首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Extracellular signal regulated kinases (ERKs) are a class of MAP kinases that function in many signaling pathways in eukaryotic cells and in some cases, a single stimulus can activate more than one ERK suggesting functional redundancy or divergence from a common pathway. Dictyostelium discoideum encodes only two MAP kinases, ERK1 and ERK2, that both function during the developmental life cycle. To determine if ERK1 and ERK2 have overlapping functions, chemotactic and developmental phenotypes of erk1? and erk2? mutants were assessed with respect to G protein-mediated signal transduction pathways. ERK1 was specifically required for Gα5-mediated tip morphogenesis and inhibition of folate chemotaxis but not for cAMP-stimulated chemotaxis or cGMP accumulation. ERK2 was the primary MAPK phosphorylated in response to folate or cAMP stimulation. Cell growth was not altered in erk1?, erk2? or erk1?erk2? mutants but each mutant displayed a different pattern of cell sorting in chimeric aggregates. The distribution of GFP-ERK1 or GFP-ERK2 fusion proteins in the cytoplasm and nucleus was not grossly altered in cells stimulated with cAMP or folate. These results suggest ERK1 and ERK2 have different roles in G protein-mediated signaling during growth and development.  相似文献   

2.
Twelve Tn5-induced mutants of Bradyrhizobium japonicum unable to grow chemoautotrophically with CO2 and H2 (Aut) were isolated. Five Aut mutants lacked hydrogen uptake activity (Hup). The other seven Aut mutants possessed wild-type levels of hydrogen uptake activity (Hup+), both in free-living culture and symbiotically. Three of the Hup mutants lacked hydrogenase activity both in free-living culture and as nodule bacteroids. The other two mutants were Hup only in free-living culture. The latter two mutants appeared to be hypersensitive to repression by oxygen, since Hup activity could be derepressed under 0.4% O2. All five Hup mutants expressed both ex planta and symbiotic nitrogenase activities. Two of the seven Aut Hup+ mutants expressed no free-living nitrogenase activity, but they did express it symbiotically. These two strains, plus one other Aut Hup+ mutant, had CO2 fixation activities 20 to 32% of the wild-type level. The cosmid pSH22, which was shown previously to contain hydrogenase-related genes of B. japonicum, was conjugated into each Aut mutant. The Aut Hup mutants that were Hup both in free-living culture and symbiotically were complemented by the cosmid. None of the other mutants was complemented by pSH22. Individual subcloned fragments of pSH22 were used to complement two of the Hup mutants.  相似文献   

3.
Wild-type strains of Saccharomyces cerevisiae are resistant to growth inhibition by the folate antagonist trimethoprim. A mutant strain sensitive to trimethoprim was isolated. It was found to be sensitive to both ultraviolet light and X-irradiation. Genetic tests revealed that it was allelic with a known radiation-sensitive strain of Saccharomyces cerevisiae, rad 6-1. Strains harbouring a variety of mutant alleles conferring radiation-sensitivity were tested for sensitivity to trimetroprim. It was found that rad 6-1 and each of the four known alleles of rad 18 conferred sensitivity to the drug, but all other rad mutants tested were trimethoprim-resistant. All trimethoprim-sensitive strains, including double mutants of rad 6 rad 18, gave rise to trimethoprim-resistant outgrowths at a rather high frequency (∼ 10−5). Several resistant outgrowths were analysed. A wide variation in phenotype with respect to UV-sensitivity was found. Genetical analysis revealed that resistance to trimethoprim resulted from torward mutations at separate loci rather than back mutations of rad 6 or rad 18 alleles.  相似文献   

4.
Mutant strains of Azotobacter vinelandii that are unable to fix nitrogen were analyzed for their ability to reduce acetylene and oxidize dithionite. The activities of Components I (Fe-Mo-protein) and II (Fe-protein), the presence of antibody cross-reacting material to each of the components and the electron paramagnetic resonance (EPR) intensities at g = 3.65 also were examined in these strains. All mutant strains so far studied that are unable to reduce nitrogen, are also incapable of reducing acetylene or oxidizing dithionite. Representatives of various nitrogenaseless mutants have been characterized. Based on activity measurements they fall into three classes: those lacking both components (I?II?), those lacking Component I (I?II+) and those lacking Component II (I+II?). Many strains have extremely low levels of activity for either component, but in some of these strains, cross-reacting material is made for one or both of the components. The EPR at g = 3.65 correlates well with the activity for Component I in several of these mutant strains, but in four of the mutants there appears to be 10-20-fold higher amounts of paramagnetic center than the nitrogen-fixing activity in in vitro tests would indicate.  相似文献   

5.
《FEBS letters》2014,588(24):4543-4550
R-spondin (Rspo) encodes a multi-domain protein that modulates the Wnt-signaling pathway. Two distinct rspo2 zebrafish mutants were generated by TALEN-mediated mutagenesis: a null mutant, rspo2null, lacking all functional domains, and a hypomorphic mutant, rspo2tsp, lacking the two N-terminal domains. Mutants were analyzed mainly for abnormalities in the skeletal system. Fin ray skeletons were formed normally in the rspo2tsp mutants, but were absent from the rspo2null mutants. Hypoplasia of the neural/hemal arches and ribs was observed in both mutants. Thus, the two rspo2 mutants help to identify the functions of Rspo2 in skeletogenesis, as well as functional differences among multiple Rspo2 domains.  相似文献   

6.
In an earlier paper, we presented evidence that two independent mutants of the bg series, B6-H-2 bm5 (bm5) and B6-H-2 bm16 (bm16) carry identical mutations such that tyrosine at residue number 116 of the H-2Kb molecule from the parent strain C57BL/6Kh is replaced by a phenylalanine in each of the two mutant molecules. In this paper, we demonstrate, using similar techniques, that the independent bg series mutants B6-H-2 bm6 (bm6), B6.C-H-2 bm7 (bm7), and B6.C-H-2 bm9 (bm9), which share biological properties with bm5 and bm16, can be grouped together because they share two identical mutations, one of which is common to bm5 and bm16, a Tyr to Phe interchange at residue number 116. In addition, a second mutation is at residue number 121, where a Cys in the H-2K molecule from 136 is substituted with an Arg in the mutant. Since all of the bg series mutants arose independently and share biological and biochemical characteristics, it is anticipated that study of these mutants could lead to some understanding of the high mutation rate in the Kb molecule.  相似文献   

7.
Genetic analysis of the B2t locus has resulted in the recovery of four recessive mutations in the B2t structural gene and a deficiency that deletes the locus. Two of the mutations were recovered as suppressors of B2tD, a dominant male sterile mutation at the locus, and two were induced on wild-type chromosomes. All four mutant genes encode β2-tubulin subunits that are synthesized at normal rates but do not accumulate. All mutants are completely male sterile as homozygotes.  相似文献   

8.
1. A new procedure is described for selecting nitrogenase-derepressed mutants based on the method of Brenchley et al. (Brenchley, J. E., Prival, M. J. and Magasanik, B. (1973) J. Biol. Chem. 248, 6122–6128) for isolating histidase-constitutive mutants of a non-N2-fixing bacterium.2. Nitrogenase levels of the new mutants in the presence of NH4+ were as high as 100% of the nitrogenase activity detected in the absence of NH4+.3. Biochemical characterization of these nitrogen fixation (nif) derepressed mutants reveals that they fall into three classes. Three mutants (strains SK-24, 28 and 29), requiring glutamate for growth, synthesize nitrogenase and glutamine synthetase constitutively (in the presence of NH4+). A second class of mutants (strains SK-27 and 37) requiring glutamine for growth produces derepressed levels of nitrogenase activity and synthesized catalytically inactive glutamine synthetase protein, as determined immunologically. A third class of glutamine-requiring, nitrogenase-derepressed mutants (strain SK-25 and 26) synthesizes neither a catalytically active glutamine synthetase enzyme nor an immunologically cross-reactive glutamine synthetase protein.4. F-prime complementation analysis reveals that the mutant strains SK-25, 26, 27, 37 map in a segment of the Klebsiella chromosome corresponding to the region coding for glutamine synthetase. Since the mutant strains SK-27 and SK-37 produce inactive glutamine synthetase protein, it is concluded that these mutations map within the glutamine synthetase structural gene.  相似文献   

9.
In iron-rich conditions, Pseudomonas aureofaciens PA147-2 produces an antibiotic-like compound that inhibits the growth of a plant fungal pathogen, Aphanomyces euteiches. To contribute to the potential use of PA147-2 as a biocontrol organism, we report the identification of a genetic locus important for antibiotic biosynthesis. Mutants defective for fungal inhibition (Af-) were generated by Tn5 mutagenesis. Southern hybridization of total DNAs from three Af- mutants indicated that loss of fungal inhibition was due to a single Tn5 insertion in each mutant. Restriction mapping of the mutation points showed that in two mutants the Tn5 insertions were in the same 16.0-kb EcoRI fragment and were separated by 2.1 kb. A genomic library of PA147-2 was constructed and screened by using a region of DNA flanking the Tn5 insertion in one mutant (PA109) as a probe to recover complementing cosmids. Three cosmids containing a 16.0-kb EcoRI fragment complementary to the two mutants were recovered. Allele replacement by homologous recombination with putative complementing cosmids restored one mutant to antifungal activity against A. euteiches. Southern analysis of the complemented mutants confirmed that allele replacement had occurred between cosmid DNA and Tn5. The wild-type 16.0-kb EcoRI fragment was cloned from the cosmid and complemented the two mutants to antifungal activity. An antifungal compound was isolated from PA147-2 grown on solid medium. Antifungal activity correlated to a peak on high-pressure liquid chromatography analysis. Under the same growth and extraction conditions, the antifungal activity seen in PA147-2 was absent in two Af- mutants. Furthermore, absence of an antifungal compound in each mutant correlated to the absence of the wild-type “antifungal” peak on high-pressure liquid chromatography analysis.  相似文献   

10.
Hisatoshi Mimura 《BBA》2005,1708(3):393-403
The H+-pyrophosphatase (H+-PPase) consists of a single polypeptide, containing 16 or 17 transmembrane domains. To determine the higher order oligomeric state of Streptomyces coelicolor H+-PPase, we constructed a series of cysteine substitution mutants and expressed them in Escherichia coli. Firstly, we analyzed the formation of disulfide bonds, promoted by copper, in mutants with single cysteine substitutions. 28 of 39 mutants formed disulfide bonds, including S545C, a substitution at the periplasmic side. The formation of intermolecular disulfide bonds suppressed the enzyme activity of several, where the substituted residues were located in the cytosol. Creating disulfide links in the cytosol may interfere with the enzyme's catalytic function. Secondly, we prepared double mutants by introducing second cysteine substitutions into the S545C mutant. These double-cysteine mutants produced cross-linked complexes, estimated to be at least tetramers and possibly hexamers. Thirdly, we co-expressed epitope-tagged, wild type, and inactive mutant H+-PPases in E. coli and confirmed the formation of oligomers by co-purifying one subunit using the epitope tag used to label the other. The enzyme activity of these oligomers was markedly suppressed. We propose that H+-PPase is present as an oligomer made up of at least two or three sets of dimers.  相似文献   

11.
We have found that mutations in phage T4 genes 41 (five of five) and 61 (three of three) cause resistance to the folate analogue pyrimethamine that inhibits T4 dihydrofolate (FH2) reductase. These genes code for subunits of a T4 primase and are part of a putative T4 replication complex. In contrast to many previously isolated folate analogue-resistant (Far) T4 mutants, these T4 primase mutants do not overproduce FH2 reductase nor do they alter its primary structure. A new mutant with a single lesion in gene 41 was isolated which proved resistant to the folate analogue at 30° and was lethal at 42°. This mutant induced normal levels of FH2 reductase (encoded by the frd gene) and appeared to have normal expression of other T4 genes at 30°. Like other mutations in gene 41, tsP129 reduced phage-induced DNA synthesis to about 15% that of wild-type T4 as measured by thymidine incorporation under restrictive conditions. Double mutants carrying mutations in genes 41 and 61, 41 and frd or 61 and frd showed allele-specific suppression suggesting that the products of these genes interact. We suggest that abnormal interactions between components of the replication complex and a DNA precursor synthesizing complex cause folate analog resistance by allosterically altering the T4 FH2 reductase.  相似文献   

12.
Viral proteins synthesized in L cells infected with temperature-sensitive (ts) mutants of vesicular stomatitis (VS) virus at permissive (31 C) and nonpermissive (39 C) temperatures were compared by polyacrylamide gel electrophoresis. Mutant ts 5, deficient in synthesis of viral ribonucleic acid (RNA), failed to synthesize any of the five identifiable viral proteins at 39 C. Each of three RNA+ mutants, representing three separate complementation groups, showed distinctive patterns of viral protein synthesis at nonpermissive temperature. Equivalent amounts of 3H-amino acids were incorporated into the five viral proteins made in cells infected with RNA+ mutant ts 45 at 31 and 39 C. Complete virions of ts 45 could be identified by electron microscopy of infected cells incubated at the nonpermissive temperature; the defect in ts 45 appeared to be due in part to greater thermolability of virions as compared with the wild-type. RNA+ mutant ts 23 was deficient in synthesis of viral envelope protein S and failed to make detectable virions at the nonpermissive temperature. Infection of cells at 39 C with the third RNA+ mutant, ts 52, resulted in synthesis of all five viral proteins, but the peak of radioactivity representing the viral membrane glycoprotein migrated more rapidly on gels than coelectrophoresed authentic virion 14C-glycoprotein or viral 3H-glycoprotein extracted from cells infected at 31 C. These data and results of experiments on incorporation of radioactive glucosamine suggest that the primary defect in mutant ts 52 at nonpermissive temperature is failure of glycosylation of the viral glycoprotein. The viral structural proteins made in cells infected with ts 52 at the nonpermissive temperature did not assemble into sedimentable components as they did at permissive temperature; this observation indicates failure of insertion of the nonglycosylated protein (G′) into cell membrane. In support of this hypothesis was the finding that antiviral-antiferritin hybrid antibody did not detect VS viral antigen on the plasma membrane of L cells infected at 39 C with ts 52. In contrast, VS viral antigen localized in plasma membrane of L cells infected at 39 C with mutants ts 23 and ts 45 was readily detected by electron microscopy and fluorescence microscopy.  相似文献   

13.
Plasmids which contained wild-type or mutated Rhizobium meliloti nodulation (nod) genes were introduced into NodR. trifolii mutants ANU453 and ANU851 and tested for their ability to nodulate clover. Cloned wild-type and mutated R. meliloti nod gene segments restored ANU851 to Nod+, with the exception of nodD mutants. Similarly, wild-type and mutant R. meliloti nod genes complemented ANU453 to Nod+, except for nodCII mutants. Thus, ANU851 identifies the equivalent of the R. meliloti nodD genes, and ANU453 specifies the equivalent of the R. meliloti nodCII genes. In addition, cloned wild-type R. trifolii nod genes were introduced into seven R. meliloti Nod mutants. All seven mutants were restored to Nod+ on alfalfa. Our results indicate that these genes represent common nodulation functions and argue for an allelic relationship between nod genes in R. meliloti and R. trifolii.  相似文献   

14.
Phenotypes are determined by a complex series of physical (e.g. protein-protein) and functional (e.g. gene-gene or genetic) interactions (GI)1. While physical interactions can indicate which bacterial proteins are associated as complexes, they do not necessarily reveal pathway-level functional relationships1. GI screens, in which the growth of double mutants bearing two deleted or inactivated genes is measured and compared to the corresponding single mutants, can illuminate epistatic dependencies between loci and hence provide a means to query and discover novel functional relationships2. Large-scale GI maps have been reported for eukaryotic organisms like yeast3-7, but GI information remains sparse for prokaryotes8, which hinders the functional annotation of bacterial genomes. To this end, we and others have developed high-throughput quantitative bacterial GI screening methods9, 10.Here, we present the key steps required to perform quantitative E. coli Synthetic Genetic Array (eSGA) screening procedure on a genome-scale9, using natural bacterial conjugation and homologous recombination to systemically generate and measure the fitness of large numbers of double mutants in a colony array format. Briefly, a robot is used to transfer, through conjugation, chloramphenicol (Cm) - marked mutant alleles from engineered Hfr (High frequency of recombination) ''donor strains'' into an ordered array of kanamycin (Kan) - marked F- recipient strains. Typically, we use loss-of-function single mutants bearing non-essential gene deletions (e.g. the ''Keio'' collection11) and essential gene hypomorphic mutations (i.e. alleles conferring reduced protein expression, stability, or activity9, 12, 13) to query the functional associations of non-essential and essential genes, respectively. After conjugation and ensuing genetic exchange mediated by homologous recombination, the resulting double mutants are selected on solid medium containing both antibiotics. After outgrowth, the plates are digitally imaged and colony sizes are quantitatively scored using an in-house automated image processing system14. GIs are revealed when the growth rate of a double mutant is either significantly better or worse than expected9. Aggravating (or negative) GIs often result between loss-of-function mutations in pairs of genes from compensatory pathways that impinge on the same essential process2. Here, the loss of a single gene is buffered, such that either single mutant is viable. However, the loss of both pathways is deleterious and results in synthetic lethality or sickness (i.e. slow growth). Conversely, alleviating (or positive) interactions can occur between genes in the same pathway or protein complex2 as the deletion of either gene alone is often sufficient to perturb the normal function of the pathway or complex such that additional perturbations do not reduce activity, and hence growth, further. Overall, systematically identifying and analyzing GI networks can provide unbiased, global maps of the functional relationships between large numbers of genes, from which pathway-level information missed by other approaches can be inferred9.  相似文献   

15.
Adler PN  Holt CE 《Genetics》1977,87(3):401-420
Rare plasmodia formed in clones of heterothallic amoebae were analyzed in a search for mutations affecting plasmodium formation. The results show that the proportion of mutants varies with both temperature (18°, 26° or 30°) and mating-type allele (mt1, mt2, mt3, mt4). At one extreme, only one of 33 plasmoida formed by mt2 amoebae at 18° is mutant. At the other extreme, three of three plasmodia formed by mt1 amoebae at 30° are mutant. The mutant plasmodia fall into two groups, the GAD (greater asexual differentiation) mutants and the ALC (amoebaless life cycle) mutants. The spores of GAD mutants give rise to amoebae that differentiate into plasmodia asexually at much higher frequencies than normal heterothallic amoebae. Seven of eight gad mutations analyzed genetically are linked to mt and one (gad-12) is not. The gad-12 mutation is expressed in strains with different alleles of mt. The frequency of asexual plasmodium formation is heat sensitive in some (e.g., mt3 gad-11 ), heat-insensitive in two (mt2 gad-8 and mt2 gad-9) and cold-sensitive in one (mt1 gad-12) of twelve GAD mutants analyzed phenotypically. The spores of ALC mutants give rise to plasmodia directly, thereby circumventing the amoebal phase of the life cycle. Spores from five of the seven ALC mutants give rise to occasional amoebae, as well as plasmodia. The amoebae from one of the mutants carry a mutation (alc-1) that is unlinked to mt and is responsible for the ALC phenotype in this mutant. Like gad-12, alc-1 is expressed with different mt alleles. Preliminary observations with amoebae from the other four ALC mutants suggest that two are similar to the one containing alc-1; one gives rise to revertant amoebae, and one gives rise to amoebae carrying an alc mutation and a suppressor of the mutation.  相似文献   

16.
By examining cytological phenotypes of 587 temperature-sensitive mutants of the fission yeast Schizosaccharomyces pombe, we obtained 18 mutants which cause cell division in the absence of nuclear division. By genetic analyses, these novel nuclear division arrest mutants can be classified into nine complementation groups (designated cut1cut9). The cytological phenotype of cut mutants is similar but not identical to that of DNA topoisomerase II mutants (top2). The cut1+ gene was cloned by transformation and shown to complement cut2 as well as cut1, indicating a functional relationship between the two genes. The cut genes are required for nuclear division, but their mutant phenotypes differ from most of the previously identified mutants which block nuclear division and also the subsequent cytokinesis. Fluorescence microscopy indicates that the mitotic chromosomes formed in cut mutant cells are abnormal and fail to separate properly. We suggest that cut mutations, like top2, block mitotic chromosome formation and concomitantly nuclear division, but that cytokinesis proceeds independently of the defects in nuclear division, demonstrating uncoordinated mitotic pathways. A novel mutant nuc1 is also described which shows a cytological phenotype similar to the double mutant of DNA topoisomerases I and II but contains normal levels of both DNA topoisomerase activities.  相似文献   

17.
spNab2 is a fission yeast, Schizosaccharomyces pombe, homologue of the budding yeast Nab2 protein that is an essential poly(A)+ RNA-binding protein required for both nuclear export of mRNA to cytoplasm and poly(A)+ tail length control. Here we performed a synthetic lethal genetic screen in the fission yeast to isolate mutants that are genetically linked to spnab2. We isolated three mutants that showed synthetic lethality under the repressed condition of the spnab2 expression. These mutants defined in different complementation groups. All the mutants exhibited the accumulation of poly(A)+ RNA in the nucleus under the restricted condition. In addition, the growth defects of one mutant (SLnab2) were complemented partially by some genes (mlo3 and rae1) required for mRNA export, while those of the rest (SLnab1 and SLnab3) were not complemented by any S. pombe genes we tested, which were known to be involved in mRNA export. These results suggest that the isolated mutants might harbor mutations in novel genes functionally linked to the spnab2 gene.  相似文献   

18.
Mutagenized E. coli B/r cells were subjected to a procedure designed to select mutants temperature-sensitive for initiation of deoxyribonucleic acid (DNA) replication. Seventeen mutants exhibiting limited residual DNA synthesis at 42 C were obtained and the dna sites were mapped genetically. Sixteen of the sites map near dnaA, dnaB, and dnaC. One mutant (dna-208) maps in a new location between the trp and his genes. We propose to call this mutant dnaI208. In complementation experiments dnaC+ and dnaI+ were dominant to dnaC and dnaI alleles, respectively. However, dnaA was dominant to the wild-type allele dnaA+. All dnaA mutants and four out of six dnaC mutants could be suppressed by F factor integration. The pattern of suppression was specific for each mutant.  相似文献   

19.
The functions of ten known late genes are required for the intracellular assembly of infectious particles of the temperate Salmonella phage P22. The defective phenotypes of mutants in these genes have been characterized with respect to DNA metabolism and the appearance of phage-related structures in lysates of infected cells. In addition, proteins specified by eight of the ten late genes were identified by sodium dodecyl sulfate/polyacrylamide gel electrophoresis; all but two are found in the mature phage particle. We do not find cleavage of these proteins during morphogenesis.The mutants fall into two classes with respect to DNA maturation; cells infected with mutants of genes 5, 8, 1, 2 and 3 accumulate DNA as a rapidly sedimenting complex containing strands longer than mature phage length. 5? and 8? lysates contain few phage-related structures. Gene 5 specifies the major head structural protein; gene 8 specifies the major protein found in infected lysates but not in mature particles. 1?, 2? and 3? lysates accumulate a single distinctive class of particle (“proheads”), which are spherical and not full of DNA, but which contain some internal material. Gene 1 protein is in the mature particle, gene 2 protein is not.Cells infected with mutants of the remaining five genes (10, 26, 16, 20 and 9) accumulate mature length DNA. 10? and 26? lysates accumulate empty phage heads, but examination of freshly lysed cells shows that many were initially full heads. These heads can be converted to viable phage by in vitro complementation in concentrated extracts. 16? and 20? lysates accumulate phage particles that appear normal but are non-infectious, and which cannot be rescued in vitro.From the mutant phenotypes we conclude that an intact prohead structure is required to mature the virus DNA (i.e. to cut the overlength DNA concatemer to the mature length). Apparently this cutting occurs as part of the encapsulation event.  相似文献   

20.
Using immunoselection with an H-2Kk-specific monoclonal antibody following mutagenesis on an (H-2 k/H-2d) F1 cell line we have obtained variants that do not react with the selecting monoclonal antibody but continue to react with other monoclonal antibodies directed against the same gene product. The mutants fall into two classes based on their serological profile. This phenotype is suggestive of a structural mutation in the selected gene. If the genetic change involved is a point mutation (as opposed to a deletion), one should be able to obtain revertants. Using the fluorescence-activated cell sorter, we have been able to obtain from one of the monoclonal-antibody-nonseactive mutants cells that do bind the selecting antibody. In order to prove that the presumptive revertant is not a contaminant wild-type cell that inadvertantly got mixed into the resistant mutant, we first introduced an outside marker, resistance to the purine analogue 2-amino-6-mercaptopurine (6-thioguanine), into the monoclonal-antibody-resistant mutant. The revertants obtained using the cell sorter continue to express the nonselective phenotype of resistance to 6-thioguanine, showing that they are not wild-type cells. In addition, their serological characteristics are different from those of either the wild-type cells or the hybrid oma-resistant mutants from which they were derived. Based on the serological analyses, it would seem that we have isolated at least three variant forms of the H-2Kk-gene product.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号