首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Brief episodes of tachycardia without myocardial ischemia prior to a coronary occlusion decrease myocardial infarct size in dogs. This non-ischemic preconditioning is mediated by adenosine. Because ischemic preconditioning is mediated through ATP dependent potassium channels, particularly the mitochondrial ones, we studied whether non-ischemic preconditioning is also mediated through these channels. In anesthetized dogs heart rate was kept constant at 120 cycles/min and aortic pressure changes were damped. Myocardial infarction was induced by occlusion of the anterior descending coronary artery for 60 min and reperfusion for 270 min. In a control group the infarct size (necrotic volume/risk region volume × 100) was 15.8 ± 1.5%. Preconditioning with five periods of tachycardia, 5 min in duration each at 213 cycles/min with intervening periods of 5 min of basal heart rate at 120 cycles/min, reduced the infarct size by 45.6% (p < 0.05) with respect to the control group. This effect was completely reverted by the blockade of ATP dependent potassium channels with glibenclamide or 5 hydroxydecanoate (a specific blocker of mitochondrial ATP dependent potassium channels) prior to preconditioning. These effects were not due to differences in collateral flow, risk region size or hemodynamic variables between the groups. These results show that mitochondrial ATP dependent potassium channels mediate non-ischemic preconditioning by tachycardia in dogs.  相似文献   

2.
Previously, we have demonstrated the role of nucleoside transport and purine release in post-ischemic reperfusion injury (myocardial stunning) in several canine models of ischemia. Since rabbits are deficient of xanthine oxidase, it is not known whether selective blockade of purine release is beneficial in a rabbit model of coronary artery occlusion and reperfusion (stunning). Therefore, we determined the hemodynamic and metabolic correlates in response to myocardial stunning in the presence or absence of selective nucleoside transport blocker (p-nitrobenzylthioinosine, NBMPR) and adenosine deaminase inhibitor (erythro-9-(2-hydroxy-3-nonyl)adenine, EHNA).Sixty adult anaesthetized rabbits were surgically prepared for hemodynamic measurements. After stabilization period, the left anterior descending coronary artery was occluded for 15 min and reperfused for 30 min. Transmural myocardial biopsies were obtained from the ischemic LAD area and from the non-ischemic posterior (circumflex, CFX) segment of the myocardium.Rabbits (n = 60) were randomly assigned to either the control or the EHNA/NBMPR-treated group (n = 30 each). Each group was further divided to either functional or metabolic groups (n = 15 each subgroup). Each animal received intravenously 30 ml of either a vehicle solution or 100 M EHNA and 25 M NBMPR 10 min before ischemia.Although administration of EHNA/NBMPR did not affect the heart rate, it did cause mild hypotension (about 20-30%). Fifteen minutes of LAD occlusion resulted in significant ATP depletion and concomitant accumulation of nucleosides in both groups (p < 0.05 vs. baseline and non-ischemic CFX segment). AMP was higher in the LAD compared to the CFX segment. Significant accumulation of adenosine was observed in the treated group compared to the control group.It is concluded that EHNA/NBMPR induced site specific entrapment of adenosine of nucleoside transport in the rabbit heart, in vivo.  相似文献   

3.
本实验在35只兔心脏上观察了α和β受体阻断剂对心肌缺血早期MET变化的影响,并初步分析了α受体阻断剂抗心律失常效应的作用机理。实验结果表明,β与α受体阻断剂对MET 的影响明显不同。β受体阻断剂心得安可使正常心脏与缺血心脏的MET同等程度的升高,而对阻断冠脉后 MET的降低无改善作用。与此相反,α受体阻断剂哌唑嗪对正常心脏的MET 无明显影响,但可使阻断冠脉血流后 MET降低的百分率明显减轻,此效应与血压变化和扩血管作用无直接关系。上述结果提示,β受体阻断剂可通过提高正常和缺血心脏MET 的绝对值发挥抗心律失常效应,而α受体阻断剂则有特异性的提高缺血心肌MET 的作用。  相似文献   

4.
《Autophagy》2013,9(5):709-712
Autophagy is a major protective mechanism and has been identified in response to hypoxia and more recently, myocardial ischemia, but it is not known whether it is involved in mediating ischemic preconditioning, the most powerful intervention known to protect myocardium against lethal ischemic injury. We examined autophagy in several models of preconditioning induced by 6 repetitive episodes of ischemia every 12 hours versus classical first or second-window preconditioning in swine. The results indicated that autophagy is an important mechanism mediating cardioprotection following repetitive episodes of coronary stenosis or coronary occlusion, but less for traditional first or second window preconditioning.  相似文献   

5.
Diabetes mellitus blocks protection by ischemic preconditioning (IPC), but the mechanism is not known. We investigated the effect of ischemic preconditioning on mitogen-activated protein kinases (extracellular signal-regulated kinases 1 and 2, c-Jun N-terminal kinases, p38 mitogen-activated kinase) and heat shock protein 27 phosphorylation in diabetic and nondiabetic rat hearts in vivo. Two groups of anaesthetized nondiabetic and diabetic rats underwent a preconditioning protocol (3 cycles of 3 min coronary artery occlusion and 5 min of reperfusion). Two further groups served as untreated controls. Hearts were excised for protein measurements by Western blot. Four additional groups underwent 25 min of coronary occlusion followed by 2 h of reperfusion to induce myocardial infarction. In these animals, infarct size was measured. IPC reduced infarct size in the nondiabetic rats but not in the diabetic animals. In diabetic rats, IPC induced phosphorylation of the mitogen-activated protein kinases and of heat shock protein 27. We conclude that protection by IPC is blocked by diabetes mellitus in the rat heart in vivo without affecting phosphorylation of mitogen-activated protein kinases or heat shock protein 27. Therefore, the blockade mechanism of diabetes mellitus is downstream of mitogen-activated kinases and heat shock protein 27.  相似文献   

6.
大鼠心肌缺血预适应诱导表达上调基因的筛选和鉴定   总被引:7,自引:1,他引:7  
采用反复短时间结扎及松解左冠状动脉前降支构建大鼠心肌缺血预适应动物模型,运用抑制消减杂交技术建立大鼠心肌缺血预适应诱导表达上调基因的消减cDNA文库,通过反向RNA点杂交对部分文库基因进行差异表达初筛,选取表达差异最明显的85个基因进行测序,获得了31个核编码基因和18个新基因(EST),核编码基因中有相当一部分与细胞保护或信号转导有关,新基因已被GenBank收录.从已测序基因中任选5个进行RT-PCR检测,并任选2个进行RNA印迹检测,均证实在缺血预适应时表达增高.上述结果为进一步深入研究缺血预适应心肌保护作用的分子机制和克隆新的缺血预适应相关基因提供了重要信息.  相似文献   

7.
Pagliaro P  Penna C  Gattullo D 《Life sciences》1999,64(12):1071-1078
During the myocardial protection induced by ischemic preconditioning a reduction in myocardial metabolism occurs due to activation of the A1 adenosine receptors. This study investigates whether preconditioning changes both resting coronary flow and the magnitude of coronary reactive hyperemia and whether A1 adenosine receptors are involved in the observed changes. Experiments were performed in 14 goats (30-50 kg body weight). After the animals were anesthetized with ketamine, an electromagnetic flow-probe was used to record blood flow in the left circumflex coronary artery. Distal to the probe, an occluder was placed to produce ischemic preconditioning and reactive hyperemia. Preconditioning was obtained with two periods of 2.5 min of coronary occlusion separated from each other by 5 min of reperfusion. Coronary reactive hyperemia was obtained with 15 s of occlusion of the artery before and after preconditioning. In a group of goats before preconditioning 0.2 mg kg(-1) of 8-cyclopentyl-dipropylxanthine (CPX), an A1 adenosine receptor blocker, were given intravenously. In all animals ischemic preconditioning did not alter resting coronary flow, but, in the absence of A1 adenosine receptor blockade, reduced the reactive hyperemic response. The total hyperemic flow and the excess/debt flow ratio were reduced by about 25% and 30% respectively. The A1 adenosine receptor blockade "per se" did not cause any change in the resting flow and in the parameters of the reactive hyperemia. Unlike what observed in the absence of blockade, after CPX ischemic preconditioning was unable to reduce total hyperemic flow and the excess/debt flow ratio. The results suggest that ischemic preconditioning reduces the coronary hyperemic response by decreasing the myocardial metabolism through the activation of the A1 adenosine receptors.  相似文献   

8.
Despite recent advances in pharmacotherapy of coronary artery disease and interventional cardiology, the management of myocardial ischemia still remains a major challenge for basic scientists and clinical cardiologists. An urgent need to combat ischemic heart disease, its forms, such as infarction, and complications including sudden cardiac death led to the development of an alternative strategy of myocardial protection based on the exploitation of the heart's own intrinsic protective mechanisms. A new concept relies on the evidence that the heart is able to protect itself by way of adaptation, either short-term or long-term, to transient episodes of stress (e.g., ischemia, hypoxia, free oxygen radicals, heat stress, etc.) preceding sustained ischemia. Preconditioning by brief episodes of ischemia (ischemic preconditioning, IP) represents the most powerful cardioprotective phenomenon. Apart from the short-lasting protection afforded by classical IP or its delayed ("second window") phase, adaptation to long-lasting physiological stimuli or pathological processes is also known to increase myocardial resistance to ischemic injury. Although molecular mechanisms of cardiac adaptation conferring a higher ischemic tolerance still remain not sufficiently elucidated, multiple cascades of intracellular signalization are suggested to be involved in this process. Experimental studies led to the observations that pharmacological modulations at different levels of signal transduction might mimic protective effects of the adaptive phenomena and thus provide a safer way of inducing cardioprotection in humans.  相似文献   

9.
Previous studies demonstrated that preconditioning of a heart by repeated stunning can reduce the cellular injury to the heart from subsequent acute ischemic insult. To examine the possible biochemical mechanism for such myocardial preservation afforded by preconditioning, swine heart was subjected to four episodes of 5 min. stunning by occluding the left anterior descending coronary artery (LAD), followed by 10 min. of reperfusion after each stunning. Heart was then made regionally ischemic for 60 min. by LAD occlusion, followed by 6 hrs. reperfusion. Control heart was perfused for 60 min., followed by 60 min. ischemia and 6 hrs. reperfusion. The results of our studies indicated the stimulation of a number of antioxidative enzymes, including Mn-superoxide dismutase (Mn-SOD), catalase, glutathione peroxidase, and glutathione reductase, after repeated stunning and reperfusion. In addition, a number of new proteins were expressed after preconditioning the heart, including some oxidative-stress related proteins and 72 kDa heat-shock protein. These results suggest that preconditioning of a heart by repeated stunning may lead to strengthening of the oxidative defense system of the heart, which is likely to play a role in myocardial preservation during subsequent ischemic and reperfusion injury.  相似文献   

10.
Ischemic heart disease is a leading cause of death worldwide. Myocardial ischemia results in reduced coronary flow, followed by diminished oxygen and nutrient supply to the heart. Reperfusion to an ischemic myocardium often augments the ischemic damage, known as ischemia-reperfusion (I/R) injury. Number of studies demonstrated that the hyperlipidemic myocardium is rather sensitive and more vulnerable to I/R-induced myocardial injury. Repeated brief ischemia and reperfusion cycles, termed as ischemic preconditioning, given before a sustained ischemia is known to reduce myocardial damage occur as a result of I/R. A plethora of evidence supports the fact that preconditioning is one of the promising interventional strategies having an ability to limit I/R-induced myocardial injury. Despite this fact, the preconditioning-mediated cardioprotection is blunted in chronic hyperlipidemic condition. This suggests that preconditioning is moderately a ‘healthy heart protective phenomenon’. The mechanisms by which chronic hyperlipidemia abrogates cardioprotective effects of preconditioning are uncertain and are not completely understood. The impaired opening of mitochondrial-KATP channels, eNOS uncoupling and excessive generation of superoxides in the hyperlipidemic myocardium could play a role in attenuating preconditioning-mediated myocardial protection against I/R injury. Moreover, hyperlipidemia-induced loss of cardioprotective effect of preconditioning is associated with redistribution of both sarcolemmal and mitochondrial Connexin 43. We addressed, in this review, the potential mechanisms involved in hyperlipidemia-induced impairment of myocardial preconditioning. Additionally, novel pharmacologic interventions to attenuate hyperlipidemia-associated exaggerated I/R-induced myocardial injury have been discussed.  相似文献   

11.
The cardioprotective effect of SUN 1165, a novel sodium channel blocker, was investigated on ischemic myocardium. Nineteen anesthetized dogs were subjected to 2 hours coronary occlusion, and divided into 2 groups. In the control group, physiological saline was infused. In the SUN 1165 group, 2 mg/kg of SUN 1165 was injected intravenously. Two hours after occlusion, heart mitochondria were prepared from both ischemic and non-ischemic areas in each group, and their functions (RCI and St.III O2) were measured polarographically with succinate as a substrate. Fractionation of myocardial tissue from both non-ischemic and ischemic areas was performed according to the method of Weglicki et al., and the activities of lysosomal enzymes (NAG and beta-gluc) were measured. In the control group, mitochondrial dysfunction and leakage of lysosomal enzymes induced by 2 hours occlusion were observed. Administration of SUN 1165 maintained mitochondrial function, and prevented the leakage of lysosomal enzymes caused by ischemia significantly. These results indicated that SUN 1165 has a cardioprotective effect in ischemic heart.  相似文献   

12.
Matching coronary blood flow to myocardial oxygen consumption.   总被引:7,自引:0,他引:7  
At rest the myocardium extracts approximately 75% of the oxygen delivered by coronary blood flow. Thus there is little extraction reserve when myocardial oxygen consumption is augmented severalfold during exercise. There are local metabolic feedback and sympathetic feedforward control mechanisms that match coronary blood flow to myocardial oxygen consumption. Despite intensive research the local feedback control mechanism remains unknown. Physiological local metabolic control is not due to adenosine, ATP-dependent K(+) channels, nitric oxide, prostaglandins, or inhibition of endothelin. Adenosine and ATP-dependent K(+) channels are involved in pathophysiological ischemic or hypoxic coronary dilation and myocardial protection during ischemia. Sympathetic beta-adrenoceptor-mediated feedforward arteriolar vasodilation contributes approximately 25% of the increase in coronary blood flow during exercise. Sympathetic alpha-adrenoceptor-mediated vasoconstriction in medium and large coronary arteries during exercise helps maintain blood flow to the vulnerable subendocardium when cardiac contractility, heart rate, and myocardial oxygen consumption are high. In conclusion, several potential mediators of local metabolic control of the coronary circulation have been evaluated without success. More research is needed.  相似文献   

13.
Remote ischemic preconditioning reduces myocardial infarction (MI) in animal models. We tested the hypothesis that the systemic protection thus induced is effective when ischemic preconditioning is administered during ischemia (PerC) and before reperfusion and examined the role of the K(+)-dependent ATP (K(ATP)) channel. Twenty 20-kg pigs were randomized (10 in each group) to 40 min of left anterior descending coronary artery occlusion with 120 min of reperfusion. PerC consisted of four 5-min cycles of lower limb ischemia by tourniquet during left anterior descending coronary artery occlusion. Left ventricular (LV) function was assessed by a conductance catheter and extent of infarction by tetrazolium staining. The extent of MI was significantly reduced by PerC (60.4 +/- 14.3 vs. 38.3 +/- 15.4%, P = 0.004) and associated with improved functional indexes. The increase in the time constant of diastolic relaxation was significantly attenuated by PerC compared with control in ischemia and reperfusion (P = 0.01 and 0.04, respectively). At 120 min of reperfusion, preload-recruitable stroke work declined 38 +/- 6% and 3 +/- 5% in control and PerC, respectively (P = 0.001). The force-frequency relation was significantly depressed at 120 min of reperfusion in both groups, but optimal heart rate was significantly lower in the control group (P = 0.04). There were fewer malignant arrhythmias with PerC during reperfusion (P = 0.02). These protective effects of PerC were abolished by glibenclamide. Intermittent limb ischemia during myocardial ischemia reduces MI, preserves global systolic and diastolic function, and protects against arrhythmia during the reperfusion phase through a K(ATP) channel-dependent mechanism. Understanding this process may have important therapeutic implications for a range of ischemia-reperfusion syndromes.  相似文献   

14.
Protein kinase A (PKA) activation has been implicated in early-phase ischemic preconditioning. We recently found that during ischemia PKA activation causes inactivation of cytochrome-c oxidase (CcO) and contributes to myocardial damage due to ischemia-reperfusion. It may be that beta-adrenergic stimulation during ischemia via endogenous catecholamine release activates PKA. Thus beta-adrenergic stimulation may mediate both myocardial protection and damage during ischemia. The present studies were designed to determine the role of the beta(1)-adrenergic receptor (beta(1)-AR) in myocardial ischemic damage and ischemic preconditioning. Langendorff-perfused rabbit hearts underwent 30-min ischemia by anterior coronary artery ligation followed by 2-h reperfusion. Occlusion-reperfusion damage was evaluated by delineating the nonperfused volume of myocardium at risk and volume of myocardial necrosis after 2-h reperfusion. In some hearts ischemic preconditioning was accomplished by two 5-min episodes of global low-flow ischemia separated by 10 min before coronary occlusion-reperfusion. Orthogonal electrocardiograms were recorded, and coronary flow was monitored by a drip count. Three hearts from each experimental group were used to determine mitochondrial CcO and aconitase activities. Two-hour reperfusion after occlusion caused an additional decrease in CcO activity vs. that after 30-min occlusion alone. Blocking the beta(1)-AR during occlusion-reperfusion reversed CcO activity depression and preserved myocardium at risk for necrosis. Similarly, mitochondrial aconitase activity exhibited a parallel response after occlusion-reperfusion as well as for the other interventions. Furthermore, classic ischemic preconditioning had no effect on CcO depression. However, blocking the beta(1)-AR during preconditioning eliminated the cardioprotection. If the beta(1)-AR was blocked after preconditioning, the myocardium was preserved. Interestingly, in both of the latter cases the depression in CcO activity was reversed. Thus the beta(1)-AR plays a dual role in myocardial ischemic damage. Our findings may lead to therapeutic strategies for preserving myocardium at risk for infarction, especially in coronary reperfusion intervention.  相似文献   

15.
We previously demonstrated in rats that noninvasive delayed limb ischemic preconditioning (LIPC) induced by three cycles of 5-min occlusion and 5-min reperfusion of the left hind limb per day for three days confers the same cardioprotective effect as local ischemic preconditioning of the heart, but the mechanism has not been studied in depth. The aim of this project was to test the hypothesis that delayed LIPC enhances myocardial antioxidative ability during ischemia-reperfusion by a mitochondrial K(ATP) channel (mito K(ATP))-dependent mechanism. Rats were randomized to five groups: ischemia-reperfusion (IR)-control group, myocardial ischemic preconditioning (MIPC) group, LIPC group, IR-5HD group and LIPC-5HD group. The MIPC group underwent local ischemic preconditioning induced by three cycles of 5-min occlusion and 5-min reperfusion of the left anterior descending coronary arteries. The LIPC and LIPC-5HD groups underwent LIPC induced by three cycles of 5-min occlusion and 5-min reperfusion of the left hind limb using a modified blood pressure aerocyst per day for three days. All rats were subjected to myocardial ischemia-reperfusion injury. The IR-5HD and LIPC-5HD groups received the mito K(ATP) channel blocker 5-hydroxydecanoate Na (5-HD) before and during the myocardial ischemia-reperfusion injury. Compared with the IR-control group, both the LIPC and MIPC groups showed an amelioration of ventricular arrhythmia, reduced myocardial infarct size, increased activities of total superoxide dismutase, manganese-superoxide dismutase (Mn-SOD) and glutathione peroxidase, increased expression of Mn-SOD mRNA and decreased xanthine oxidase activity and malondialdehyde concentration. These beneficial effects of LIPC were prevented by 5-HD. In conclusion, delayed LIPC offers similar cardioprotection as local IPC. These results support the hypothesis that the activation of mito K(ATP) channels enhances myocardial antioxidative ability during ischemia-reperfusion, thereby contributing, at least in part, to the anti-arrhythmic and anti-infarct effects of delayed LIPC.  相似文献   

16.
Kappa 阿片受体的抗缺血性心脏保护作用--信息机制   总被引:7,自引:0,他引:7  
Wong TM  Wu S 《生理学报》2003,55(2):115-120
有证据表明,心脏细胞产生强腓肽和强腓肽类多肽,它们是kappa阿片受体(κ-0R)的激动剂。κ-0R是心脏一种优势的阿片受体,其激活可改变在体和离体心脏的功能。在正常和病理情况下,内源性κ-阿片肽可能通过自分泌或旁分泌的方式调节心脏功能。心肌缺血是导致心脏功能紊乱的一个常见原因,主要表现为心肌功能减弱,心律失常及心肌梗塞等。心肌缺血时,交感神经发放增强,从而增加作功负荷及氧消耗量;而这又使缺血引发的状况更为恶化。机体抵抗缺血引发心肌损害/心律失常的保护机制之一是抑制β-肾上腺素受体(β—AR)的兴奋。κ-0R确实能抑制β-AR的激动。这种抑制主要是由于GS蛋白受到抑制,也在较小程度上由于信息通路的腺苷酸环化酶的抑制。因为该种酶能通过对百日咳毒素敏感的G蛋白转导β—AR的激动。另一保护心肌对抗缺血性损害的机制是预处理。预处理是指预先受到缺血等损伤使心脏对随后更严重的损伤产生较强的耐受能力。这种保护作用可以在预处理后即时产生,也可延至预处理后1—3天。在采用缺血或其产生的后果之一——代谢抑制作为预处理而致的心脏保护中,κ-OR参与媒介预处理的作用。用κ—OR的特异性激动剂U50488H激活κ—OR(U50488H药理性预处理,UP)可激活蛋白激酶C(PKC),开放ATY敏感的钾通道(KATP channels)及增加热休克蛋白(HSP)的产生。阻断PKC的作用,关闭KATP通道或抑制HSP的合成,均可消除UP的心脏保护作用。这些发现表明,PKC、KATP通道和HSP在UP的心脏保护中均具重要作用。此外,UP也能减低缺血造成心肌损害的因素之一,即Ca^2 的超负荷。这个事实表明UP发挥心脏保护作用至少部分地是通过减低Ca^2 的超负荷。最有趣的是,以阻断剂阻塞KATP通道,在消除UP的延迟性心脏保护作用的同时也降低了UP对Ca^2 超负荷的抑制作用。这个事实揭示了KATP通道开放所致的心脏保护作用至少部分地可能是由于防止或减低了Ca^2 的超负荷。  相似文献   

17.
Ventricular fibrillation, caused by the occlusion of the anterior descending coronary artery, results in leu-enkephalin level decrease in ischemic and non-ischemic zones of myocardium. The fibrillation is found to induce cAMP increase in the ischemic zone and cGMP increase in the normal circulation zone. cGMP and leu-enkephalin level correlates with fibrillation duration. Enkephalins and cyclic nucleotides are suggestive of being of importance in heart rythm disturbances pathogenesis.  相似文献   

18.
Claudia Penna 《BBA》2009,1787(7):781-793
A series of brief (a few minutes) ischemia/reperfusion cycles (ischemic preconditioning, IP) limits myocardial injury produced by a subsequent prolonged period of coronary artery occlusion and reperfusion. Postconditioning (PostC), which is a series of brief (a few seconds) reperfusion/ischemia cycles at reperfusion onset, attenuates also ischemia/reperfusion injury. In recent years the main idea has been that reactive oxygen species (ROS) play an essential, though double-edged, role in cardioprotection: they may participate in reperfusion injury or may play a role as signaling elements of protection in the pre-ischemic phase. It has been demonstrated that preconditioning triggering is redox-sensitive, using either ROS scavengers or ROS generators. We have shown that nitroxyl triggers preconditioning via pro-oxidative, and/or nitrosative stress-related mechanism(s). Several metabolites, including acetylcholine, bradykinin, opioids and phenylephrine, trigger preconditioning-like protection via a mitochondrial KATP-ROS-dependent mechanism. Intriguingly, and contradictory to the above mentioned theory of ROS as an obligatory part of reperfusion-induced damage, some studies suggest the possibility that some ROS at low concentrations could protect ischemic hearts against reperfusion injury. Yet, we demonstrated that ischemic PostC is also a cardioprotective phenomenon that requires the intervention of redox signaling to be protective. Emerging evidence suggests that in a preconditioning scenario a redox signal is required during the first few minutes of myocardial reperfusion following the index ischemic period. Intriguingly, the ROS signaling in the early reperfusion appear crucial to both preconditioning- and postconditioning-induced protection. Therefore, our and others' results suggest that the role of ROS in reperfusion may be reconsidered as they are not only deleterious.  相似文献   

19.
Over the recent years the view on mitochondria in the heart as a cellular powerhouse providing ATP supply needed to sustain contractile function, basal metabolic processes, and ionic homeostasis has changed radically. At present it is known that dysfunctions of these organelles are essential in the development of a large number of diseases, including cardiovascular diseases. Moreover, mitochondria are considered to be a very promising target of endogenous strategies that are essential in the protection of the myocardium from acute ischemia/reperfusion injury. These strategies including ischemic preconditioning, remote ischemic preconditioning as well as the acute phase of streptozotocin-induced diabetes mellitus, provide a similar effect of protection. Alterations observed in the functional and structural properties of heart mitochondria caused by short-term pathological impulses are associated with endogenous cardioprotective processes. It seems that the extent of mitochondrial membrane fluidization could be an active response mechanism to injury with a subtle effect on membrane-associated processes which further affect the environment of the whole organelle, thus inducing metabolic changes in the heart. In this review article, we provide an overview of endogenous protective mechanisms induced by hypoxic, pseudohypoxic and ischemic conditions with special consideration of the role of heart mitochondria in these processes.  相似文献   

20.
For the first time the involvement of C-Reactive protein (CRP) in early (acute) and delayed ischemic (IPC) and pharmacological (chemical) preconditioning (CPC) in an in vivo model of rat myocardial infarction was presented. Acute IPC was produced by three 5 minute occlusion (ischemia) periods interspersed with 5 minute reperfusion, followed by 30 minute occlusion of the left coronary artery and 2 hour reperfusion injury. Acute CPC was produced by a k-opioid receptor agonist U50488H (5 mg/kg) applied i.v. 15 minutes before 30 minute ischemia/ 2 hour reperfusion. Delayed preconditioning was produced by 30 minute ischemia/ 2 hour reperfusion, induced 24 hour after either ischemic or pharmacological preconditioning. The myocardial ischemia/reperfusion injury was evaluated on the basis of total and cardiac creatine kinase isoenzyme activity, functional recovery of the heart (ECG), infarct size (% IS/RA) and mortality at the end of the experiments. The results obtained showed that: k-opioid receptor agonist U50488H mimics both the acute and delayed IPC in the above experimental protocol; Both acute IPC and most probably CPC act by opening of K(ATP) channels (the effects were blocked by nonspecific ATP-sensitive K channel blocker glybenclamide), and via activation of protein kinase C (a selective protein kinase C inhibitor chelerythrine blocked the efects); C-reactive protein (CRP) was significantly elevated by 54% in non-preconditioned acute ischemia/reperfusion injury. The elevation was more pronounced (82% increase) 24 hour after non-preconditioned ischemia/reperfusion injury. It reflected very well the increase in cardiac isoenzymes, infarct size and mortality of the rats, and can be used as a marker of the severity of myocardial injury in this model; The increase of CRP was prevented by both IPC and CPC in early, and especially in late preconditioning. This confirms the involvement of CRP as a marker in cardiac ischemic/reperfusion injury. It was concluded that in addition to the established involvement of adenosine, bradykinin, opioid and other receptors, a suppression of myocardial CRP/complement production might be involved in the biological mechanism of preconditioning. This could be a promising perspective in clinical interventions against ischemia/reperfusion injuries of the heart.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号