首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.

Background

Mycobacterium tuberculosis is characterized by a low mutation rate and a lack of genetic recombination. Yet, the rise of extensively resistant strains paints a picture of a microbe with an impressive adaptive potential. Here we describe the first documented case of extensively drug-resistant tuberculosis evolved from a susceptible ancestor within a single patient.

Results

Genome sequences of nine serial M. tuberculosis isolates from the same patient uncovered a dramatic turnover of competing lineages driven by the emergence, and subsequent fixation or loss of single nucleotide polymorphisms. For most drugs, resistance arose through independent emergence of mutations in more than one clone, of which only one ultimately prevailed as the clone carrying it expanded, displacing the other clones in the process. The vast majority of mutations identified over 3.5 years were either involved in drug resistance or hitchhiking in the genetic background of these. Additionally, RNA-sequencing of isolates grown in the absence of drug challenge revealed that the efflux-associated iniBAC operon was up-regulated over time, whereas down-regulated genes include those involved in mycolic acid synthesis.

Conclusions

We observed both rapid acquisitions of resistance to antimicrobial compounds mediated by individual mutations as well as a gradual increase in fitness in the presence of antibiotics, likely driven by stable gene expression reprogramming. The rapid turnover of resistance mutations and hitchhiking neutral mutations has major implications for inferring tuberculosis transmission events in situations where drug resistance evolves within transmission chains.  相似文献   

3.
4.
5.
6.

Background  

microRNAs (miRNAs) are important cellular components. The understanding of their evolution is of critical importance for the understanding of their function. Although some specific evolutionary rules of miRNAs have been revealed, the rules of miRNA evolution in cellular networks remain largely unexplored. According to knowledge from protein-coding genes, the investigations of gene evolution in the context of biological networks often generate valuable observations that cannot be obtained by traditional approaches.  相似文献   

7.
8.
9.
10.
11.
12.
克隆获得了大豆转录因子MYB基因GmMYB174,该基因序列全长1086 bp,编码361个氨基酸,属于MYB-related家族。生物信息学分析表明大豆GmMYB174与番茄、苜蓿、葡萄等物种同源性较高,序列分析表明包含2个保守的Trp(W)位点和1个保守基序SHAQKFF。亚细胞定位结果显示GmMYB174定位于细胞核中;组织表达量显示GmMYB174在多个组织均有表达,其中在上胚轴中表达量最高。启动子元件分析表明GmMYB174包含ABRE、MYB、MYC、LTRE、GT-1等逆境胁迫应答元件。实时荧光定量PCR分析表明Gm MYB174在干旱、盐、ABA处理下均有响应。因此,GmMYB174可能参与多种胁迫应答途径。  相似文献   

13.
14.
15.
16.
In this report, we demonstrate that myogenic cultures inhibited from differentiating by treatment with fibroblast growth factor or transforming growth factor beta show reduced levels of MyoD1 mRNA. Although this repression may contribute to the inhibition of myogenesis by growth factors, additional regulatory pathways must be affected, since inhibition still occurs in cultures engineered to constitutively express MyoD1 mRNA.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号