首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
In order to improve the map resolution and to locate more genes on the porcine radiation hybrid map, expressed sequence tags (ESTs) were isolated from a 28-day-old normal pig embryo cDNA library. The ESTs were sequenced from the 5'-end and similarities were checked with sequences registered in the NCBI DNA database (http://www.ncbi.nlm.nih.gov/blast/). The ESTs sequences which have high identity scores (>80%) against human genes or ESTs were further sequenced from the 3' untranslated region. The ESTs which were sequenced successfully were used to design primers for PCR analysis of the radiation hybrid panel. Eleven ESTs were physically mapped to porcine chromosomes 2, 4, 8, 10, 13, 14 and X. The localizations are in agreement with the comparative mapping data between human and pig. The results will provide unique information to the comparative map of human and pig.  相似文献   

2.
Linkage mapping of gene-associated SNPs to pig chromosome 11   总被引:3,自引:0,他引:3  
Single nucleotide polymorphisms (SNPs) were discovered in porcine expressed sequence tags (ESTs) orthologous to genes from human chromosome 13 (HSA13) and predicted to be located on pig chromosome 11 (SSC11). The SNPs were identified as sequence variants in clusters of EST sequences from pig cDNA libraries constructed in the Sino-Danish pig genome project. In total, 312 human gene sequences from HSA13 were used for similarity searches in our pig EST database. Pig ESTs showing significant similarity with HSA13 genes were clustered and candidate SNPs were identified. Allele frequencies for 26 SNPs were estimated in a group of 80 unrelated pigs from Danish commercial pig breeds: Duroc, Hampshire, Landrace and Large White. Eighteen of the 26 SNPs genotyped in the PiGMaP Reference Families were mapped by linkage analysis to SSC11. The EST-based SNPs published here are new genetic markers useful for linkage and association studies in commercial and experimental pig populations. This study represents the first gene-associated SNP linkage map of pig chromosome 11 and adds new comparative mapping information between SSC11 and HSA13. Furthermore, our data facilitate future studies aimed at the identification of interesting regions on pig chromosome 11, positional cloning and fine mapping of quantitative trait loci in pig.  相似文献   

3.
Large-scale sequencing of cDNAs from numerous tissues is currently being performed within the framework of the Human Genome Project. These expressed sequence tags (ESTs) are then mapped on a radiation hybrid panel to produce a high-resolution map of human genes. In this report, we estimate the efficiency of mapping these ESTs in the pig. A total of 344 human ESTs from Généthon were selected for amplification in other species by Zoo-PCR: 186 of these could be reproducibly amplified by use of pig DNA and the corresponding human primer pairs. One-hundred seven of these were tested on a porcine–rodent somatic cell hybrid panel, permitting regional localizations of 65 ESTs with agarose or single-strand conformation polymorphism analysis gels. The corresponding pig PCR products were sequenced: 60 ESTs matched significantly with the expected human sequences. Fifty-one of these localizations in the pig are in agreement with the comparative mapping data between humans and pigs based on heterologous chromosome painting. Seven ESTs that were localized in an unexpected region may indicate new chromosomal correspondences. This work significantly increases the number of genes mapped on the pig genome and demonstrates that this approach can be successfully applied to improve the gene density of mammalian genomic maps in chromosomal regions of interest, such as those in which QTL (Quantative Trait Loci) have been identified. Received: 31 July 1998 / Accepted: 14 October 1998  相似文献   

4.
A comparative study of human chromosome 17 (HSA17) and pig chromosome 12 (SSC12) was conducted using both somatic cell hybrid panel (SCHP) and radiation hybrid (RH) panel analysis. Sequences from an expressed sequence tag (EST) project in pig reproduction were examined and six genes and ESTs originally believed to map to HSA17 were selected for this study. The genes/ESTs were TATA box binding protein-associated factor (TAF2N/RBP56), alpha-2-plasmin inhibitor (SERPINF2/PLI), H3 histone family 3B (H3F3B), aminopeptidase puromycin sensitive (NPEPPS), an expressed sequence tag (ESTMI015) and P311 protein (P311). The SCHP analysis mapped five genes/ESTs (TAF2N, H3F3B, SERPINF2, NPEPPS and ESTMI015) to SSC12q11-q15 and SSC12p11-p15 with 100% concordance, and assigned P311 to SSC2 (1/2q24)-q29 with 100% concordance. Radiation hybrid analysis of all six genes confirmed the SCHP mapping results, with average retention frequency of 25%. Recent human sequence data demonstrated that P311 is actually located on HSA5q. As HSA5q and SSC2q show conserved syntenic regions predicted from bi-directional painting, our P311 mapping data is consistent with these results. An expanded comparative SSC12 RH map integrating the five new type I markers and 23 previously mapped loci was established using a LOD score threshold of 4.8. The gene order of the five genes/ESTs on the SSC12 framework RH map (H3F3B-ESTMI015-NPEPPS-TAF2N-SERPINF2) is identical to the HSA17 GB4 map but with inversion of the map as conventionally drawn.  相似文献   

5.
In total, 214 ESTs (Expressed Sequence Tags) were assigned to the porcine gene map by using somatic cell hybrid mapping, radiation hybrid mapping, and FISH. The ESTs were isolated from a porcine small intestine cDNA library on the basis of significant sequence identity with human annotated genes. In total, 390 primer pairs were designed primarily in the 3' UTR of the sequences. Overall, 58.6% of the ESTs were successfully mapped by this approach. In total, 191 of the localizations are in agreement with the human comparative map, strongly indicating that these represent true orthologous genes. The remaining 23 ESTs provide new comparative mapping data, which should be considered as preliminary until confirmed by other studies. Our mapping efforts provide a significant contribution to the porcine map as well as to the comparative map for human and pig.  相似文献   

6.
The HED (hidrotic ectodermal dysplasia) or Clouston syndrome gene (named ED2) has been mapped to the pericentromeric region of chromosome 13 (13q11) to a 2.4-cM interval flanked by markers D13S1828 and D13S1830. We have developed a BAC/PAC-based contig map of this region. This contig, comprising 23 clones and spanning 1.5 Mb, was established by mapping of 27 BAC/PAC end-derived STSs, 11 known polymorphic markers, 2 previously mapped genes, and 14 ESTs. The genomic clone overlaps were confirmed by restriction fragment fingerprint analysis. This contig provides the basis for genomic sequencing and gene identification in the ED2 critical region. Of the 14 ESTs mapped to the contig, 6 show homology to human genes and 8 appear to be novel. Expression patterns of the genes/ESTs were tested by Northern blot and RT-PCR. Full characterization of some of these genes, as well as the novel ESTs, will be useful in assessing their involvement in the HED/Clouston syndrome.  相似文献   

7.
A total of 55 expressed sequence tags (ESTs) randomly chosen from our collection of fetal liver ESTs were mapped to chromosomes by fluorescence in situ hybridization (FISH) mapping techniques. To generate FISH mapping probes, the genomic DNAs for each EST were selected by screening an arrayed human bacterial artificial chromosome (BAC) library. In total, 73 BACs were used for mapping of the 55 ESTs. Among them, 70 BACs representing 52 ESTs unequivocally mapped to single chromosomal regions. The remaining 3 BACs representing 3 ESTs were localized to multiple regions, suggesting that BACs may have very low chimerism. Our mapping results were compared with EST mapping databases deposited in NCBI. Thirty-six of 55 ESTs corresponded to previously mapped positions of ESTs, 2 ESTs mapped to different positions from previously determined ones, and it was found that 17 ESTs have been mapped on new locations from this study. These mapping data may be used for completing the framework of the human physical map, and also for providing a good starting point for searching disease-related genes.  相似文献   

8.
Complementary DNA sequences were selected from a resource of tentatively identified clones from a porcine small intestine cDNA library. Forty PCR primer pairs were designed to amplify 101–309 base pairs of the 3′ untranslated region of the genes. The PCR conditions were optimized by altering both formamide and magnesium concentrations on samples of pig, mouse, and hamster DNA. Twenty primer pairs that, under stringent conditions, were pig-specific and amplified the expected fragments were chosen for regional assignment in a pig/rodent hybrid cell panel. Furthermore, 22 primer pairs were chosen to amplify DNA from the parental animals of the PiGMaP shared reference families in order to detect possible polymorphisms. Primer pairs that generated polymorphisms were used for genetic mapping. A total of 22 porcine expressed sequence tags (ESTs) were cytogenetically or genetically mapped by this approach. Twelve of the mapped ESTs could be added to the human–porcine comparative map. Received: 8 December 1996 / Accepted: 31 January 1997  相似文献   

9.
10.
To increase the number of Type I markers that are directly informative for comparative mapping, 58 anchorage markers, TOASTs (Traced Orthologous Amplified Sequence Tags), were mapped in pig. With specific consensus primers, 76 TOASTs were tested in pig: 50 were regionally localized in pig on a somatic cell hybrid panel (SCHP), and 51 were mapped on the whole genome, INRA/University of Minnesota porcine Radiation Hybrid panel (IMpRH). Comparison of marker positions on RH and cytogenetic maps indicated general concordance except for two chromosomal regions. For RH mapping, all markers, apart from one, were significantly linked (LOD > 4.8) to a marker of the first-generation radiation hybrid map. Localization of new markers on the initial map is necessary for drawing a framework map as shown for Chromosome Sscr 14. The addition of four TOASTs has enabled us to propose an improved map, using a threshold likelihood ratio of 1000/1. At the whole-genome level, this work significantly increased (by 50%) the number of precisely mapped genes on the porcine RH map and confirmed that the IMpRH panel is a valuable tool for high-resolution gene mapping in pig. Porcine PCR products were sequenced and compared with human sequences to verify their identity. Most of the localizations made it possible to either confirm or refine the previous comparative data between humans and pigs obtained through heterologous chromosomal painting or gene mapping. Moreover, the use of TOASTs in mapping studies appears to be a complement to other strategies using CATS, human ESTs, or heterologous FISH with BACs which had already been applied to improve the gene density of comparative genomic maps for mammals. Received: 15 March 2000 / Accepted: 27 July 2000  相似文献   

11.
12.
13.
14.
15.
16.
17.
18.
This report describes the rationale, approaches, organization, and resource development leading to a large-scale deletion bin map of the hexaploid (2n = 6x = 42) wheat genome (Triticum aestivum L.). Accompanying reports in this issue detail results from chromosome bin-mapping of expressed sequence tags (ESTs) representing genes onto the seven homoeologous chromosome groups and a global analysis of the entire mapped wheat EST data set. Among the resources developed were the first extensive public wheat EST collection (113,220 ESTs). Described are protocols for sequencing, sequence processing, EST nomenclature, and the assembly of ESTs into contigs. These contigs plus singletons (unassembled ESTs) were used for selection of distinct sequence motif unigenes. Selected ESTs were rearrayed, validated by 5′ and 3′ sequencing, and amplified for probing a series of wheat aneuploid and deletion stocks. Images and data for all Southern hybridizations were deposited in databases and were used by the coordinators for each of the seven homoeologous chromosome groups to validate the mapping results. Results from this project have established the foundation for future developments in wheat genomics.  相似文献   

19.
20.
In an effort to expand the Gossypium hirsutum L. (cotton) expressed sequence tag (EST) database, ESTs representing a variety of tissues and treatments were sequenced. Assembly of these sequences with ESTs already in the EST database (dbEST, GenBank) identified 9675 cotton sequences not present in GenBank. Statistical analysis of a subset of these ESTs identified genes likely differentially expressed in stems, cotyledons, and drought-stressed tissues. Annotation of the differentially expressed cDNAs tentatively identified genes involved in lignin metabolism, starch biosynthesis and stress response, consistent with pathways likely to be active in the tissues under investigation. Simple sequence repeats (SSRs) were identified among these ESTs, and an inexpensive method was developed to screen genomic DNA for the presence of these SSRs. At least 69 SSRs potentially useful in mapping were identified. Selected amplified SSRs were isolated and sequenced. The sequences corresponded to the EST containing the SSRs, confirming that these SSRs will potentially map the gene represented by the EST. The ESTs containing SSRs were annotated to help identify the genes that may be mapped using these markers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号