首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Mutations in cereblon (CRBN), a substrate binding component of the E3 ubiquitin ligase complex, cause a form of mental retardation in humans. However, the cellular proteins that interact with CRBN remain largely unknown. Here, we report that CRBN directly interacts with the α1 subunit of AMP-activated protein kinase (AMPK α1) and inhibits the activation of AMPK activation. The ectopic expression of CRBN reduces phosphorylation of AMPK α1 and, thus, inhibits the enzyme in a nutrient-independent manner. Moreover, AMPK α1 can be potently activated by suppressing endogenous CRBN using CRBN-specific small hairpin RNAs. Thus, CRBN may act as a negative modulator of the AMPK signaling pathway in vivo.  相似文献   

3.
The epithelial Na(+) channel (ENaC) regulates epithelial salt and water reabsorption, processes that require significant expenditure of cellular energy. To test whether the ubiquitous metabolic sensor AMP-activated kinase (AMPK) regulates ENaC, we examined the effects of AMPK activation on amiloride-sensitive currents in Xenopus oocytes and polarized mouse collecting duct mpkCCD(c14) cells. Microinjection of oocytes expressing mouse ENaC (mENaC) with either active AMPK protein or an AMPK activator inhibited mENaC currents relative to controls as measured by two-electrode voltage-clamp studies. Similarly, pharmacological AMPK activation or overexpression of an activating AMPK mutant in mpkCCD(c14) cells inhibited amiloride-sensitive short circuit currents. Expression of a degenerin mutant beta-mENaC subunit (S518K) along with wild type alpha and gamma increased the channel open probability (P(o)) to approximately 1. However, AMPK activation inhibited currents similarly with expression of either degenerin mutant or wild type mENaC. Single channel recordings under these conditions demonstrated that neither P(o) nor channel conductance was affected by AMPK activation. Moreover, expression of a Liddle's syndrome-type beta-mENaC mutant (Y618A) greatly enhanced ENaC whole cell currents relative to wild type ENaC controls and prevented AMPK-dependent inhibition. These findings indicate that AMPK-dependent ENaC inhibition is mediated through a decrease in the number of active channels at the plasma membrane (N), presumably through enhanced Nedd4-2-dependent ENaC endocytosis. The AMPK-ENaC interaction appears to be indirect; AMPK did not bind ENaC in cells, as assessed by in vivo pull-down assays, nor did it phosphorylate ENaC in vitro. In summary, these results suggest a novel mechanism for coupling ENaC activity and renal Na(+) handling to cellular metabolic status through AMPK, which may help prevent cellular Na(+) loading under hypoxic or ischemic conditions.  相似文献   

4.
5.
6.
This study was designed to examine activity of AMP-activated protein kinase kinase (AMPKK) in muscles from nontrained and endurance-trained rats. Rats were trained 5 days/wk, 2 h/day for 8 wk at a final intensity of 32 m/min up a 15% grade with 30-s sprints at 53 m/min every 10 min. Gastrocnemius muscles were stimulated in situ in trained and nontrained rats for 5 min at frequencies of 0.4/s and 1/s. Gastrocnemius LKB1 protein, a putative component of the AMPKK complex (LKB1, STRAD, and MO25), increased approximately twofold in response to training. Phosphorylation of AMP-activated protein kinase (AMPK) determined by Western blot and AMPK activity of immunoprecipitates (both isoforms) was increased at both stimulation rates in both trained and nontrained muscles. AMPKK activity was 73% lower in resuspended polyethylene glycol precipitates of muscle extracts from the trained compared with nontrained rats. AMPKK activity did not increase in either trained or nontrained muscle in response to electrical stimulation, even though phospho-AMPK did increase. These results suggest that AMPKK is activated during electrical stimulation of both trained and nontrained muscle by mechanisms other than covalent modification.  相似文献   

7.
8.
9.
Interleukin-1beta regulates CFTR expression in human intestinal T84 cells   总被引:3,自引:0,他引:3  
Cystic fibrosis is an autosomal recessive genetic disease, produced by a mutation in the CFTR gene that impairs its function as a chloride channel. In this work, we have examined the effects of interleukin-1beta (IL-1beta) on the expression of CFTR in human colonic T84 cells. Treatment of T84 cells with IL-1beta (0.25 ng/ml) for 4 h resulted in an increased CFTR expression (mRNA and protein). However, higher doses of IL-1beta (1 ng/ml and over) produced inhibition of CFTR mRNA and protein expression. The protein kinase C (PKC) inhibitors H7 (50 microM) and GF109203X (1 microM) inhibited the stimulatory effect of IL-1beta. Similar effects were seen in the presence of the protein tyrosine kinase (PTK) inhibitors genistein (60 microM) and herbymicin A (2 microM). These results suggest that some PKC isoform(s) and at least a PTK might be involved in the CFTR up-regulation induced by IL-1beta. The repression of CFTR up-regulation by cycloheximide (35.5 microM) suggests the participation of a de novo synthesized protein. Results obtained by using the RNA polymerase II inhibitor DRB (78 microM), suggest that the increased mRNA levels seen after IL-1beta treatment are not due to an increased stability of the message. We conclude that the CFTR mRNA and protein levels are modulated by IL-1beta, this cytokine being the first extracellular protein known to up-regulate CFTR gene expression.  相似文献   

10.
AMP-activated protein kinase (AMPK) plays a key role in maintaining intracellular and whole-body energy homeostasis. Activation of AMPK has been shown to ameliorate the symptoms of metabolic diseases, such as type 2 diabetes and obesity. Here we show that gambogic acid (GB), a known antitumor agent, activates AMPK by increasing the phosphorylation of AMPKα and its downstream substrate ACC in various cell lines. Further study revealed that GB stimulated AMPK activity independent of upstream kinases. Moreover, the AMPK inhibitor, compound C, has no effects on the GB-induced AMPK activation. We also found that GB promptly increased intracellular ROS level, and antioxidants attenuated the ROS production. Interestingly, only the thiol antioxidants significantly abolished GB-enhanced AMPK activation. In addition, analysis of binding and dissociation kinetics indicated that GB bound to the AMPKα subunit. Collectively, these results suggest that GB may be a novel direct activator of AMPK.  相似文献   

11.
AMP-activated protein kinase (AMPK) serves as an energy-sensing protein kinase that is activated by a variety of metabolic stresses that lower cellular energy levels. When activated, AMPK modulates a network of metabolic pathways that result in net increased substrate oxidation, generation of reduced nucleotide cofactors, and production of ATP. AMPK is activated by a high AMP:ATP ratio and phosphorylation on threonine 172 by an upstream kinase. Recent studies suggest that mechanisms that do not involve changes in adenine nucleotide levels can activate AMPK. Another sensor of the metabolic state of the cell is the NAD/NADH redox potential. To test whether the redox state might have an effect on AMPK activity, we examined the effect of beta-NAD and NADH on this enzyme. The recombinant T172D-AMPK, which was mutated to mimic the phosphorylated state, was activated by beta-NAD in a dose-dependent manner, whereas NADH inhibited its activity. We explored the effect of NADH on AMPK by systematically varying the concentrations of ATP, NADH, peptide substrate, and AMP. Based on our findings and established activation of AMPK by AMP, we proposed a model for the regulation by NADH. Key features of this model are as follows. (a) NADH has an apparent competitive behavior with respect to ATP and uncompetitive behavior with respect to AMP resulting in improved binding constant in the presence of AMP, and (b) the binding of the peptide is not significantly altered by NADH. In the absence of AMP, the binding constant of NADH becomes higher than physiologically relevant. We conclude that AMPK senses both components of cellular energy status, redox potential, and phosphorylation potential.  相似文献   

12.
Recent studies have demonstrated a strong relationship between aging-associated reductions in mitochondrial function, dysregulated intracellular lipid metabolism, and insulin resistance. Given the important role of the AMP-activated protein kinase (AMPK) in the regulation of fat oxidation and mitochondrial biogenesis, we examined AMPK activity in young and old rats and found that acute stimulation of AMPK-alpha(2) activity by 5'-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR) and exercise was blunted in skeletal muscle of old rats. Furthermore, mitochondrial biogenesis in response to chronic activation of AMPK with beta-guanidinopropionic acid (beta-GPA) feeding was also diminished in old rats. These results suggest that aging-associated reductions in AMPK activity may be an important contributing factor in the reduced mitochondrial function and dysregulated intracellular lipid metabolism associated with aging.  相似文献   

13.
14.
AMP-activated protein kinase (AMPK), a known regulator of cellular and systemic energy balance, is now recognized to control cell division, cell polarity and cell migration, all of which depend on the actin cytoskeleton. Here we report the effects of A769662, a pharmacological activator of AMPK, on cytoskeletal organization and signalling in epithelial Madin-Darby canine kidney (MDCK) cells. We show that AMPK activation induced shortening or radiation of stress fibers, uncoupling from paxillin and predominance of cortical F-actin. In parallel, Rho-kinase downstream targets, namely myosin regulatory light chain and cofilin, were phosphorylated. These effects resembled the morphological changes in MDCK cells exposed to hyperosmotic shock, which led to Ca2+-dependent AMPK activation via calmodulin-dependent protein kinase kinase-β(CaMKKβ), a known upstream kinase of AMPK. Indeed, hypertonicity-induced AMPK activation was markedly reduced by the STO-609 CaMKKβ inhibitor, as was the increase in MLC and cofilin phosphorylation. We suggest that AMPK links osmotic stress to the reorganization of the actin cytoskeleton.  相似文献   

15.
16.
AMP-activated protein kinase (AMPK) is the downstream component of a protein kinase cascade that is a key regulator of energy balance at both the cellular and whole-body level. AMPK acts to stimulate ATP production and reduce ATP consumption when cellular ATP levels fall, thereby normalizing energy balance. Given the central role of AMPK in cellular carbohydrate and lipid metabolism, AMPK activation has been proposed to be a therapeutic target for conditions associated with dysfunctional nutrient metabolism including obesity, type 2 diabetes, hepatic steatosis, cardiovascular diseases and cancer. One way by which increased ATP production can be achieved is by increasing the supply of nutrient substrates. In the 1990s, AMPK activation was demonstrated to stimulate glucose uptake in striated muscle, thereby improving substrate supply for ATP production. Subsequently AMPK activation was postulated to underlie the increase in glucose uptake that occurs during muscle contraction. More recently, however, several lines of evidence have demonstrated that AMPK activation is unlikely to be required for contraction-mediated glucose uptake. Furthermore, despite the importance of AMPK in cellular and whole-body metabolism, far fewer studies have investigated either the role of AMPK in glucose uptake by non-muscle tissues or whether AMPK regulates the uptake of fatty acids. In the present review, we discuss the role of AMPK in nutrient uptake by tissues, focusing on glucose uptake out with muscle and fatty acid uptake.  相似文献   

17.
AMP-activated protein kinase (AMPK) is emerging as a key signaling pathway that modulates cellular metabolic processes. In skeletal muscle, AMPK is activated during exercise. Increased myocardial substrate metabolism during exercise could be explained by AMPK activation. Although AMPK is known to be activated during myocardial ischemia, it remains uncertain whether AMPK is activated in response to the physiological increases in cardiac work associated with exercise. Therefore, we evaluated cardiac AMPK activity in rats at rest and after 10 min of treadmill running at moderate (15% grade, 16 m/min) or high (15% grade, 32 m/min) intensity. Total AMPK activity in the heart increased in proportion to exercise intensity (P < 0.05). AMPK activity associated with the alpha2-catalytic subunit increased 2.8 +/- 0.4-fold (P < 0.02 vs. rest) and 4.5 +/- 0.6-fold (P < 0.001 vs. rest) with moderate- and high-intensity exercise, respectively. AMPK activity associated with the alpha1-subunit increased to a lesser extent. Phosphorylation of the Thr172-regulatory site on AMPK alpha-catalytic subunits increased during exercise (P < 0.001). There was no increase in Akt phosphorylation during exercise. The changes in AMPK activity during exercise were associated with physiological AMPK effects (GLUT4 translocation to the sarcolemma and ACC phosphorylation). Thus cardiac AMPK activity increases progressively with exercise intensity, supporting the hypothesis that AMPK has a physiological role in the heart.  相似文献   

18.
The AMP-activated protein kinase (AMPK) has been hypothesized to mediate contraction and 5-aminoimidazole-4-carboxamide 1-beta-D-ribonucleoside (AICAR)-induced increases in glucose uptake in skeletal muscle. The purpose of the current study was to determine whether treadmill exercise and isolated muscle contractions in rat skeletal muscle increase the activity of the AMPK alpha 1 and AMPK alpha 2 catalytic subunits in a dose-dependent manner and to evaluate the effects of the putative AMPK inhibitors adenine 9-beta-D-arabinofuranoside (ara-A), 8-bromo-AMP, and iodotubercidin on AMPK activity and 3-O-methyl-D-glucose (3-MG) uptake. There were dose-dependent increases in AMPK alpha 2 activity and 3-MG uptake in rat epitrochlearis muscles with treadmill running exercise but no effect of exercise on AMPK alpha1 activity. Tetanic contractions of isolated epitrochlearis muscles in vitro significantly increased the activity of both AMPK isoforms in a dose-dependent manner and at a similar rate compared with increases in 3-MG uptake. In isolated muscles, the putative AMPK inhibitors ara-A, 8-bromo-AMP, and iodotubercidin fully inhibited AICAR-stimulated AMPK alpha 2 activity and 3-MG uptake but had little effect on AMPK alpha 1 activity. In contrast, these compounds had absent or minimal effects on contraction-stimulated AMPK alpha 1 and -alpha 2 activity and 3-MG uptake. Although the AMPK alpha 1 and -alpha 2 isoforms are activated during tetanic muscle contractions in vitro, in fast-glycolytic fibers, the activation of AMPK alpha 2-containing complexes may be more important in regulating exercise-mediated skeletal muscle metabolism in vivo. Development of new compounds will be required to study contraction regulation of AMPK by pharmacological inhibition.  相似文献   

19.
Cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel activity is important for fluid and electrolyte transport in many epithelia including the lung, the site of most cystic fibrosis-associated morbidity. CFTR is unique among ion channels in requiring ATP hydrolysis for its gating, suggesting that its activity is coupled to cellular metabolic status. The metabolic sensor AMP-activated kinase (AMPK) binds to and phosphorylates CFTR, co-localizes with it in various tissues, and inhibits CFTR currents in Xenopus oocytes (Hallows, K. R., Raghuram, V., Kemp, B. E., Witters, L. A. & Foskett, J. K. (2000) J. Clin. Invest. 105, 1711-1721). Here we demonstrate that this AMPK-CFTR interaction has functional implications in human lung epithelial cells. Pharmacologic activation of AMPK inhibited forskolin-stimulated CFTR short circuit currents in polarized Calu-3 cell monolayers. In whole-cell patch clamp experiments, the activation of endogenous AMPK either pharmacologically or by the overexpression of an AMPK-activating non-catalytic subunit mutant (AMPK-gamma1-R70Q) dramatically inhibited forskolin-stimulated CFTR conductance in Calu-3 and CFTR-expressing Chinese hamster ovary cells. Plasma membrane expression of CFTR, assessed by surface biotinylation, was not affected by AMPK activation. In contrast, the single channel open probability of CFTR was strongly reduced in cell-attached patch clamp measurements of Calu-3 cells transfected with the AMPK-activating mutant, an effect due primarily to a substantial prolongation of the mean closed time of the channel. As a metabolic sensor in cells, AMPK may be important in tuning CFTR activity to cellular energy charge, thereby linking transepithelial transport and the maintenance of cellular ion gradients to cellular metabolism.  相似文献   

20.
We previously reported the phosphoinositide 3-kinase-dependent activation of the 5'-AMP-activated kinase (AMPK) by peroxynitrite (ONOO-) and hypoxia-reoxygenation in cultured endothelial cells. Here we show the molecular mechanism of activation of this pathway. Exposure of bovine aortic endothelial cells to ONOO- significantly increased the phosphorylation of both Thr172 of AMPK and Ser1179 of endothelial nitric-oxide synthase, a known downstream enzyme of AMPK. In addition, activation of AMPK by ONOO- was accompanied by increased phosphorylation of protein kinase Czeta (PKCzeta) (Thr410/403) and translocation of cytosolic PKCzeta into the membrane. Further, inhibition of PKCzeta abrogated ONOO- -induced AMPK-Thr172 phosphorylation as that of endothelial nitric-oxide synthase. Furthermore, overexpression of a constitutively active PKCzeta mutant enhanced the phosphorylation of AMPK-Thr172, suggesting that PKCzeta is upstream of AMPK activation. In contrast, ONOO- activated PKCzeta in LKB1-deficient HeLa-S3 but affected neither AMPK-Thr172 nor AMPK activity. These data suggest that LKB1 is required for PKCzeta-enhanced AMPK activation. In vitro, recombinant PKCzeta phosphorylated LKB1 at Ser428, resulting in phosphorylation of AMPK at Thr172. Further, direct mutation of Ser428 of LKB1 into alanine, like the kinase-inactive LKB1 mutant, abolished ONOO- -induced AMPK activation. In several cell types originating from human, rat, and mouse, inhibition of PKCzeta significantly attenuated the phosphorylation of both LKB1-Ser428 and AMPK-Thr172 that were enhanced by ONOO-. Taken together, we conclude that PKCzeta can regulate AMPK activity by increasing the Ser428 phosphorylation of LKB1, resulting in association of LKB1 with AMPK and consequent AMPK Thr172 phosphorylation by LKB1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号