首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
When 1.0 g/l of alginate was added to a Catharanthus roseus L. cell culture, many proteins were released from the cells as detected by SDS polyacrylamide gel electrophoresis. In particular, production and/or release of 5′-phosphodiesterase (5′-PDase), catalase and chitinase by C. roseus L. cells were promoted by the addition of alginate. The promotive effects of alginate on 5′-PDase production were observed for various C. roseus cell lines and similar results were obtained when different alginates with various mannuronate/guluronate ratios and viscosities were used. In contrast, agar, agarose, and chitosan did not promote 5′-PDase production. The promotion of 5′-PDase production was not due to cell mutation, the alginate acted rather as a kind of elicitor. During 82 subcultures (577 days) in Murashige and Skoog medium containing 1.0 g/l of alginate, production and release of 5′-PDase by C. roseus L. cells were promoted without inhibition of cell growth. Received: 27 February 1997 / Revision received: 10 July 1997 / Accepted: 20 July 1997  相似文献   

2.
Summary The influence of initial concentration of glucose from 60 to 233 g/l on the production of L-lysine byCorynebacterium sp was studied first in batch culture. The maximum conversion rate into L-lysine was obtained at 165 g/l and the best specific production rate for L-lysine was observed at 65 g/l of glucose. In fed-batch fermentations, better conversion and the specific production rates were obtained. Maintaining of a high glucose concentration in the fed-batch technique allowed a 54% increase of the L-lysine production compared to the batch culture.  相似文献   

3.
Summary Kinetics of ethanol fermentation at varying sugar concentrations of Jerusalem artichoke tuber extract has been studied using Kluyveromyces marxianus cells immobilized in calcium alginate gel beads. A maximum ethanol concentration of 111 g/l was achieved at an initial sugar concentration of 260 g/l in 20 hours, when the immobilized cell concentration in the calcium alginate beads was 53.3 g dry wt./l bead volume. Ethanol yield remained almost unaffected by initial sugar concentration up to 250 g/l and was found to be about 88% of the theoretical. Maximum rate of ethanol production decreased from 22.5 g ethanol/l/h to 10.5 g ethanol/l/h while the maximum rate of total sugars utilization decreased from 74.9 g sugars/l/h to 28.5 g sugars/l/h as the initial substrate concentration was increased from 100 to 300 g/l. The concentration of free cells in the fermentation broth was low.  相似文献   

4.
Erythromycin production by Saccharopolyspora erythraea immobilized in 2% (w/v) calcium alginate or grown in medium containing 20 g sodium alginate/l inoculated with free cells was almost twice more than that of the control. S. erythraea did not consume alginate, agar, dextran, silicon antifoaming agent or cyclodextrin as a carbon source, although, all of these increased the production of erythromycin. Highest titer of erythromycin (2.3 times more than that of the control) was achieved in medium containing 1 g agar/l.  相似文献   

5.
Summary Auxotrophic mutant cells of Corynebacterium glycinophilum with high l-serine production activity were immobilized by entrapment with various gel materials, such as synthetic prepolymers and natural polysaccharides. The entrapped cells were used for estimation of l-serine productivity in a medium supplemented with glycine as a precursor. Based on the above criteria, including cell growth in gels and cell leakage from gels, calcium alginate was the most suitable gel material. Continuous l-serine fermentation with calcium alginate-entrapped growing cells was successfully achieved in an air-bubbled reactor for at least 13 days.  相似文献   

6.
2-Keto-L-gulonic acid was produced from gluconic acid using co-immobilized cells of Gluconobacter oxydans and Corynebacterium sp. with 2,5-diketo-D-gluconic acid. Gluconobacter oxydans and Corynebacterium sp. were entrapped together with polyvinylalcohol and alginate. 50 g/l glucose, 50 g/l gluconic acid, and the mixture of equal volume of 50 g/l glucose and 50 g/l gluconic acid were used as substrates. When the ratio of two cells was 1 to 1 with 100 mg cells/ml, the conversion of 2-KLG from gluconic acid was 38% (g/g). © Rapid Science Ltd. 1998  相似文献   

7.
Summary When alginate (1.0 g/l) was added to Wasabia japonica cell culture, cell growth was slightly inhibited (11–17%) but both the chitinase production and the specific chitinase productivity increased. Similar results were also observed when chitosan (1.0 g/l), which is well known as an elicitor, was added to the culture. These results suggest that alginate act as a kind of elicitor. Promotion effect of alginate on chitinase production was more remarkable when low molecular weight alginate (oligomer) was used. In comparison with free cells, addition of alginate to W. japonica protoplast culture resulted to 3 times increase in the chitinase productivity.  相似文献   

8.
Summary Kinetic and yield parameters for growth and ethanol production from sucrose (100 g/l) bySaccharomyces cerevisia entrapped in K-carrageenan and calcium alginate were identical to those of free cells. Cell leakage was minimum with calcium alginate gel. For the sixth batch, 4.51 g/lh ethanol productivity (94% conversion of sucrose) was obtained; 60.5 g/l of ethanol was obtained from 200 g/l sucrose with 83.2% conversion, indicating inhibition effects.  相似文献   

9.
A mutant of Corynebacterium glutamicum dependent on homoserine and resistant both to S-(2-aminoethyl)-L-cysteine and lysine hydroxamate, cultivated under submerged conditions for 4 days in a medium containing sucrose, corn-steep and pea nut mea? hydrolyzate, accumulated 33.5 g/l lysine.  相似文献   

10.
High-molecular weight pectic acid with a STAUDINGER index of 210 ml/g and a degree of esterification of 3%was used as matrix material for the immobilization of Saccharomyces cerevisiae cells. In discontinuous and continuous fermentation tests the gel beads obtained exhibited the same biomass loading capacity (152–155 g dry wt. cells/kg gel) and about the same maximum specific productivity (103.0 g ethanol/kg gel · h) as alginate immobilizates. But there were distinct differences in the swelling behaviour of the two gels. Under the same experimental conditions the increase of bead volume amounted to 27% only for pectate gel in comparison to 129% for alginate gel. In continuous fermentation experiments performed in a horizontal-column packed-bed reactor with liquid recycling a mean steady-state ethanol concetration of 69.1 g/l and a mean productivity of 24.7 g ethanol/lh could be kept constant over a period of more than 10 days.  相似文献   

11.
Corynebacterium glutamicum is commonly used for lysine production. In the last decade, several metabolic engineering approaches have been successfully applied to C. glutamicum. However, only few studies have been focused on the kinetics of growth and lysine production. Here, we present a phenomenological model that captures the growth and lysine production during different phases of fermentation at various initial dextrose concentrations. The model invokes control coefficients to capture the dynamics of lysine and trehalose synthesis. The analysis indicated that maximum lysine productivity can be obtained using 72 g/L of initial dextrose concentration in the media, while growth was optimum at 27 g/L of dextrose concentration. The predictive capability was demonstrated through a two-stage fermentation strategy to enhance the productivity of lysine by 1.5 times of the maximum obtained in the batch fermentation. Two-stage fermentation indicated that the kinetic model could be further extended to predict the optimal feeding strategy for fed-batch fermentation.  相似文献   

12.
Summary The thermotolerant yeast, Kluyveromyces marxianus IMB3 produced 11g ethanol/l during growth at 45°C on media containing 4% (w/v) lactose when immobilized in alginate beads whereas the free cells produced 5g ethanol/l. A magnetically responsive biocatalyst, prepared by incorporating Fe3O4 into the alginate matrix increased ethanol production to 12g/l in batch-fed reactors. Ethanol concentrations were further increased to a maximum of 18g/l by immobilization of the endogenous K. marxianus -galactosidase to the Fe3O4 particles prior to inclusion into the alginate matrix. Maximum ethanol productivity by the system was 87% of the maximum theoretical yield.  相似文献   

13.
Summary Aspergillus terreus NRRC 1960 spores were entrapped in calcium alginate gel beads or alternotely the fungal mycelium was immobilized either on Celite R-626 or in agar gel cubes, and the biocatalyst was employed both in repeated batch and in continuous column reactors to produce itaconic acid from D-xylose or D-glucose. The highest itaconic acid yield obtained in a submerged culture batch fermentation was 54.5% based on total initial glucose (55 g/l) with a volumetric productivity of 0.32 g/l h, and 44.8% from xylose (67 g/l) with a productivity of 0.20 g/l h. In a repeated batch fermentation mycelium immobilized in agar gel had a productivity of 0.112 g/l h, and mycelium grown from spores immobilized in calcium alginate gel 0.06 g/l h, both from xylose (60 g/l). With the best immobilized biocatalyst system used employing Celite R-626 as a carrier, volumetric productivities of 1.2 g/l h from glucose and 0.56 g/l h from xylose (both at 60 g/l) were obtained in continuous column operation for more than 2 weeks.  相似文献   

14.
l-Lactic acid was produced from raw cassava starch, by simultaneous enzyme production, starch saccharification and fermentation in a circulating loop bioreactor with Aspergillus awamori and Lactococcus lactis spp. lactis immobilized in loofa sponge. A. awamori was immobilized directly in cylindrical loofa sponge while the L. lactis was immobilized in a loofa sponge alginate gel cube. In the loofa sponge alginate gel cube, the sponge serves as skeletal support for the gel with the cells. The alginate gel formed a hard outer layer covering the soft porous gel inside. By controlling the rate and frequency of broth circulation between the riser and downcomer columns, the riser could be maintained under aerobic condition while the downcomer was under anaerobic condition. Repeated fed-batch l-lactic acid production was performed for more than 400 h and the average lactic acid yield and productivity from raw cassava starch were 0.76 g lactic acid g–1 starch and 1.6 g lactic acid l–1 h–1, respectively.  相似文献   

15.
Summary Among 200 strains of marine bluegreen algae isolated from the coastal areas of Japan, the marine blue-green alga Synechococcus sp. NKBG 040607 excreted glutamate at the highest rate, 82.6% of total amino acids production being glutamate. Synechococcus sp. NKBG 40607 was immobilized in calcium alginate gel. Glutamate production by immobilized cells was double that of native cells. Maximal glutamate production (25 g/cm3 gel per day) of the immobilized cells was observed under a light intensity of 144 Einstein/m2 per second at a cell concentration of 7.5 mg dry cells/cm3 gel. Immobilized cells of Synechococcus sp. can use nitrate as a nitrogen source. Immobilized marine Synechococcus sp. produced 0265 mg/cm3 gel of glutamate for 7 days in the presence of chloramphenicol.  相似文献   

16.
Summary A new cell immobilization technique, using preformed cellulose beads, has been developed. Corynebacterium sp. and Saccharomycss cerevisiae cells were grown on the beads and were used for tryptophan and ethanol production.  相似文献   

17.
Summary The dissolution of alginate gel beads in 20 g sodium citrate /l produces a linear decrease in bead diameter. The rate of dissolution is dependent on the concentration of CaCl2 within the gel beads. This method allows the controlled release of Saccharomyces cerevisiae from alginate gel beads and permits the simple and rapid determination of the radial distribution of cell concentration.  相似文献   

18.
Ethanol production from 200 g lactose/l by Kluyveromyces fragilis immobilized in calcium alginate was 63 g/l whereas with co-immobilized K. fragilis and Zymomonas mobilis 72 g ethanol/l was attained. With free cells of K. fragilis, only 52 g ethanol/l was obtained. The beads were relatively stable without significant reduction in activity for about six batches of fermentation.The authors are with the Department of Microbiology and Microbial Technology, School of Biological Sciences, Madurai Kamaraj University, Madurai 625 021, India.This paper is dedicated to Professor M. Lakshmanan, Vice-Chancellor, Madurai Kamaraj University, in commemoration of his 60th birthday.  相似文献   

19.
Summary Recycled immobilized cells of Kluyveromyces fragilis ATCC 28244 were used for repeated batch production of ethanol from the inulin sugars derived from Jerusalem artichoke tubers. Using 10% initial sugar concentration, a maximum ethanol concentration of 48 g/l was achieved in 7 h when the immobilized cell concentration in the Ca alginate beads was 72 g dry wt. immobilized cell/l bead volume. The maximum ethanol production rate was 13.5 g ethanol/l bioreactor volume/h. The same Ca alginate beads containing the cells were used repeatedly for 11 batch runs starting with fresh medium at the beginning of each run. The ethanol yield was found to be almost constant at 96% of the theoretical for all 11 batch runs, while the maximum ethanol production rate during the last batch run was found to be 70% of the original ethanol rate obtained in the first batch run.  相似文献   

20.
Overproduction of isoleucine, an essential amino acid, was achieved by amplification of the gene encoding threonine dehydratase, the first enzyme in the threonine to isoleucine pathway, in a Corynebacterium lactofermentum threonine producer. Threonine overproduction was previously achieved with C. lactofermentum ATCC 21799, a lysine-hyperproducing strain, by introduction of plasmid pGC42 containing the Corynebacterium hom dr and thrB genes (encoding homoserine dehydrogenase and homoserine kinase respectively) under separate promoters. The pGC42 derivative, pGC77, also contains ilvA, which encodes threonine dehydratase. In a shake-flask fermentation, strain 21799(pGC77) produced 15 g/l isoleucine, along with small amounts of lysine and glycine. A molar carbon balance indicates that most of the carbon previously converted to threonine, lysine, glycine and isoleucine was incorporated into isoleucine by the new strain. Thus, in our system, simple overexpression of wild-type ilvA sufficed to overcome the effects of feedback inhibition of threonine dehydratase by the end-product, isoleucine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号