首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The mobility of protons in a dioxolane-linked gramicidin A channel (D1) is comparable to the mobility of protons in aqueous solutions (Cukierman, S., E. P. Quigley, and D. S. Crumrine. 1997. Biophys. J. 73:2489-2502). Aliphatic alcohols decrease the mobility of H+ in aqueous solutions. In this study, the effects of methanol on proton conduction through D1 channels were investigated in different lipid bilayers and at different HCl concentrations. Methanol attenuated H+ currents in a voltage-independent manner. Attenuation of proton currents was also independent of H+ concentrations in solution. In phospholipid bilayers, methanol decreased the single channel conductance to protons without affecting the binding affinity of protons to bilayers. In glycerylmonooleate membranes, the attenuation of single channel proton conductances qualitatively resembled the decrease of conductivities of HCl solutions by methanol. However, in both types of lipid bilayers, single channel proton conductances through D1 channels were considerably more attenuated than the conductivities of different HCl solutions. This suggests that methanol modulates single proton currents through D1 channels. It is proposed that, on average, one methanol molecule binds to a D1 channel, and attenuates H+ conductance. The Gibbs free energy of this process (DeltaG0) is approximately 1.2 kcal/mol, which is comparable to the free energy of decrease of HCl conductivity in methanol solutions (1.6 kcal/mol). Apolar substances like urea and glucose that do not transport protons in HCl solutions and do not permeate D1 channels decreased solution conductivity and single channel conductance by a considerably larger proportion than methanol. Cs+ currents through D1 channels were considerably less (fivefold) attenuated by methanol than proton currents. It is proposed that methanol partitions inside the pore of gramicidin channels and delays the transfer of protons between water and methanol molecules, causing a significant attenuation of the single channel proton conductance. Gramicidin channels offer an interesting experimental model to study proton hopping along a single chain of water molecules interrupted by a single methanol molecule.  相似文献   

2.
S Crouzy  T B Woolf    B Roux 《Biophysical journal》1994,67(4):1370-1386
The gating transition of the RR and SS dioxolane ring-linked gramicidin A channels were studied with molecular dynamics simulations using a detailed atomic model. It was found that the probable reaction path, describing the transition of the ring from the exterior to the interior of the channel where it blocked the permeation pathway, involved several steps including the isomerization of the transpeptide plane dihedral angle of Val1. Reaction coordinates along this pathway were defined, and the transition rates between the stable conformers were calculated. It was found, in good accord with experimental observations, that the calculated blocking rate for the RR-linked channel was 280/s with a mean blocking time of 0.04 ms, whereas such blocking did not occur in the case of the SS-linked channel. An important observation is that the resulting lifetime for the blocked state of the RR-linked channel was in good accord with the experimental observations only when the calculations were performed in the presence of a potassium ion inside the channel.  相似文献   

3.
Brief closures of gramicidin A channels in lipid bilayer membranes   总被引:5,自引:0,他引:5  
Brief closures, so called flickers, gramicidin A channels were observed for glycerol monooleate/n-decane membranes for cesium chloride and hydrochloric acid solutions. The flickers, similar in nature to the flickers observed for physiological channels, were of the order of 1 ms and the interval between flickers was of the order of 50 ms. The flicker-duration and interval between flickers both decrease with voltage. The field dependence of the flickers is consistent with the hypothesis that the membrane forms a dimple when accomodating a dimer in the membrane and that the monomers, on breaking up, are associated over displacements of the order of 2 nm. For similar measurements for glycerol monoleate/hexadecane membranes only rare occurrences of flickers were observed. It is suggested that the flicker phenomenon is governed by the physical and chemical properties of the membrane and the influence of membrane thickness and interfacial free energy is emphasized.  相似文献   

4.
Two different stereoisomers of the dioxolane-linked gramicidin A (gA) channels were individually synthesized (the SS and RR dimers;. Science. 244:813-817). The structural differences between these dimers arise from different chiralities within the dioxolane linker. The SS dimer mimics the helicity and the inter- and intramolecular hydrogen bonding of the monomer-monomer association of gA's. In contrast, there is a significant disruption of the helicity and hydrogen bonding pattern of the ion channel in the RR dimer. Single ion channels formed by the SS and RR dimers in planar lipid bilayers have different proton transport properties. The lipid environment in which the different dimers are reconstituted also has significant effects on single-channel proton conductance (g(H)). g(H) in the SS dimer is about 2-4 times as large as in the RR. In phospholipid bilayers with 1 M [H(+)](bulk), the current-voltage (I-V) relationship of the SS dimer is sublinear. Under identical experimental conditions, the I-V plot of the RR dimer is supralinear (S-shaped). In glycerylmonooleate bilayers with 1 M [H(+)](bulk), both the SS and RR dimers have a supralinear I-V plot. Consistent with results previously published (. Biophys. J. 73:2489-2502), the SS dimer is stable in lipid bilayers and has fast closures. In contrast, the open state of the RR channel has closed states that can last a few seconds, and the channel eventually inactivates into a closed state in either phospholipid or glycerylmonooleate bilayers. It is concluded that the water dynamics inside the pore as related to proton wire transfer is significantly different in the RR and SS dimers. Different physical mechanisms that could account for this hypothesis are discussed. The gating of the synthetic gA dimers seems to depend on the conformation of the dioxolane link between gA's. The experimental results provide an important framework for a detailed investigation at the atomic level of proton conduction in different and relatively simple ion channel structures.  相似文献   

5.
For very narrow channels in which ions and water cannot overtake one another (single-file transport), electrokinetic measurements provide information about the number of water molecules within a channel. Gramicidin A is believed to form such narrow channels in lipid bilayer membranes. In 0.01 and 0.1 M solutions of CsCl, KCL, and NaCl, streaming potentials of 3.0 mV per osmolal osmotic pressure difference (created by urea, glycerol, or glucose) appear across gramicidin A-treated membranes. This implies that there are six to seven water molecules within a gramicidin channel. Electroosmotic experiments, in which the water flux assoicated with current flow across gramicidin-treated membranes is measured, corroborate this result. In 1 M salt solutions, streaming potentials are 2.35 mV per osmolal osmotic pressure difference instead of 3.0 mV. The smaller value may indicate multiple ion occupancy of the gramicidin channel at high salt concentrations. Apparent deviations from ideal cationic selectivity observed while attempting to measure single-salt dilution potentials across gramicidin-treated membranes result from streaming potential effects.  相似文献   

6.
In this paper we calculate surface conformation and deformation free energy associated with the incorporation of gramicidin channels into phospholipid bilayer membranes. Two types of membranes are considered. One is a relatively thin solvent-free membrane. The other is a thicker solvent-containing membrane. We follow the approach used for the thin membrane case by Huang (1986) in that we use smectic liquid crystal theory to evaluate the free energy associated with distorting the membrane to other than a flat configuration. Our approach is different from Huang, however, in two ways. One is that we include a term for surface tension, which Huang did not. The second is that one of our four boundary conditions for solving the fourth-order differential equation describing the free energy of the surface is different from Huang's. The details of the difference are described in the text. Our results confirm that for thin membranes Huang's neglect of surface tension is appropriate. However, the precise geometrical form that we calculate for the surface of the thin membrane in the region of the gramicidin channel is somewhat different from his. For thicker membranes that have to deform to a greater extent to accommodate the channel, we find that the contribution of surface tension to the total energy in the deformed surface is significant. Computed results for the shape of the deformed surface, the total energy in the deformed surface, and the contributions of different components to the total energy, are presented for the two types of membranes considered. These results may be significant for understanding the mechanisms of dimer formation and breakup, and the access resistance for ions entering gramicidin channels.  相似文献   

7.
Summary The noise behavior of lipid bilayer membranes, doped with a chemically dimerized gramicidin A, was investigated. In contrast to normal gramicidin A, which generates a Lorentzian type power spectrum due to the formation and disappearance of conducting dimers, the current power spectrum densityS m (f) obtained with this gramicidin A derivative showed over several orders of magnitude a clear 1/f behavior. The intensity of this 1/f component was analyzed as a function of the membrane-applied voltage, membrane resistance, electrolyte concentration, and composition. The relationship between the meansquare fluctuation in current and the membrane current mean value was found to follow Hooge's equation, i.e., I 2=I m 2 /N f whereN is the number of channels and is a constant equal to 1.0×10–2. It is suggested that a 1/f type noise was observed because the chemically dimerized form of gramicidin A produces long lasting cation selective channels.  相似文献   

8.
Studies for the cation permeability properties of the gramicidin A channel in erythrocyte membranes are presented. It is shown that gramicidin A interacts with the membrane in a cooperative manner, creating aggregates of the antibiotic molecules in the lipid lattice of the membrane. Cationic channels exist in these aggregates with the following order of selectivity: Rb+ greater than Cs+ greater K+ greater than Na+. The cation permeability of the channels depends on the media surrounding the membrane. This finding has been explained on the basis of Hodgkin-Keynes theory for single-file ion diffusion through extra-narrow pores.  相似文献   

9.
10.
Gramicidin A (gA) molecules were covalently linked with a dioxolane ring. Dioxolane-linked gA dimers formed ion channels, selective for monovalent cations, in planar lipid bilayers. The main goal of this study was to compare the functional single ion channel properties of natural gA and its covalently linked dimer in two different lipid bilayers and HCl concentrations (10-8000 mM). Two ion channels with different gating and conductance properties were identified in bilayers from the product of dimerization reaction. The most commonly observed and most stable gramicidin A dimer is the main object of this study. This gramicidin dimer remained in the open state most of the time, with brief closing flickers (tau(closed) approximately 30 micros). The frequency of closing flickers increased with transmembrane potential, making the mean open time moderately voltage dependent (tau(open) changed approximately 1.43-fold/100 mV). Such gating behavior is markedly different from what is seen in natural gA channels. In PEPC (phosphatidylethanolamine-phosphatidylcholine) bilayers, single-channel current-voltage relationships had an ohmic behavior at low voltages, and a marked sublinearity at relatively higher voltages. This behavior contrasts with what was previously described in GMO (glycerylmonooleate) bilayers. In PEPC bilayers, the linear conductance of single-channel proton currents at different proton concentrations was essentially the same for both natural and gA dimers. g(max) and K(D), obtained from fitting experimental points to a Langmuir adsorption isotherm, were approximately 1500 pS and 300 mM, respectively, for both the natural gA and its dimer. In GMO bilayers, however, proton affinities of gA and the dioxolane-dimer were significantly lower (K(D) of approximately 1 and 1.5 M, respectively), and the g(max) higher (approximately 1750 and 2150 pS, respectively) than in PEPC bilayers. Furthermore, the relationship between single-channel conductance and proton concentration was linear at low bulk concentrations of H+ (0.01-2 M) and saturated at concentrations of more than 3 M. It is concluded that 1) The mobility of protons in gramicidin A channels in different lipid bilayers is remarkably similar to proton mobilities in aqueous solutions. In particular, at high concentrations of HCl, proton mobilities in gramicidin A channel and in solution differ by only 25%. 2) Differences between proton conductances in gramicidin A channels in GMO and PEPC cannot be explained by surface charge effects on PEPC membranes. It is proposed that protonated phospholipids adjacent to the mouth of the pore act as an additional source of protons for conduction through gA channels in relation to GMO bilayers. 3) Some experimental results cannot be reconciled with simple alterations in access resistance to proton flow in gA channels. Said differences could be explained if the structure and/or dynamics of water molecules inside gramicidin A channels is modulated by the lipid environment and by modifications in the structure of gA channels. 4) The dioxolane ring is probably responsible for the closing flickers seen in the dimer channel. However, other factors can also influence closing flickers.  相似文献   

11.
We have tested the hypothesis that peptide tryptophan groups can control the ionic conductance of transmembrane channels. We report here that single gramicidin A channels change conductance state when the peptide tryptophans are flash photolyzed with ultraviolet light. The current flow through planar lipid bilayers containing multiple gramicidin A channels decreases irreversibly when exposed to ultraviolet light. The current-loss action spectrum peaks sharply at the 280 nm absorption maximum of the gramicidin A tryptophans. Gramicidin channel sensitivity to ultraviolet light is found to be about 20-fold higher than that of frog node sodium channels which is even more than expected based on the high tryptophan content of gramicidin. Channels which survive an ultraviolet light exposure exist in a wide variety of different low-conductance forms. The broad distribution of the single channel conductance of these partially photolyzed channels is attributable to the loss of different combinations of the dimer's normal complement of eight tryptophans per channel. Flash photolysis of single channels results in discrete conductance state changes. Partially photolyzed single channels manifest a further conductance cascade when exposed to a second flash of ultraviolet light. Analysis of the photolysis conductance turn-off process indicates that gramicidin A is a multistate electrochemical unit where the peptide tryptophan groups can modulate the flow of ions through the transmembrane channel.  相似文献   

12.
Photodynamic inactivation of gramicidin channels in bilayer lipid membranes induced by single flashes of the visible light in the presence of phthalocyanine has been studied. The kinetic curves of the flash-induced decrease in the gramicidin-mediated electric current are used for determination of the rate constants of formation and termination of gramicidin channels in terms of the channel dimer model. It is revealed that the kinetics of the sensitized photoinactivation of gramicidin in the membrane is altered by agents which modify the dipole potential drop at the membrane-water interface. Addition of phloretin, which is known to decrease the dipole potential drop, slows down the kinetics, whereas the addition of RH421 or 6-ketocholestanol, which increase the dipole potential drop, accelerates the kinetics. It is shown that the photoinactivation kinetics is also slowed down upon the addition of the thyroid hormone L-thyronine, which reduces the dipole potential drop similar to phloretin, as it was found earlier (M. V. Tsybulskaya, Yu. N. Antonenko, A. E. Tropsha, and L. S. Yaguzhinsky, Biofizika 29:801-805 (1984) (in Russian)). It is demonstrated that the changes in the dissociation rate constant of gramicidin dimers under the action of different dipole modifiers correlate with the changes in the dipole potential drop. It is concluded that the process of the gramicidin channel termination corresponding to the dimer dissociation is sensitive to the dipole potential drop. This conclusion is supported by the data on the effect of dipole modifiers on the lifetime of single gramicidin channels.  相似文献   

13.
Ultrasound effect on gramicidin incorporation into a bilayer lipid membrane has been investigated. The observed increase in the channel opening frequency points to the incorporation rate growth due to the thickness diminishing of near-membrane non-stirred layers. The dependence of ultrasound intensity on the layer thickness is presented.  相似文献   

14.
If a membrane contains ion-conducting channels which form and disappear in a random fashion, an electric current which is passed through the membrane under constant voltage shows statistical fluctuations. Information on the kinetics of channel formation and on the conductance of the single channel may be obtained by analyzing the electrical noise generated in a membrane containing a great number of channels. For this purpose the autocorrelation function of the current noise is measured at different concentrations of the channel-forming substance. As a test system for the application of this technique we have used lipid bilayer membranes doped with gramicidin A. From the correlation time of the current noise generated by the membrane, the rate constants of formation (k-R) and dissociation (k-D) of the channels could be determined. In addition, the mean square of the current fluctuations yielded the single-channel conductance lambda. The values of k-R, k-D, and lambda obtained from the noise analysis agreed closely with the values determined by relaxation measurments and single-channel experiments.  相似文献   

15.
The formation kinetics of gramicidin A channels in lipid bilayer membranes has been characterized as a function of voltage for different solution conditions and membrane composition. The frequency of channel events was measured during the application of voltage ramps and counted in given intervals, a procedure that eliminated the effects of drift in gramicidin concentration. The formation rate was found to increase strongly with voltages up to approximately 50 mV and then to level off slightly. The shape of the voltage dependence was independent of lipid solvent and ramp speed but differed for different ions and different solution concentrations. This suggested an ion occupancy effect on the formation rate that was further supported by the fact that the minimum of the formation rate was shifted toward the equilibrium potential in asymmetric solution concentrations. The effects are explained in terms of a model that contains two contributions to the voltage dependence, a voltage-dependent ion binding to the monomers and a polarization of monomers by the applied electric field and by the occupied ions. The theory is found to give a good fit to experimental data.  相似文献   

16.
The thickness of monoglyceride planar bilayers has significant effects on the transfer of protons in both native gramicidin A (gA) and in covalently linked SS- and RR-dioxolane-linked gA proteins. Planar bilayers with various thicknesses were formed from an appropriate combination of monoglyceride with various fatty acid lengths and solvent. Bilayer thicknesses ranged from 25 A (monoolein in squalene) to 54 A (monoeicosenoin in decane). Single-channel conductances to protons (g(H)) were measured in the concentration range of 10-5000 mM HCl. In native gA as well as in RR channels, the shape of the log(g(H))-log([H(+)]) relationships was nonlinear and remained basically unaltered in monoglyceride bilayers with various thicknesses. For both native gA and RR channels, g(H) values were systematically and significantly larger in thin than in thick bilayers. By contrast, the shape of the log(g(H))-log([H(+)]) relationships in the SS channel was linear (with a slope considerably smaller than 1) in thick (>37 A) bilayers. However, in thin (<37 A) bilayers these plots became nonlinear and g(H) values approached those obtained in native gA channels. The linearization of the log-log plots in the SS channel in thick bilayers is a consequence of a dramatic increase (instead of a decrease as in native gA and RR channels) of g(H) in these bilayers in [H(+)] <1 M. The gating characteristics of the various gA channels as a function of bilayer thickness followed the same pattern as described previously. It was noticed, however, that in the thickest monoglyceride bilayer used in this study, both the SS- and RR-dioxolane-linked channels opened in a mode of bursting activity instead of remaining in the open state as in thin bilayers. It is proposed that the thickness of monoglyceride bilayers modulates proton transfer in native gA channels by a combination of factors including the access resistances of channels to H(+), and fluctuations in both the structure of the lipid bilayer and in the distance between gA monomers. The differential effects of relatively thick monoglyceride bilayers on proton transfer in both dioxolane-linked gA channels must relate to distinct interactions between the bilayers and the SS and RR dioxolanes.  相似文献   

17.
In membranes containing aqueous pores (channels), the osmotic water permeability coefficient, P f, is greater than the diffusive water permeability coefficient, P d. In fact, the magnitude of P f/P d is commonly used to determine pore radius. Although, for membranes studied to date, P f/P d monotonically declines with decreasing pore radius, there is controversy over the value it theoretically assumes when that radius is so small that water molecules cannot overtake one another within the channel (single-file transport). In one view it should equal 1, and in another view it should equal N, the number of water molecules in the pore. Gramicidin A forms, in lipid bilayer membranes, narrow aqueous channels through which single-file transport may occur. For these channels we find that P f/P d approximately 5. In contrast, for the wider nystatin and amphotericin B pores, P f/P d approximately 3. These findings offer experimental support for the view that P f/P d = N for single-file transport, and we therefore conclude that there are approximately five water molecules in a gramicidin A channel. A similar conclusion was reached independently from streaming potential data. Using single-channel conductance data, we calculate the water permeability of an individual gramicidin A channel. In the Appendix we report that there is a wide range of channel sizes and lifetimes in cholesterol-containing membranes.  相似文献   

18.
The transmembrane reaction of ferricyanide reduction by exogenous ascorbate in the liposomes in the presence of N,N,N',N'-tetramethylparaphenylenediamine (TMPD) or 2,3,5,6-tetramethylphenylenediamine (DAD) was investigated. The reaction equilibrium was shown to depend on the intraliposomal pH. At alkaline pH values under the experimental conditions used TMPD functions mainly as an electron carrier, while at acidic pH values TMPD effectuates a coupled transmembrane electron and proton transfer. This reaction is paralleled with local changes in the pH values in the unstirred layer near the membrane.  相似文献   

19.
20.
The channel-forming activity of gramicidin A derivatives carrying positively charged amino acid sequences at their C-termini was studied on planar bilayer lipid membranes and liposomes. We showed previously (FEBS Lett., 2005, vol. 579, pp. 5247–5252) that, at low concentrations, these peptides form classical cation-selective pores typical of gramicidin A, whereas, at high concentrations, they form large nonselective pores. The ability of the peptides to form nonselective pores, which was determined by the efflux of carboxyfluorescein, an organic dye, from liposomes, decreased substantially as the length of the gramicidin fragment in the series of cationic analogues was truncated. CD spectra showed that large pores are formed by peptides having both β6.3 single-stranded and β5.6 double-stranded helical conformations of the gramicidin fragment, with the C-terminal cationic sequence being extended. The dimerization of the peptides by the oxidation of the terminal cysteine promoted the formation of nonselective pores. It was shown that nonselective pores are not formed in membranes of erythrocytes, which may indicate a dependence of the channel-forming ability on the membrane type. The results may be of interest for the directed synthesis of peptides with antibacterial activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号