02). With the carbohydrate-free meal after sucrose and acarbose ingestion, AUC of gastric emptying was negatively correlated with integrated plasma response of GIP, implying that prior alteration of carbohydrate absorption modifies gastric emptying of a meal. The results demonstrate that acarbose delays gastric emptying of solid meals and augments release of CCK, GLP-1, and PYY mainly by retarding/inhibiting carbohydrate absorption. Augmented GLP-1 release by acarbose appears to play a major role in the inhibition of gastric emptying of a mixed meal, whereas CCK and PYY may have contributory roles.  相似文献   

11.
The aims of this study were to evaluate the effects of dietary glucose supplementation on gastric emptying (GE) of both glucose and fat, postprandial blood glucose homeostasis, and appetite in eight older subjects (4 males, 4 females, aged 65--84 yr). GE of a drink (15 ml olive oil and 33 g glucose dissolved in 185 ml water), blood glucose, insulin, gastric inhibitory polypeptide (GIP) and glucagon-like peptide-1 (GLP-1), and appetite (diet diaries, visual analog scales, and food intake at a buffet meal consumed after the GE study) were evaluated twice, after 10 days on a standard or a glucose-supplemented diet (70 g glucose 3 times a day). Glucose supplementation accelerated GE of glucose (P < 0.05), but not oil; there was a trend for an increase in GIP (at 15 min, P = 0.06), no change in GLP-1, an earlier insulin peak (P < 0.01), and a subsequent reduction in blood glucose (at 75 min, P < 0.01). Glucose supplementation had no effect on food intake during each diet so that energy intake was greater (P < 0.001) during the glucose-supplemented diet. Appetite ratings and energy intake at the buffet meal were not different. We conclude that, in older subjects, glucose supplementation 1) accelerates GE of glucose, but not fat; 2) modifies postprandial blood glucose homeostasis; and 3) increases energy intake.  相似文献   

12.
The insulinotropic gut hormone gastric inhibitory polypeptide (GIP) has been demonstrated to inhibit gastric acid secretion and was proposed to possess "enterogastrone" activity. GIP effects on gastric emptying have not yet been studied. Fifteen healthy male volunteers (23.9 +/- 3.3 yr, body mass index 23.7 +/- 2.3 kg/m(2)) were studied with the intravenous infusion of GIP (2 pmol.kg(-1).min(-1)) or placebo, each administered to the volunteers on separate occasions from -30 to 360 min in the fasting state. At 0 min, a solid test meal (250 kcal containing [(13)C]sodium octanoate) was served. Gastric emptying was calculated from the (13)CO(2) exhalation rates in breath samples collected over 360 min. Venous blood was drawn in 30-min intervals for the determination of glucose, insulin, C-peptide, and GIP (total and intact). Statistical calculations were made by use of repeated-measures ANOVA and one-way ANOVA. During the infusion, GIP rose to steady-state concentrations of 159 +/- 15 pmol/l for total and 34 +/- 4 pmol/l for intact GIP (P < 0.0001). Meal ingestion further increased GIP concentrations in both groups, reaching peak levels of 265 +/- 20 and 82 +/- 9 pmol/l for total and 67 +/- 7 and 31 +/- 9 pmol/l for intact GIP during the administration of GIP and placebo, respectively (P < 0.0001). There were no differences in glucose, insulin, and C-peptide between the experiments with the infusion of GIP or placebo. Gastric half-emptying times were 120 +/- 9 and 120 +/- 18 min (P = 1.0, with GIP and placebo, respectively). The time pattern of gastric emptying was similar in the two groups (P = 0.98). Endogenous GIP secretion, as derived from the incremental area under the curve of plasma GIP concentrations in the placebo experiments, did not correlate to gastric half-emptying times (r(2) = 0.15, P = 0.15 for intact GIP; r(2) = 0.21, P = 0.086 for total GIP). We conclude that gastric emptying does not appear to be influenced by GIP. The secretion of GIP after meal ingestion is not suppressed by its exogenous administration. The lack of effect of GIP on gastric emptying underlines the differences between GIP and the second incretin glucagon-like peptide 1.  相似文献   

13.
Postprandial hypotension (PPH) occurs frequently in the elderly; the magnitude of the fall in blood pressure (BP) is related to the rate of glucose entry into the duodenum during intraduodenal glucose infusion and spontaneous gastric emptying (GE). It is unclear if glucose concentration affects the hypotensive response. Gastric distension may attenuate PPH; therefore, meal volume could influence the BP response. We aimed to determine the effects of 1) drink volume, 2) glucose concentration, and 3) glucose content on the BP and heart rate (HR) responses to oral glucose. Ten subjects (73.9 +/- 1.2 yr) had measurements of BP, GE, and blood glucose on 4 days after 1) 25 g glucose in 200 ml (12.5%), 2) 75 g glucose in 200 ml (37.5%), 3) 25 g glucose in 600 ml (4%), and 4) 75 g glucose in 600 ml (12.5%). GE, BP, HR, and blood glucose were measured for 180 min. After all drinks, duodenal glucose loads were similar in the first 60 min. Regardless of concentration, 600-ml (but not 200-ml) drinks initially increased BP, and in the first 30 min, systolic BP correlated (P < 0.01) with volume in both the proximal and total stomach. At the same concentration (12.5%), systolic BP fell more (P = 0.02) at the smaller volume; at the same volumes, there were no effects of concentration on BP. There was no difference in the glycemic response to drinks of identical glucose content. We conclude that 1) ingestion of glucose at a higher volume attenuates and 2) under constant duodenal load, glucose concentration (4-37%) does not affect the fall in BP.  相似文献   

14.
We examined the contributions of insulin secretion, glucagon suppression, splanchnic and peripheral glucose metabolism, and delayed gastric emptying to the attenuation of postprandial hyperglycemia during intravenous exenatide administration. Twelve subjects with type 2 diabetes (3 F/9 M, 44 +/- 2 yr, BMI 34 +/- 4 kg/m2, Hb A(1c) 7.5 +/- 1.5%) participated in three meal-tolerance tests performed with double tracer technique (iv [3-3H]glucose and oral [1-14C]glucose): 1) iv saline (CON), 2) iv exenatide (EXE), and 3) iv exenatide plus glucagon (E+G). Acetaminophen was given with the mixed meal (75 g glucose, 25 g fat, 20 g protein) to monitor gastric emptying. Plasma glucose, insulin, glucagon, acetaminophen concentrations and glucose specific activities were measured for 6 h post meal. Post-meal hyperglycemia was markedly reduced (P < 0.01) in EXE (138 +/- 16 mg/dl) and in E+G (165 +/- 12) compared with CON (206 +/- 15). Baseline plasma glucagon ( approximately 90 pg/ml) decreased by approximately 20% to 73 +/- 4 pg/ml in EXE (P < 0.01) and was not different from CON in E+G (81 +/- 2). EGP was suppressed by exenatide [231 +/- 9 to 108 +/- 8 mg/min (54%) vs. 254 +/- 29 to189 +/- 27 mg/min (26%, P < 0.001, EXE vs. CON] and partially reversed by glucagon replacement [247 +/- 15 to 173 +/- 18 mg/min (31%)]. Oral glucose appearance was 39 +/- 4 g in CON vs. 23 +/- 6 g in EXE (P < 0.001) and 15 +/- 5 g in E+G, (P < 0.01 vs. CON). The glucose retained within the splanchnic bed increased from approximately 36g in CON to approximately 52g in EXE and to approximately 60g in E+G (P < 0.001 vs. CON). Acetaminophen((AUC)) was reduced by approximately 80% in EXE vs. CON (P < 0.01). We conclude that exenatide infusion attenuates postprandial hyperglycemia by decreasing EGP (by approximately 50%) and by slowing gastric emptying.  相似文献   

15.
Although high protein and low glycemic index (GI) foods are thought to promote satiety, little is known about the effects of GI, protein, and their interaction on hunger and energy intake several hours following a mixed meal. This study investigated the long term effects of GI, protein, and their combined effects on glucose, insulin, hunger, and energy intake in healthy, sedentary, overweight, and obese adults (BMI of 30.9 ± 3.7 kg/m2). Sixteen individuals participated separately in four testing sessions after an overnight fast. The majority (75%) were non‐Hispanic Blacks. Each consumed one of four breakfast meals (high GI/low protein, high GI/high protein, low GI/low protein, low GI/high protein) in random order. Visual analog scales (VAS) and blood samples were taken at baseline, 15 min, and at 30 min intervals over 4 h following the meal. After 4 h, participants were given the opportunity to consume food ad libitum from a buffet style lunch. Meals containing low GI foods produced a smaller glucose (P < 0.002) and insulin (P = 0.0001) response than meals containing high GI foods. No main effects for protein or interactions between GI and protein were observed in glucose or insulin responses, respectively. The four meals had no differential effect on observed energy intake or self‐reported hunger, satiety, and prospective energy intake. Low GI meals produced the smallest postprandial increases in glucose and insulin. There were no effects for GI, protein, or their interaction on appetite or energy intake 4 h after breakfast.  相似文献   

16.
Glucagon-like peptide 1 (GLP-1) lowers glycemia by modulating gastric emptying and endocrine pancreatic secretion. Rapidly after its secretion, GLP-1-(7-36) amide is degraded to the metabolite GLP-1-(9-36) amide. The effects of GLP-1-(9-36) amide in humans are less well characterized. Fourteen healthy volunteers were studied with intravenous infusion of GLP-1-(7-36) amide, GLP-1-(9-36) amide, or placebo over 390 min. After 30 min, a solid test meal was served, and gastric emptying was assessed. Blood was drawn for GLP-1 (total and intact), glucose, insulin, C-peptide, and glucagon measurements. Administration of GLP-1-(7-36) amide and GLP-1-(9-36) amide significantly raised total GLP-1 plasma levels. Plasma concentrations of intact GLP-1 increased to 21 +/- 5 pmol/l during the infusion of GLP-1-(7-36) amide but remained unchanged during GLP-1-(9-36) amide infusion [5 +/- 3 pmol/l; P < 0.001 vs. GLP-1-(7-36) amide administration]. GLP-1-(7-36) amide reduced fasting and postprandial glucose concentrations (P < 0.001) and delayed gastric emptying (P < 0.001). The GLP-1 metabolite had no influence on insulin or C-peptide concentrations. Glucagon levels were lowered by GLP-1-(7-36) amide but not by GLP-1-(9-36) amide. However, the postprandial rise in glycemia was reduced significantly (by approximately 6 mg/dl) by GLP-1-(9-36) amide (P < 0.05). In contrast, gastric emptying was completely unaffected by the GLP-1 metabolite. The GLP-1 metabolite lowers postprandial glycemia independently of changes in insulin and glucagon secretion or in the rate of gastric emptying. Most likely, this is because of direct effects on glucose disposal. However, the glucose-lowering potential of GLP-1-(9-36) amide appears to be small compared with that of intact GLP-1-(7-36) amide.  相似文献   

17.
To test the hypothesis that intrahepatic availability of fatty acid could modify the rate of suppression of endogenous glucose production (EGP), acipimox or placebo was administered before and during a test meal. We used a modified isotopic methodology to measure EGP in 11 healthy subjects, and (1)H magnetic resonance spectroscopic measurement of hepatic triglyceride stores was also undertaken. Acipimox suppressed plasma free fatty acids markedly before the meal (0.05 +/- 0.01 mmol/l at -10 min, P = 0) and throughout the postprandial period (0.03 +/- 0.01 mmol/l at 150 min). Mean peak plasma glucose was significantly lower after the meal on acipimox days (8.9 +/- 0.4 vs. 10.1 +/- 0.5 mmol/l, P < 0.01), as was mean peak serum insulin (653.1 +/- 99.9 vs. 909 +/- 118 pmol/l, P < 0.01). Fasting EGP was similar (11.15 +/- 0.58 micromol.kg(-1).min(-1) placebo vs. 11.17 +/- 0.89 mg.kg(-1).min(-1) acipimox). The rate of suppression of EGP after the meal was almost identical on the 2 test days (4.36 +/- 1.52 vs. 3.69 +/- 1.21 micromol.kg(-1).min(-1) at 40 min). There was a significant negative correlation between the acipimox-induced decrease in peak plasma glucose and liver triglyceride content (r = -0.827, P = 0.002), suggesting that, when levels of liver fat were low, inhibition of lipolysis was able to affect glucose homeostasis. Acute pharmacological sequestration of fatty acids in triglyceride stores improves postprandial glucose homeostasis without effect on the immediate postprandial suppression of EGP.  相似文献   

18.
Gastric emptying studies were performed on nine healthy volunteers and ten duodenal ulcer (DU) patients utilizing a dual radionuclide technique to assess simultaneously emptying rates of liquid (111In labeled water) and solid (99mTc sulfur colloid labeled chicken liver) components of a meal. One gram of sucralfate was compared to placebo in separate days in a randomized double-blind crossover fashion. Subjects ingested the radiolabeled test meal 1 h after receiving medication, and gastric emptying was monitored for 3 h using a γ camera interfaced with a computer. We found that DU patients had significantly faster gastric emptying of solids (P < 0.05) compared to normals on the placebo days, while liquid emptying rates were similar. Sucralfate, in the DU patients, significantly (P < 0.05) slowed gastric emptying of water from 20 to 40 min and emptying of the solid component from 100–160 min after the meal compared to placebo. In normal subjects, gastric emptying of liquids and solids was not significantly affected by sucralfate.We conclude that slowing of gastric emptying, possibly mediated through aluminum ions, occurs in DU patients on sucralfate. This may be one mechanism by which sucralfate enhances healing and decreases recurrence of duodenal ulcer.  相似文献   

19.
Exenatide is a long-acting glucagon-like peptide-1 (GLP-1) mimetic used in the treatment of type 2 diabetes. There is increasing evidence that GLP-1 can influence glycemia not only via pancreatic (insulinotropic and glucagon suppression) and gastric-emptying effects, but also via an independent mechanism mediated by portal vein receptors. The aim of our study was to investigate whether exenatide has an islet- and gastric-independent glycemia-reducing effect, similar to GLP-1. First, we administered mixed meals, with or without exenatide (20 microg sc) to dogs. Second, to determine whether exenatide-induced reduction in glycemia is independent of slower gastric emptying, in the same animals we infused glucose intraportally (to simulate meal test glucose appearance) with exenatide, exenatide + the intraportal GLP-1 receptor antagonist exendin-(9-39), or saline. Exenatide markedly decreased postprandial glucose: net 0- to 135-min area under the curve = +526 +/- 315 and -536 +/- 197 mg.dl(-1).min(-1) with saline and exenatide, respectively (P < 0.05). Importantly, the decrease in plasma glucose occurred without a corresponding increase in postprandial insulin but was accompanied by delayed gastric emptying and lower glucagon. Significantly lower glycemia was induced by intraportal glucose infusion with exenatide than with saline (92 +/- 1 vs. 97 +/- 1 mg/dl, P < 0.001) in the absence of hyperinsulinemia or glucagon suppression. The exenatide-induced lower glycemia was partly reversed by intraportal exendin-(9-39): 95 +/- 3 and 92 +/- 3 mg/dl with exenatide + antagonist and exenatide, respectively (P < 0.01). Our results suggest that, similar to GLP-1, exenatide lowers glycemia via a novel mechanism independent of islet hormones and slowing of gastric emptying. We hypothesize that receptors in the portal vein, via a neural mechanism, increase glucose clearance independent of islet hormones.  相似文献   

20.
The actions of nutrients on gut transit of liquids and solids have been extensively studied, but the effects of meal ingestion on intestinal gas flow are unexplored. We hypothesized that meals of varying caloric content and consistency modulate gas transit to different degrees. Nine healthy volunteers underwent jejunal perfusion of physiological gas mixtures at 12 ml.min(-1).3 h, with ingestion of nothing (control), water (240 ml), 240-kcal liquid meals, and 240-kcal solid meals at the end of the second hour in separate studies. Gas was quantified from an intrarectal catheter. After an initial lag phase, gas evacuation approached steady state by the end of the fasting period. Solid and liquid caloric meals increased total gas volumes evacuated from 5-40 min after ingestion vs. control studies (P < 0.05). These increases resulted from increased numbers of bolus gas evacuations (P < 0.05), whereas bolus volumes, pressures, and flow rates were similar for all test conditions. Solid and liquid caloric meals elicited similar effects on bolus gas dynamic parameters, whereas water did not affect these measures vs. control (NS, not significant). Both caloric meals and the noncaloric liquid meal increased continuous gas flow, which represented <2% of total gas expulsion. In conclusion, caloric meals promote bolus gas transit in healthy humans, whereas noncaloric liquids have no effect. Solids stimulate early postprandial gas dynamics to the same extent as liquid meals of similar caloric content. Thus modulatory effects of meals on intestinal gas transit depend on their caloric content but not their consistency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号