首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The regulation of intracellular ion concentrations is a fundamental property of living cells. Although many ion transporters have been identified, the systems that modulate their activity remain largely unknown. We have characterized two partially redundant genes from Saccharomyces cerevisiae, HAL4/SAT4 and HAL5, that encode homologous protein kinases implicated in the regulation of cation uptake. Overexpression of these genes increases the tolerance of yeast cells to sodium and lithium, whereas gene disruptions result in greater cation sensitivity. These phenotypic effects of the mutations correlate with changes in cation uptake and are dependent on a functional Trk1-Trk2 potassium transport system. In addition, hal4 hal5 and trk1 trk2 mutants exhibit similar phenotypes: (i) they are deficient in potassium uptake; (ii) their growth is sensitive to a variety of toxic cations, including lithium, sodium, calcium, tetramethylammonium, hygromycin B, and low pH; and (iii) they exhibit increased uptake of methylammonium, an indicator of membrane potential. These results suggest that the Hal4 and Hal5 protein kinases activate the Trk1-Trk2 potassium transporter, increasing the influx of potassium and decreasing the membrane potential. The resulting loss in electrical driving force reduces the uptake of toxic cations and improves salt tolerance. Our data support a role for regulation of membrane potential in adaptation to salt stress that is mediated by the Hal4 and Hal5 kinases.  相似文献   

3.
The phosphatase calcineurin and the kinases Hal4/Hal5 regulate high-affinity potassium uptake in Saccharomyces cerevisiae through the Trk1 transporter. We demonstrate that calcineurin is necessary for high-affinity potassium uptake even in the absence of Na+ stress. HAL5 expression is induced in response to stress in a calcineurin-dependent manner through a newly identified functional CDRE (nt −195/−189). Lack of calcineurin decreases Hal5 protein levels, although with little effect on Trk1 amounts. However, the growth defect of cnb1 cells at K+-limiting conditions can be rescued in part by overexpression of HAL5, and this mutation further aggravates the potassium requirements of a hal4 strain. This suggests that the control exerted by calcineurin on Hal5 expression may be biologically relevant for Trk1 regulation.  相似文献   

4.
5.
The regulation of electrical membrane potential is a fundamental property of living cells. This biophysical parameter determines nutrient uptake, intracellular potassium and turgor, uptake of toxic cations, and stress responses. In fungi and plants, an important determinant of membrane potential is the electrogenic proton-pumping ATPase, but the systems that modulate its activity remain largely unknown. We have characterized two genes from Saccharomyces cerevisiae, PTK2 and HRK1 (YOR267c), that encode protein kinases implicated in activation of the yeast plasma membrane H(+)-ATPase (Pma1) in response to glucose metabolism. These kinases mediate, directly or indirectly, an increase in affinity of Pma1 for ATP, which probably involves Ser-899 phosphorylation. Ptk2 has the strongest effect on Pma1, and ptk2 mutants exhibit a pleiotropic phenotype of tolerance to toxic cations, including sodium, lithium, manganese, tetramethylammonium, hygromycin B, and norspermidine. A plausible interpretation is that ptk2 mutants have a decreased membrane potential and that diverse cation transporters are voltage dependent. Accordingly, ptk2 mutants exhibited reduced uptake of lithium and methylammonium. Ptk2 and Hrk1 belong to a subgroup of yeast protein kinases dedicated to the regulation of plasma membrane transporters, which include Npr1 (regulator of Gap1 and Tat2 amino acid transporters) and Hal4 and Hal5 (regulators of Trk1 and Trk2 potassium transporters).  相似文献   

6.
Intracellular pH and K+ concentrations must be tightly controlled because they affect many cellular activities, including cell growth and death. The mechanisms of homeostasis of H+ and K+ are only partially understood. In the yeast Saccharomyces cerevisiae, proton efflux is mediated by the Pma1 H+-ATPase. As this pump is electrogenic, the activity of the Trk1 and -2 K+ uptake system is crucial for sustained Pma1p operation. The coordinated activities of these two systems determine cell volume, turgor, membrane potential, and pH. Genetic evidence indicates that Trk1p is activated by the Hal4 and -5 kinases and inhibited by the Ppz1 and -2 phosphatases, which, in turn, are inhibited by their regulatory subunit, Hal3p. We show that Trk1p, present in plasma membrane "rafts", physically interacts with Ppz1p, that Trk1p is phosphorylated in vivo, and that its level of phosphorylation increases in ppz1 and -2 mutants. Interestingly, both the interaction with and inhibition of Ppz1p by Hal3p are pH dependent. These results are consistent with a model in which the Ppz1-Hal3 interaction is a sensor of intracellular pH that modulates H+ and K+ homeostasis through the regulation of Trk1p activity.  相似文献   

7.
The yeast Ppz protein phosphatases and the Hal3p inhibitory subunit are important determinants of salt tolerance, cell wall integrity and cell cycle progression. We present several lines of evidence showing that these disparate phenotypes are connected by the fact that Ppz regulates K+ transport. First, salt tolerance, cell wall integrity and cell cycle phenotypes of Ppz mutants are dependent on the Trk K+ transporters. Secondly, Ppz mutants exhibit altered activity of the Trk system, as measured by rubidium uptake. Thirdly, Ppz mutants exhibit altered intracellular K+ and pH, as expected from H+ efflux providing electrical balance during K+ uptake. Our unifying picture of Ppz phenotypes contends that activation of Trk by decreased Ppz activity results in plasma membrane depolarization (reducing uptake of toxic cations), increased intracellular K+ and turgor (compromising cell integrity), and increased intracellular pH (augmenting the expression of pH-regulated genes and facilitating alpha-factor recovery). In addition to providing a coherent explanation for all Ppz-dependent phenotypes, our results provide evidence for a causal relationship between intracellular cation homeostasis and a potential cell cycle checkpoint.  相似文献   

8.
In continuation of our previous study, we show that phosphatidyl ethanolamine (PE) depletion affects, in addition to amino acid transporters, activities of at least two other proton motive force (pmf)-driven transporters (Ura4p and Mal6p). For Can1p, we demonstrate that the lack of PE results in a failure of the permease targeting to plasma membrane. Despite the pleiotropic effect of PE depletion, a specific role of PE in secretion of a defined group of permeases can be distinguished. Pmf-driven transporters are more sensitive to the lack of PE than other plasma membrane proteins.  相似文献   

9.
In continuation of our previous study, we show that phosphatidyl ethanolamine (PE) depletion affects, in addition to amino acid transporters, activities of at least two other proton motive force (pmf)-driven transporters (Ura4p and Mal6p). For Can1p, we demonstrate that the lack of PE results in a failure of the permease targeting to plasma membrane. Despite the pleiotropic effect of PE depletion, a specific role of PE in secretion of a defined group of permeases can be distinguished. Pmf-driven transporters are more sensitive to the lack of PE than other plasma membrane proteins.  相似文献   

10.
Gierth M  Mäser P 《FEBS letters》2007,581(12):2348-2356
Potassium is a major plant nutrient which has to be accumulated in great quantity by roots and distributed throughout the plant and within plant cells. Membrane transport of potassium can be mediated by potassium channels and secondary potassium transporters. Plant potassium transporters are present in three families of membrane proteins: the K(+) uptake permeases (KT/HAK/KUP), the K(+) transporter (Trk/HKT) family and the cation proton antiporters (CPA). This review will discuss the contribution of members of each family to potassium acquisition, redistribution and homeostasis.  相似文献   

11.
Ammonium transport across plant plasma membranes is facilitated by AMT/Rh-type ammonium transporters (AMTs), which also have homologs in most organisms. In the roots of the plant Arabidopsis (Arabidopsis thaliana), AMTs have been identified that function directly in the high-affinity NH4+ acquisition from soil. Here, we show that AtAMT1;2 has a distinct role, as it is located in the plasma membrane of the root endodermis. AtAMT1;2 functions as a comparatively low-affinity NH4+ transporter. Mutations at the highly conserved carboxyl terminus (C terminus) of AMTs, including one that mimics phosphorylation at a putative phosphorylation site, impair NH4+ transport activity. Coexpressing these mutants along with wild-type AtAMT1;2 substantially reduced the activity of the wild-type transporter. A molecular model of AtAMT1;2 provides a plausible explanation for the dominant inhibition, as the C terminus of one monomer directly contacts the neighboring subunit. It is suggested that part of the cytoplasmic C terminus of a single monomer can gate the AMT trimer. This regulatory mechanism for rapid and efficient inactivation of NH4+ transporters may apply to several AMT members to prevent excess influx of cytotoxic ammonium.  相似文献   

12.
L6 myoblasts spontaneously undergo differentiation and cell fusion into myotubes. These cells express both GLUT1 and GLUT4 glucose transporters, but their expression varies during myogenesis. We now report that the subcellular distribution and the protein processing by glycosylation of both glucose transporter isoforms also change during myogenesis. Crude plasma membrane and light microsome fractions were isolated from either myoblasts or myotubes and characterized by the presence of two functional proteins, the Na+/K(+)-ATPase and the dihydropyridine receptor (DHPR). Immunoreactive alpha 1 subunit of the Na+/K(+)-ATPase was faint in the crude plasma membrane fraction from myoblasts, but abundant in both membrane fractions from myotubes. In contrast, the alpha 1 subunit of the DHPR, which is expressed only in differentiated muscle, was detected in crude plasma membrane from myotubes but not from myoblasts. Therefore, crude plasma membrane fractions from myoblasts and myotubes contain cell surface markers, and the composition of these membranes appears to be developmentally regulated during myogenesis. GLUT1 protein was more abundant in the crude plasma membrane relative to the light microsome fraction prepared from either myoblasts or myotubes. The molecular size in sodium dodecyl sulfate-polyacrylamide gel electrophoresis of the GLUT1 transporters in myotubes was smaller than that in myoblasts (Mr 47,000 and 53,000, respectively). GLUT4 protein (Mr 48,000) was barely detectable in the crude plasma membrane fraction and was almost absent in the light microsome fraction prepared from myoblasts. However, GLUT4 protein was abundant in myotubes and was predominantly located in the light microsome fraction. Treatment with endoglycosidase F reduced the molecular size of the transporters in all fractions to Mr 46,000 for GLUT1 and Mr 47,000 for GLUT4 proteins. In myotubes, acute insulin treatment increased the crude plasma membrane content of GLUT1 marginally and of GLUT4 markedly, with a concomitant decrease in the light microsomal fraction. These results indicate that: (a) the subcellular distribution of glucose transporters is regulated during myogenesis, GLUT4 being preferentially sorted to intracellular membranes; (b) both GLUT1 and GLUT4 transporters are processed by N-linked glycosylation to form the mature transporters in the course of myogenesis; and (c) insulin causes modest recruitment of GLUT1 transporters and marked recruitment of GLUT4 transporters, from light microsomes to plasma membranes in L6 myotubes.  相似文献   

13.
14.
15.
Many plasma membrane transporters are downregulated by ubiquitylation, endocytosis, and delivery to the lysosome in response to various stimuli. We report here that two amino acid transporters of Saccharomyces cerevisiae, the general amino acid permease (Gap1) and the arginine-specific permease (Can1), undergo ubiquitin-dependent downregulation in response to their substrates and that this downregulation is not due to intracellular accumulation of the transported amino acids but to transport catalysis itself. Following an approach based on permease structural modeling, mutagenesis, and kinetic parameter analysis, we obtained evidence that substrate-induced endocytosis requires transition of the permease to a conformational state preceding substrate release into the cell. Furthermore, this transient conformation must be stable enough, and thus sufficiently populated, for the permease to undergo efficient downregulation. Additional observations, including the constitutive downregulation of two active Gap1 mutants altered in cytosolic regions, support the model that the substrate-induced conformational transition inducing endocytosis involves remodeling of cytosolic regions of the permeases, thereby promoting their recognition by arrestin-like adaptors of the Rsp5 ubiquitin ligase. Similar mechanisms might control many other plasma membrane transporters according to the external concentrations of their substrates.  相似文献   

16.
17.
We describe a novel plasma membrane cystine transporter, CgCYN1, from Candida glabrata, the first such transporter to be described from yeast and fungi. C. glabrata met15Δ strains, organic sulfur auxotrophs, were observed to utilize cystine as a sulfur source, and this phenotype was exploited in the discovery of CgCYN1. Heterologous expression of CgCYN1 in Saccharomyces cerevisiae met15Δ strains conferred the ability of S. cerevisiae strains to grow on cystine. Deletion of the CgCYN1 ORF (CAGL0M00154g) in C. glabrata met15Δ strains caused abrogation of growth on cystine with growth being restored when CgCYN1 was reintroduced. The CgCYN1 protein belongs to the amino acid permease family of transporters, with no similarity to known plasma membrane cystine transporters of bacteria and humans, or lysosomal cystine transporters of humans/yeast. Kinetic studies revealed a K(m) of 18 ± 5 μM for cystine. Cystine uptake was inhibited by cystine, but not by other amino acids, including cysteine. The structurally similar cystathionine, lanthionine, and selenocystine alone inhibited transport, confirming that the transporter was specific for cystine. CgCYN1 localized to the plasma membrane and transport was energy-dependent. Functional orthologues could be demonstrated from other pathogenic yeast like Candida albicans and Histoplasma capsulatum, but were absent in Schizosaccharomyces pombe and S. cerevisiae.  相似文献   

18.
19.
Glucose transport into muscle cells occurs through facilitated diffusion mediated primarily by the GLUT1 and GLUT4 glucose transporters. These transporter proteins are controlled by acute and chronic exposure to insulin, glucose, muscle contraction, and hypoxia. We propose that acute responses occur through recruitment of pre-formed glucose transporters from an intracellular storage site to the plasma membrane. In contrast, chronic control is achieved by changes in transporter biosynthesis and protein stability. Using subcellular fractionation of rat skeletal muscle, recruitment of GLUT4 glucose transporters to the plasma membrane is demonstrated by acute exposure to insulin in vivo. The intracellular pool appears to arise from a unique organelle depleted of transverse tubule, plasma membrane, or sarcoplasmic reticulum markers. In diabetic rats, GLUT4 content in the plasma membranes and in the intracellular pool is reduced, and incomplete insulin-dependent GLUT4 recruitment is observed, possibly through a defective incorporation of transporters to the plasma membrane. The lower content of GLUT4 transporters in the muscle plasma membranes is reversed by restoration of normoglycemia with phlorizin treatment. In some muscle cells in culture, GLUT1 is the only transporter expressed yet they respond to insulin, suggesting that this transporter can also be regulated by acute mechanisms. In the L6 muscle cell line, GLUT1 transporter content diminishes during myogenesis and GLUT4 appears after cell fusion, reaching a molar ratio of about 1:1 in the plasma membrane. Prolonged exposure to high glucose diminishes the amount of GLUT1 protein in the plasma membrane by both endocytosis and reduced biosynthesis, and lowers GLUT4 protein content in the absence of changes in GLUT4 mRNA possibly through increased protein degradation. These studies suggest that the relative contribution of each transporter to transport activity, and the mechanisms by which glucose exerts control of the glucose transporters, will be key subjects of future investigations.  相似文献   

20.
The Hsp70 Ssb and J protein Zuo1 of Saccharomyces cerevisiae are ribosome-associated molecular chaperones, proposed to be involved in the folding of newly synthesized polypeptide chains. Cells lacking Ssb and/or Zuo1 have been reported to be hypersensitive to cationic aminoglycoside protein synthesis inhibitors that affect translational fidelity and to NaCl. Since we found that Δssb1 Δssb2ssb1,2), Δzuo1, and wild-type cells have very similar levels of translational misreading in the absence of aminoglycosides, we asked whether the sensitivities to aminoglycosides and NaCl represent a general increase in sensitivity to cations. We found that Δssb1,2 and Δzuo1 cells are hypersensitive to a wide range of cations. This broad sensitivity is similar to that of cells having lowered activity of major plasma membrane transporters, such as the major K+ transporters Trk1 and Trk2 or their regulators Hal4 and Hal5. Like Δhal4,5 cells, Δssb1,2 and Δzuo1 cells have increased intracellular levels of Na+ and Li+ upon challenge with higher-than-normal levels of these cations, due to an increased rate of influx. In the presence of aminoglycosides, Δssb1,2, Δzuo1, and Δhal 4,5 cells have similarly increased levels of translational misreading. We conclude that, in vivo, the major cause of the aminoglycoside sensitivity of cells lacking ribosome-associated molecular chaperones is a general increase in cation influx, perhaps due to altered maturation of membrane proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号