首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 69 毫秒
1.
Receptor tyrosine kinases (RTKs) are involved in the control of fundamental cellular processes in metazoans. In vertebrates, RTK could be grouped in distinct classes based on the nature of their cognate ligand and modular composition of their extracellular domain. RTK with immunoglobulin-like domains (IG-like RTK) encompass several RTK classes and have been found in early metazoans, including sponges. Evolution of IG-like RTK is characterized by extended molecular and functional diversification, which prompted us to study their evolutionary history. For that purpose, a nonredundant data set including annotated protein sequences of IG-like RTK (n = 85) was built, representing 19 species ranging from sponges to humans. Phylogenetic trees were generated from alignment of conserved regions using maximum likelihood approach. Molecular phylogeny strongly suggests that IG-like RTK diversification occurred according to a complex scenario. In particular, we propose that specific cis duplications of a common ancestor to both platelet-derived growth factor receptor (class III) and vascular endothelial growth factor receptor (class V) families preceded two trans duplications. In contrast, other IG-like RTK genes, like Musk and PTK7, apparently did not evolve by duplications, whereas fibroblast growth factor receptors (class IV) evolved through two rounds of trans duplications. The proposed model of IG-like RTK evolution is supported by high bootstrap values and by the clustering of genes encoding class III and class V RTKs at specific chromosomal locations in mouse and human genomes.  相似文献   

2.
Tyrosine kinases are important components of metazoan signaling pathways, and their mutant forms are implicated in various malignancies. Searching the sequences from the genomes of 28 eukaryotes and the GenBank, we found tyrosine kinases not only in metazoans but also in the green algae Chlamydomonas reinhardtii, the potato late blight pathogen Phytophthora infestans, and the protozoan pathogen Entamoeba histolytica, contrary to the current view that tyrosine kinases are animal-specific. Based on a phylogenetic analysis, we divided this gene family into 43 subfamilies and found that at least 19 tyrosine kinases were likely present in the common ancestor of chordates, arthropods, and nematodes. Interestingly, most of the subfamilies have conserved domain organizations among subfamily members but have undergone different degrees of expansion during the evolution of metazoans. In particular, a large number of duplications occurred in the lineage leading to the common ancestor of Tagifugu and mammals after its split from the Ciona lineage about 450 to 550 MYA. The timing of expansion coincides with proposed large-scale duplication event in the chordate lineage. Furthermore, gene losses have occurred in most subfamilies. Interestingly, different subfamilies have similar net gain rates in the chordates studied. However, the tyrosine kinases in mouse and human or in fruit fly and mosquito mostly have a one-to-one relationship between species, indicating that static periods of 90 Myr or longer in tyrosine kinase evolution have followed large expansion events.  相似文献   

3.
Tyrosine kinases were first discovered as the protein products of viral oncogenes. We now know that this large family of metazoan enzymes includes nearly one hundred structurally diverse members. Tyrosine kinases are broadly classified into two groups: the transmembrane receptor tyrosine kinases, which sense extracellular stimuli, and the cytoplasmic tyrosine kinases, which contain modular ligand-binding domains and propagate intracellular signals. Several families of cytoplasmic tyrosine kinases have in common a core architecture, the “Src module,” composed of a Src-homology 3 (SH3) domain, a Src-homology 2 (SH2) domain, and a kinase domain. Each of these families is defined by additional elaborations on this core architecture. Structural, functional, and evolutionary studies have revealed a unifying set of principles underlying the activity and regulation of tyrosine kinases built on the Src module. The discovery of these conserved properties has shaped our knowledge of the workings of protein kinases in general, and it has had important implications for our understanding of kinase dysregulation in disease and the development of effective kinase-targeted therapies.  相似文献   

4.
Tyrosine depletion in metazoan proteins was recently explained to be due to the appearance of tyrosine kinases in Metazoa. Here, we present a complementary explanation for the depletion of tyrosine, stating the importance of tyrosine in signaling not only as a phosphorylation target but also as a precursor for catecholamines and hormones. Molecules (dopamine, norepinephrine, and epinephrine, and to a lesser extent serotonin and melatonin) critical to metazoan multicellular signaling are also greatly dependent on a supply of tyrosine. These signaling molecules are synthesized in two highly linked pathways specific to metazoans. In addition, the shikimate pathway that non-metazoans use to synthesize the aromatic amino acids is not present in metazoans. These important pathway changes have occurred between Metazoa and other eukaryotes, causing significant changes to tyrosine metabolism and rendering tyrosine crucial for extracellular signaling. In addition, the evolutionary and functional linkage between these two pathways and the resulting implications for neuropathology are discussed.  相似文献   

5.
Porifera (sponges) represent the most ancient, extant metazoan phylum. They existed already prior to the 'Cambrian Explosion'. Based on the analysis of aa sequences of informative proteins, it is highly likely that all metazoan phyla evolved from only one common ancestor (monophyletic origin). As 'autapomorphic' proteins which are restricted to Metazoa only, integrin receptors, receptors with scavenger receptor cysteine-rich repeats, neuronal-like receptors and protein-tyrosine kinases (PTKs) have been identified in Porifera. From the marine sponge Geodia cydonium, a receptor tyrosine kinase (RTK) has been cloned that comprises the characteristic structural topology known from other metazoan RTKs; an extracellular domain, the transmembrane region, the juxtamembrane region and the TK domain. Only two introns, within the coding region of the RTK gene, could be found, which separate the two highly polymorphic immunoglobulin-like domains, found in the extracellular region of the enzyme. The functional role of this sponge RTK could be demonstrated both in situ (grafting experiments) and in vitro (increase of intracellular Ca2+ level). Upstream of this RTK gene, two further genes coding for tyrosine kinases (TK) have been identified. Both are intron-free. The deduced aa sequence of the first gene shows no transmembrane segment; from the second gene--so far--only half of its catalytic domain is known. A phylogenetic analysis with the TK domains from these sequences and a fourth, from a novel scavenger RTK (all domains comprise the signature for the TK class II receptors), showed that they are distantly related to the insulin and insulin-like receptors. The presented findings support the 'introns-late' hypothesis for such genes that encode 'metazoan' proteins. It is proposed that the TKs evolved from protein-serine/threonine kinases through modularization and subsequent exon shuffling. After formation of the ancestral TKs, the modules lost the framing introns to protect the evolutionary novelty. Since cell culture systems of sponges are now available, it can be expected that soon also those mechanisms that control the developmental programs will be unravelled.  相似文献   

6.
In the present review we summarize sequence data obtained from cloning of sponge receptor tyrosine kinases [RTK]. The cDNA sequences were mainly obtained from the marine sponge Geodia cydonium. RTKs (i) with immunoglobulin [Ig]-like domains in the extracellular region, (ii) of the type of insulin-like receptors, as well as (iii) RTKs with one extracellular speract domain, have been identified. The analyses revealed that the RTK genes are constructed in blocks [domains], suggesting a blockwise evolution. The phylogenetic relationships of the sequences obtained revealed that all sponge sequences fall into one branch of the evolutionary tree, while related sequences from higher Metazoa, human, mouse and rat, including also invertebrate sequences, together form a second branch. It is concluded that the RTK molecules have evolved in sponges prior to the "Cambrian Explosion" and have contributed to the rapid appearance of the higher metazoan phyla and that sponges are, as a taxon, also monophyletic. Due to the fact that protein tyrosine kinases in general and RTKs in particular have only been identified in Metazoa, they are, as a group qualified, to be considered as an autapomorphic character of all metazoan phyla.  相似文献   

7.
Tyrosine phosphorylation is an essential element of signal transduction in multicellular animals. Although tyrosine kinases were originally regarded as specific to the metazoan lineage, it is now clear that they evolved prior to the split between unicellular and multicellular eukaryotes (≈600million years ago). Genome analyses of choanoflagellates and other protists show an abundance of tyrosine kinases that rivals the most complex animals. Some of these kinases are orthologs of metazoan enzymes (e.g., Src), but others display unique domain compositions not seen in any metazoan. Biochemical experiments have highlighted similarities and differences between the unicellular and multicellular tyrosine kinases. In particular, it appears that the complex systems of kinase autoregulation may have evolved later in the metazoan lineage.  相似文献   

8.
9.
Dictyostelium discoideum is a widely studied model organism with both unicellular and multicellular forms in its developmental cycle. The Dictyostelium genome encodes 285 predicted protein kinases, similar to the count of the much more advanced Drosophila. It contains members of most kinase classes shared by fungi and metazoans, as well as many previously thought to be metazoan specific, indicating that they have been secondarily lost from the fungal lineage. This includes the entire tyrosine kinase-like (TKL) group, which is expanded in Dictyostelium and includes several novel receptor kinases. Dictyostelium lacks tyrosine kinase group kinases, and most tyrosine phosphorylation appears to be mediated by TKL kinases. About half of Dictyostelium kinases occur in subfamilies not present in yeast or metazoa, suggesting that protein kinases have played key roles in the adaptation of Dictyostelium to its habitat. This study offers insights into kinase evolution and provides a focus for signaling analysis in this system.  相似文献   

10.
Receptor tyrosine kinases (RTKs) are transmembrane proteins involved in the control of fundamental cellular processes in metazoans. RTKs possess a general structure that includes an extracellular domain, a transmembrane domain and a highly conserved tyrosine kinase domain. RTKs are classified according to their variable extracellular ligand-binding domain. Studies of human RTK members have yielded a wealth of information elucidating their importance. Improper functioning of these enzymes due to mutations, mainly in the kinase domain, is often manifested in various human diseases and is known to be involved in several types of cancer. Here we summarize most of human RTKs, their cognate ligands, as well as related diseases and discuss the eventual use of certain RTKs as new therapeutic targets.  相似文献   

11.
Receptor tyrosine kinases (RTKs) are transmembrane proteins involved in the control of fundamental cellular processes in metazoans. RTKs possess a general structure that includes an extracellular domain, a transmembrane domain and a highly conserved tyrosine kinase domain. RTKs are classified according to their variable extracellular ligand-binding domain. Studies of human RTK members have yielded a wealth of information elucidating their importance. Improper functioning of these enzymes due to mutations, mainly in the kinase domain, is often manifested in various human diseases and is known to be involved in several types of cancer. Here we summarize most of human RTKs, their cognate ligands, as well as related diseases and discuss the eventual use of certain RTKs as new therapeutic targets.  相似文献   

12.
Protein tyrosine phosphatases in the human genome   总被引:44,自引:0,他引:44  
Tyrosine phosphorylation is catalyzed by protein tyrosine kinases, which are represented by 90 genes in the human genome. Here, we present the set of 107 genes in the human genome that encode members of the four protein tyrosine phosphatase (PTP) families. The four families of PTPases, their substrates, structure, function, regulation, and the role of these enzymes in human disease will be discussed.  相似文献   

13.
Receptor tyrosine kinases (RTKs) are single-pass membrane proteins that regulate cell growth, differentiation, motility, and metabolism. Here, we review recent advancements in RTK structure determination and in the understanding of RTK activation. We argue that further progress in the field will necessitate new ways of thinking, and we introduce the concept that RTK dimers explore ensembles of microstates, each characterized by different kinase domain dimer conformations, but the same extracellular domain dimer structure. Many microstates are phosphorylation-competent and ensure the phosphorylation of one specific tyrosine. The prevalence of each microstate correlates with its stability. A switch in ligand will lead to a switch in the extracellular domain configuration and to a subsequent switch in the ensemble of microstates. This model can explain how different ligands produce specific phosphorylation patterns, how receptor overexpression leads to enhanced signaling even in the absence of activating ligands, and why RTK kinase domain structures have remained unresolved in cryogenic electron microscopy studies.  相似文献   

14.
Receptor tyrosine kinases (RTKs) and their downstream signalling pathways have long been hypothesized to play key roles in melanoma development. A decade ago, evidence was derived largely from animal models, RTK expression studies and detection of activated RAS isoforms in a small fraction of melanomas. Predictions that overexpression of specific RTKs implied increased kinase activity and that some RTKs would show activating mutations in melanoma were largely untested. However, technological advances including rapid gene sequencing, siRNA methods and phospho-RTK arrays now give a more complete picture. Mutated forms of RTK genes including KIT, ERBB4, the EPH and FGFR families and others are known in melanoma. Additional over- or underexpressed RTKs and also protein tyrosine phosphatases (PTPs) have been reported, and activities measured. Complex interactions between RTKs and PTPs are implicated in the abnormal signalling driving aberrant growth and survival in malignant melanocytes, and indeed in normal melanocytic signalling including the response to ultraviolet radiation. Kinases are considered druggable targets, so characterization of global RTK activity in melanoma should assist the rational development of tyrosine kinase inhibitors for clinical use.  相似文献   

15.
Receptor Tyrosine Kinases are critical regulators of signal transduction that support cell survival, proliferation, and differentiation. Dysregulation of normal Receptor Tyrosine Kinase function by mutation or other activity-altering event can be oncogenic or can impact the transformed malignant cell so it becomes particularly resistant to stress challenge, have increased proliferation, become evasive to immune surveillance, and may be more prone to metastasis of the tumor to other organ sites. The TAM family of Receptor Tyrosine Kinases (TYRO3, AXL, MERTK) is emerging as important components of malignant cell survival in many cancers. The TAM kinases are important regulators of cellular homeostasis and proper cell differentiation in normal cells as receptors for their ligands GAS6 and Protein S. They also are critical to immune and inflammatory processes. In malignant cells, the TAM kinases can act as ligand independent co-receptors to mutant Receptor Tyrosine Kinases and in some cases (e.g. FLT3-ITD mutant) are required for their function. They also have a role in immune checkpoint surveillance. At the time of this review, the Covid-19 pandemic poses a global threat to world health. TAM kinases play an important role in host response to many viruses and it is suggested the TAM kinases may be important in aspects of Covid-19 biology. This review will cover the TAM kinases and their role in these processes.  相似文献   

16.
酪氨酸激酶受体Eph亚族的研究进展   总被引:2,自引:0,他引:2  
酪氨酸激酶受体(RTK)参与细胞生长、分化、胚胎发育及细胞内信号传递等过程,具有相当重要的生理功能.目前已发现50多种RTK基因分属于14种亚族,Eph亚族是其中最大的家族,由14个基因组成,一些基因主要在脑的发育中表达,另一些则在各种组织中广泛表达.最近该亚族胞外配体的发现为深入研究其生理功能打下基础.综述了Eph亚族成员的来源、表达及其配体的研究概况.  相似文献   

17.
Protein phosphorylation mediates many critical cellular responses and is essential for many biological functions during development. About one-third of cellular proteins are phosphorylated, representing the phosphor-proteome, and phosphorylation can alter a protein's function, activity, localization and stability. Tyrosine phosphorylation events mediated by aberrant activation of Receptor Tyrosine Kinase (RTK) pathways have been proven to be involved in the development of several diseases including cancer. To understand the systems biology of RTK activation, we have developed a phosphor-proteome focused on tyrosine phosphorylation events under insulin and EGF signaling pathways using the PhosphoScan technique coupled with high-throughput mass spectrometry analysis. Comparative proteomic analyses of all these tyrosine phosphorylation events revealed that around 70% of these pY events are conserved in human orthologs and paralogs. A careful analysis of published in vivo tyrosine phosphorylation events from literature and patents revealed that around 38% of pY events from Drosophila proteins conserved on 185 human proteins are confirmed in vivo tyrosine phosphorylation events. Hence the data are validated partially based on available reports, and the credibility of the remaining 62% of novel conserved sites that are unpublished so far is very high but requires further follow-up studies. The novel pY events found in this study that are conserved on human proteins could potentially lead to the discovery of drug targets and biomarkers for the detection of various cancers and neurodegenerative diseases.  相似文献   

18.
19.
Over the past ten years, several growth factor receptors have been shown to be ligand-regulated tyrosine kinases. Tyrosine kinase activity is essential for signal transmission, suggesting that phosphorylation cascades may play an important role. Considerable effort has gone into understanding the structure and function of tyrosine kinase receptors in order to define their mechanisms of signal transmission. However, the protein substrates of the receptor kinases have proven to be difficult to isolate and clone. This review focuses on the receptors for insulin, epidermal growth factor, and platelet-derived growth factor. They are all tyrosine kinases, but emerging evidence suggests that they utilize multiple separate signal transduction pathways. Work carried out during the next several years should yield considerable insight into the complexity of the components which interact with these tyrosine kinase receptors to regulate cellular growth and metabolism.  相似文献   

20.

Background  

Nuclear receptors (NRs) and Receptor tyrosine kinases (RTKs) are essential proteins in many cellular processes and sequence variations in their genes have been reported to be involved in many diseases including cancer. Although crosstalk between RTK and NR signalling and their contribution to the development of endocrine regulated cancers have been areas of intense investigation, the direct coupling of their signalling pathways remains elusive. In our understanding of the role and function of nuclear receptors on the cell membrane the interactions between nuclear receptors and tyrosine kinase receptors deserve further attention.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号